首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The protective layer of chemical storage tank has a significant effect in risk mitigation of projectile-related accidents but the research is still in infancy. In order to investigate the performance of protective layer against projectile, dynamic response process of the large-scale vertical storage tank impacted by the end-cap fragment is simulated based on the LS-DYNA. In this paper, some key factors (thickness, layering order and number of layers) affecting its performance are discussed, which can be characterized by the deformation degrees of the target tank. It is found that the anti-penetration performance is improved rapidly with the increase of thickness, and aluminum (Al) protective layer shows a higher sensitivity to thickness change compared to Ultra-High Molecular Weight Polyethylene (UHMWPE) protective layer. Three double-layered protective layers for different sequences are investigated and the Al-UHMWPE protective layer shows best performance. For the Al protective layers arranged in various combinations of equivalent total thickness, better performance is provided by monolithic structures than layered one. This study demonstrated the rational design of the protective layer around chemical storage tanks in material selection and structure configuration.  相似文献   

2.
Blast wave and fragment are two main types of physical damage effects representing a significant threat to storage tank structures in chemical industrial parks. Compared with the effect of only blast wave or fragment, the coupling effect of them may cause more severe consequences and is worthy of study. A numerical study of the dynamic responses and damage of a vertical storage tank subjected to the coupling effect of blast wave and fragment is conducted based on a typical accident. The simulation results reveal that stress-concentration and rapid increase of the stress exist in the impacted region of the storage tank under the coupling effect, which leads to the structural damage of the tank exhibiting different failure modes. The coupling effect is significantly apparent following a dramatic increase of the plastic strain, and the damage of the storage tank is further aggravated. From the displacement response and energy absorption, the overall damage of the storage tank subjected to the coupling effect is more severe than that caused by blast wave and fragment separately, which also indicates that the coupling effect is an enhanced damage effect. Besides, the contribution of blast wave and fragment to the coupling effect depends on scaled distance. The results of the study help reveal the coupling effect of blast wave and fragment and prevent domino accidents caused by the coupling effect.  相似文献   

3.
Major earthquakes have demonstrated that Natech events can be triggered by liquid overtopping in liquid storage tanks equipped with floating roofs. Thus, research on the dynamic behaviour of steel storage tanks with floating roofs is still required. In this paper, the seismic risk against liquid overtopping in a real steel storage tank with a floating roof was analysed using a simplified model that was validated by a refined finite element model based on the arbitrary Lagrangian-Eulerian approach. The simplified model utilizes the Lagrangian of a floating roof-fluid system and is capable of providing a response history of the floating roof. It was demonstrated that it could predict the maximum vertical displacement very accurately, while some differences were observed in the response history of vertical displacement. The computational time for a single response history analysis based on the simplified model amounted to a few minutes, which is significantly less demanding compared to hours required for response history analysis in the case of the refined FE model. The simplified model is thus appropriate for the seismic fragility analysis considering the overtopping limit state. It is shown that the fragility curves are significantly affected by the liquid filling level. The risk for liquid overtopping is quite high in the case of a full tank. However, by considering the variation of filling level during the year, the overtopping risk was observed reduced by approximately 30%. Alternatively, the approximate fragility analysis for the liquid overtopping can be performed by utilizing the Eurocode formula for the vertical displacement of liquid. This approach is straightforward, but the formula does not account for the higher mode effects, which may result in overestimated seismic intensity causing overtopping, as discussed in the paper.  相似文献   

4.
The performance of energy infrastructures under extreme loading conditions, especially for blast and impact conditions, is of great importance despite the low probability for such events to occur. Due to catastrophic consequences of structural failure, it is crucial to improve the resistance of energy infrastructures against the impact of blasts. A TNT equivalent method is used to simulate a petroleum gas vapor cloud explosion when analyzing the dynamic responses of a spherical tank under external blast loads. The pressure distribution on the surface of a 1000 m3 spherical storage tank is investigated. The dynamic responses of the tank, such as the distribution of effective stress, structural displacement, failure mode and energy distribution under the blast loads are studied and the simulation results reveal that the reflected pressure on the spherical tank decreases gradually from the equator to the poles of the sphere. However, the effects of the shock wave reflection are not so evident on the pillars. The structural damage of the tank subjected to blast loads included partial pillar failure from bending deformation and significant stress concentration, which can be observed in the joint between the pillar and the bottom of the spherical shell. The main reason for the remarkable deformation and structural damage is because of the initial internal energy that the tank obtained from the blast shock wave. The liquid in the tank absorbs the energy of impact loads and reduces the response at the initial stage of damage after the impact of the blast.  相似文献   

5.
Aboveground steel storage tanks are widely utilized in industrial areas such as oil refineries, petrochemical complexes, oil depots, and etc. Assurance of these infrastructure facilities in high seismic areas is a very important engineering consideration. High amplitude fluid sloshing is one of the widespread causes of steel oil storage tanks during strong earthquakes addressed as an important failure mode. This phenomenon generates additional forces impacting the wall and roof of the tanks. Annular baffles can be used as slosh damping devises to control liquid sloshing within a tank. The main objective of this paper is experimental study of annular baffle effects as anti-sloshing damping devices to reduce fluid wave sloshing height in steel storage tanks typically used in oil and petrochemical complexes during an earthquake. Shake table tests have been used on a reduced scale model steel storage tank in two cases of with and without annular baffles. Three real earthquake ground motion records are used as input base motion. Based on the experimental test results, dynamic characteristics of studied tank models with different filling levels and different baffle dimensions and arrangements have been obtained and summarized in this paper. Also, sloshing heights and convective mode damping values are determined from the test results and compared with API650 code recommendations and recommended equations by other researchers. Generally, the results of this study indicate significant effects of the annular baffles in reducing the fluid wave sloshing height as sloshing dependent variable dampers.  相似文献   

6.
为满足我国各地原油储备及周转需要,油田企业建设有大型原油储罐。部分储罐随着服役年数的增加,出现由于储罐地基的不均匀沉降而导致的罐壁变形,进而浮盘不能自由升降的现象。通过对储罐基础实测沉降数据建立储罐有限元模型,由计算结果分析研究基础沉降储罐的结构响应,并提出该储罐的安全运行液位,可为使用年限较久的储罐的安全评估提供一定的指导。  相似文献   

7.
Insulation is typically used in extra-large double-walled cryogenic storage tanks that are used to store liquid natural gas (LNG). These vessels have been designed with the assumption that the insulation offers negligible structural resistance that might cause structural damage. Observation of the deformation of the insulation in such tanks leads to concern that the insulation may become sufficiently compacted to cause significant load transfer between the inner and outer tank. The inner tank, though protected from most external events by the outer tank, is only designed to contain the liquid gas. It is therefore much more sensitive to seismic effects. In this investigation, simplified and 3D finite element models are used to simulate the interaction effects of the fluid, inner tank, insulation and outer tank. This paper presents an initial analysis of the potential effects of LNG tank insulation under earthquake conditions and assesses the potential for structural damage by comparison of models that do or do not consider the insulation layer. The data reported and statistically sorted include the overturning moment, the base shear, the tank wall stress, and the wave height in the tank. The results show that the insulation layer has certain influence on seismic design of LNG tanks.  相似文献   

8.
事故树分析法在LPG储罐火灾爆炸事故中的应用   总被引:1,自引:0,他引:1  
LPG(液化石油气)属于危险化学品之一,LPG储罐发生火灾爆炸的机率大,造成的损失比较严重,故对其火灾爆炸事故进行研究具有重要意义。LPG储罐爆炸根据其发生机理分为化学爆炸(燃爆)和物理爆炸两种模式。本文通过对LPG储罐燃爆﹑物理爆炸两类事故进行系统分析,建立了以LPG储罐燃爆、物理爆炸为顶事件的事故树。通过对其事故树的定性分析,得到了影响顶事件的各个最小割(径)集。通过计算底事件的结构重要度,确定了影响LPG储罐火灾爆炸事故的主要因素,并提出了相应的改进措施,进而提高LPG储罐的安全性和运行可靠性。  相似文献   

9.
随着我国经济的飞速发展,国内储油罐趋向大型化发展。大型储罐具有节约钢材、占地少、投资低、便于操作管理等优点。油罐内储存的各种油品一般都具有易挥发、易流失、易燃烧、易爆炸等性质,一旦发生火灾,就会造成重大的经济损失。而且油罐火灾损失巨大,难以扑救,所以说油罐的安全已成为石油化工行业的焦点。针对大型浮顶油罐的危险性,对大量的事故案例进行了分析。在此基础上,提出了强调使用二次密封技术,设计、施工和管理上加强浮船与罐壁之间的密封,安装火灾报警和自动泡沫灭火系统,重视中央排水叠管的密封性及油罐基础的稳定性等安全对策措施。  相似文献   

10.
Blast damage to storage tanks and steel clad buildings   总被引:1,自引:0,他引:1  
The 2005 Buncefield vapour cloud explosion showed the huge cost associated with blast damage to commercial property surrounding a major explosion incident. In most cases there was serious disruption to business activity; in many cases the buildings had to be demolished or abandoned for long periods until extensive repairs were carried out.Another key feature of this and other recent vapour cloud explosions has been the damage done to storage tanks. The blasts almost invariably cause immediate top and bund fires in any tanks surrounded by the vapour – even if they contain relatively high flashpoint materials such as diesel.The first part of this paper describes the patterns of damage observed in buildings in the industrial estates around Buncefield. Methods for assessing the degree of external and internal damage are presented.The second part of the paper deals with failure modes and ignition of various types of liquid storage tank during vapour cloud explosions. Again, the Buncefield data provides excellent examples that illustrate the importance of tank design, fill level, location relative to the cloud, etc.  相似文献   

11.
化工储罐爆炸后将产生大量碎片,这些抛射碎片一旦击中相邻罐体容易引发多米诺效应。碎片的抛射方位和抛射距离具有很大的随机性,已有研究多采用概率模型来描述碎片抛射的各分过程。通过总结和发展已有的分过程模型,建立了求取多米诺效应的综合概率模型,并基于蒙特卡罗算法编制了模拟软件,可对化工储罐多米诺效应的发生概率进行预测计算。选取若干常用化工球罐为相邻目标储罐进行实例分析,计算结果表明储罐间距和体积是影响多米诺效应发生概率的两个重要影响因素:随着距离的增大,多米诺效应发生概率不断减小;目标储罐体积越大,多米诺效应发生概率将越大。其中,爆炸碎片对目标储罐的击中概率受上述因素的影响程度更大。该文工作对化工储罐区的安全评价具有一定的参考价值。  相似文献   

12.
为探究爆炸荷载作用下聚脲涂层对沉箱码头的保护作用,采用LS-DANA非线性动力分析平台,模拟在1 kg TNT当量炸药水中非接触爆炸时,不同涂覆厚度聚脲涂层的沉箱码头毁伤破坏特征。结果表明:无聚脲防护的沉箱码头毁伤破坏程度明显大于涂覆聚脲防护的沉箱码头,沉箱码头的毁伤主要集中在迎爆面外墙和迎爆侧上部管沟,随着聚脲涂层厚度的增加,沉箱码头各部分毁伤程度降低;随着涂覆聚脲厚度的增加,迎爆侧外墙位移逐渐降低,但降幅较小,区域空化效应会加大外墙上部位移;无聚脲防护的沉箱码头迎爆侧外墙位移和毁伤程度明显大于涂覆聚脲防护的沉箱码头,表明聚脲涂层对于沉箱码头具有较好的保护作用。  相似文献   

13.
为定量研究相邻储罐间爆炸碎片冲击的多米诺效应,基于蒙特卡洛方法建立爆炸碎片冲击失效模型。该模型共包括爆炸能量与碎片初始速度、考虑风速及碎片初始位置的碎片三维抛射轨迹、空气阻力、碎片冲击穿透等4个分步模型。基于上述模型,研究储罐爆炸后碎片的初始状态、抛射轨迹以及对相邻储罐的冲击效应。在数值模拟结果的基础上,用储罐最高允许工作压力代替泄放装置的泄压压力来计算爆炸压力,绘制碎片质量及初始速度的直方图,定量分析储罐间距对击中概率的影响。结果表明,热辐射、超压和碎片冲击3种能量作用方式均可能导致储罐间火灾爆炸事故多米诺现象发生,但爆炸碎片冲击导致相邻罐失效的概率较低。  相似文献   

14.
API650-2008 is one of the prominent codes consisting of seismic specifications to design steel storage tanks for earthquakes resistance. In spite of the code's broad application, there are some failure modes such as slide bottom, elephant-foot buckling, sloshing and uplift needing more evaluation. In this paper, 161 existing tanks in an oil refinery complex have been classified into 24 groups and investigated using both API650-2008 rules and numerical FEM models. Failure modes and dynamic characteristics of studied models have been calculated by numerical FEM analysis and compared with code requirements. The results demonstrate that, in some cases, there are some imperfections in the code requirements that require further investigation.  相似文献   

15.
In 1999, two earthquakes in northwest Turkey caused heavy damage to a large number of industrial facilities. This region is the most industrialized in the country, and heavy damage has a significant economic influence. Industrial storage tanks, ruptured by earthquakes, exascerbate damage through the spread of fire. Storage tanks are uniquely structured, tall cylindrical vessels, some supported by relatively short reinforced concrete columns. The main aim of this study is to evaluate the earthquake performance of Turkish industrial facilities, especially storage tanks in terms of earthquake resistance. Modeling a typical storage tank of an industrial facility helps to understand the structure’s seismic response. A model tank structure was modelled as a solid with lumped mass and spring systems. Performance estimation was done with 40 different earthquake data through nonlinear time history analyses. After the time history analyses, fragility analyses produced probabilistic seismic assessment for the tank model. For the model structure, analysis results were evaluated and compared. In the study, vulnerability of storage tanks in Turkey was determined and the probabilistic risk was defined with the results of the analysis.  相似文献   

16.
The occurrence of leakage in large tank farms or oil deposits can lead to fire or explosion accidents. Coupling effects of fire and explosion loadings can cause considerably more damage to adjacent tanks or buildings than either loading individually does. In this study, the combined loadings of the explosion shock wave and heat radiation from a pool fire on a neighboring empty fixed-roof tank were numerically investigated. The effects of the explosion shock wave intensity and relative height of the explosion center [the ratio of the height of the explosion center to the height of the tank (hr)] were analyzed. The results indicate that tanks damaged by explosion shock waves have decreased fire resistance and critical buckling temperature. Moreover, the thermal buckling deformation of the predamaged tank largely depends on the explosion shock wave. With an increase in the explosion shock wave intensity or a decrease in hr, the explosion shock wave has greater influence on the fire resistance of the tank, and the critical buckling temperature decreases. This paper can provide an understanding of the dynamics of a tank under explosion shock wave loading, and of the critical failure criterion and failure modes of a target tank under the coupled loading of the explosion shock wave and an adjacent pool fire.  相似文献   

17.
Rollover is a potential risk to the safety of LNG storage tanks during the LNG storage process, so study of its prevention method is very important. In this paper, rollover phenomenon in a liquefied natural gas (LNG) storage tank is modeled physically and mathematically. Its evolution is simulated using FLUENT™ software from the breakdown of stratification to the occurrence of rollover. Results show that the evolution consists of three phases: the initial phase where rollover occurs near the side wall of the storage tank; the turbulent phase where rollover transfers to the center of the tank; and the final phase where new layers evolve. Based on these phases, rollovers in 160,000, 30,000, and 5000 m3 LNG storage tanks are simulated at varying initial density differences, and a rollover coefficient is defined to describe rollover intensity. The simulations show that the rollover coefficient initially increases within a small scope and then increases rapidly with the increment of initial density difference. This turning point is chosen to be the rollover threshold, which is regarded as the critical density difference in this study. The critical density differences obtained from the simulation results of the 160,000, 30,000, and 5000 m3 LNG storage tanks are 3, 5, and 7 kg/m3, respectively, which can be used as their rollover criteria to ensure the safety of LNG storage tanks.  相似文献   

18.
Toxic gas leakage in a tank area can have catastrophic consequences. Storage tank leakage location (particularly for high leakage) and downwind storage tanks potentially influence gas diffusion in tank areas. In this study, we developed a numerical and experimental method to investigate the impact of a high leakage location and downwind storage tank on gas diffusion based on three (1.05H, 0.90H, and 0.77H, H was the tank height, 22m) leakage field experiments on the leeward side of storage tank, which have been not conducted before. The experiments revealed an unexpected phenomenon: the maximum ground concentration first decreased and then increased with increasing leakage height. The simulations illustrated that the differences in micrometeorological conditions caused the maximum ground concentration of gas emitted from the roof to be higher than that emitted from the tank wall near the storage tank height. The downwind storage tank 1) had little influence on the entire diffusion direction but altered the local diffusion pattern; 2) reduced the maximum ground concentration (∼18.7%) and the distance from the emission source (approximately a storage tank diameter); and 3) had strong influences on the concentration, velocity, turbulence, and pressure on the leeward side. The concentration negatively correlated with the velocity, pressure, and turbulence in the middle of the two storage tanks on wind centerline. Our results can improve understanding of gas dispersion in tank areas and provide references for mitigating loss and protecting lives during emergency response processes.  相似文献   

19.
可燃气体储罐区泄漏危险性定量分析   总被引:1,自引:0,他引:1  
对位于某城市中心附近的可燃气体储罐区的气体泄漏危险性进行了分析,求出了下风向最大可燃范围和中毒范围.进行灵敏度分析以便识别风速、泄漏面积对泄漏危险性的影响.分析结果显示,风速、泄漏面积对泄漏危险性有显著影响.随着泄漏面积增大,下风向最大可燃范围增大;随着风速的增大,下风向最大可燃范围则减小.最后提出了若干安全措施的建议.  相似文献   

20.
基于危化品储罐区内发生的多米诺效应,以单灾种引发的多米诺事故研究为基础,根据物理学中的触发器原理解释多灾种耦合引发储罐区其他罐体失效的场景,并提出基于物理学理论的多灾种耦合效应模型;基于一储罐区实例分别建立在火灾、爆炸情况下罐区的灾害扩展网络图,并通过无量纲化处理得到综合灾害扩展网络图;分析储罐区在多储罐受灾情况下的灾害扩展情形,得到当D1,D2发生灾害时,D4,D5灾害扩展概率最大;当D1,D8发生灾害时,D4灾害扩展概率最大,建立了多灾种耦合效应的关联图。研究结果对化工园区多灾种耦合的后果预测评估具有指导意义,有助于减少危化品储罐区多米诺效应的发生以及强化危化品储存的安全基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号