首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Objective: This study aims, by means of the WorldSID 50th percentile male, to evaluate thoracic loading and injury risk to the near-side occupant due to occupant-to-occupant interaction in combination with loading from an intruding structure.

Method: Nine vehicle crash tests were performed with a 50th percentile WorldSID male dummy in the near-side (adjacent to the intruding structure) seat and a THOR or ES2 dummy in the far-side (opposite the intruding structure) seat. The near-side seated WorldSID was equipped with 6 + 6 IR-Traccs (LH and RH) in the thorax/abdomen enabling measurement of bilateral deflection. To differentiate deflection caused by the intrusion, and the deflection caused by the neighboring occupant, time history curves were analyzed. The crash tests were performed with different modern vehicles, equipped with thorax side airbags and inflatable curtains, ranging from a compact car to a large sedan, and in different loading conditions such as car-to-car, barrier, and pole tests. Lateral delta V based on vehicle tunnel acceleration and maximum residual intrusion at occupant position were used as a measurement of crash severity to compare injury measurements.

Result: In the 9 vehicle crash tests, thoracic loading, induced by the intruding structure as well as from the far-side occupant, varied due to the size and structural performance of the car as well as the severity of the crash. Peak deflection on the thoracic outboard side occurred during the first 50 ms of the event. Between 70 to 150 ms loading induced by the neighboring occupant occurred and resulted in an inboard-side peak deflection and viscous criterion. In the tests where the target vehicle lateral delta V was below 30 km/h and intrusion less than 200 mm, deflections were low on both the outboard (20–40 mm) and inboard side (10–15 mm). At higher crash severities, delta V 35 km/h and above as well as intrusions larger than 350 mm, the inboard deflections (caused by interaction to the far-side occupant) were of the same magnitude or even higher (30–70 mm) than the outboard deflections (30–50 mm).

Conclusion: A WorldSID 50th percentile male equipped with bilateral IR-Traccs can detect loading to the thorax from a neighboring occupant making injury risk assessment feasible for this type of loading. At crash severities resulting in a delta V above 35 km/h and intrusions larger than 350 mm, both the inboard deflection and VC resulted in high risks of Abbreviated Injury Scale (AIS) 3+ injury, especially for a senior occupant.  相似文献   

2.
Objective: The purpose of this study was to investigate the effect of different loading configurations on the WorldSID 50th percentile male dummy instrumented either with the Infra-Red Telescoping Rod for the Assessment of Chest Compression (IR-TRACC) or the RibEye? rib deflection measurement system.

Methods: The optical sensors of the RibEye system were used to capture the multipoint deformation of the dummy at frontal and rearward off-center locations in addition to the center of the rib location. The experimental setup consisted of 2 types of loadings: Low severity and high severity. Low-severity loading was performed by deploying a fixture-mounted side airbag on the dummy and high-severity loading was achieved by deploying a driver front airbag mounted in a similar fashion. The low-severity condition aimed at deforming the dummy’s ribs locally at off-center locations where the RibEye light emitting diodes (LEDs) were positioned to capture the deformations at those locations. The high-severity condition aimed at loading the dummy at high speed in lateral and oblique directions similar to what is experienced by dummies in side impacts.

Results: In the low-severity tests, the peak deflections, in terms of length change, were approximately 15–20?mm, whereas for the high-severity cases the peak deflections were in the range of 30–40?mm for both IR-TRACC and RibEye cases.

Conclusions: For similar physical insults, dummies with the IR-TRACC and RibEye systems showed varying results for both length changes and the shoulder forces depending on the severity and direction of loading. Under purely lateral loading, the mid-length changes with the RibEye and the 1D IR-TRACC were comparable. In the oblique loading conditions, more differences were seen with the 2 systems depending on the impact direction. The shoulder forces consistently differed between the 2 systems. In the frontal oblique low-severity cases, the ribs pivoted along the spine end and the length change was not found to be a suitable parameter to quantify rib deformation in such loading scenarios.  相似文献   

3.
OBJECTIVE: Today, a predominant percentage of vehicles involved in car crashes are exposed to oblique or frontal offset collisions. The aim of this study is to evaluate the 50th percentile male Hybrid III, THOR 99, and THOR Alpha dummies by comparing them with the corresponding kinematics of post mortem human subjects (PMHS) in this type of collision. METHODS: The PMHS data include results from oblique frontal collision tests. They include sled tests with near-side and far-side belt geometries at 15 degrees , 30 degrees , and 45 degrees angles. The test subjects were restrained with a three-point lap-shoulder belt and the Delta V was 30 km/h. RESULTS: The results from the Hybrid III and THOR 99 tests showed that, in most of the test, the head trajectories were an average of approximately 0.1 m shorter than those from equivalent PMHS. The Hybrid III and THOR 99 far-side belt geometry tests showed that the belt remained in place longer on the shoulder of the Hybrid III than on the THOR 99 and the THOR Alpha. This was probably due to a stiffer lumbar spine in the Hybrid III and to a large groove in the steel of the superior surface of the Hybrid III shoulder structure. The THOR 99 escaped from the shoulder belt about 40-50 ms earlier than the THOR Alpha. The results from the THOR Alpha tests show that the head trajectory accorded fairly well with the PMHS data, as long as the shoulder belt did not slip off the shoulder. Although the THOR Alpha shoulder escaped the shoulder belt in the 45 degrees far-side belt geometry, the PMHS did not. This may be due to the THOR Alpha shoulder design, with approximately 0.05 m smaller superior and medial shoulder range-of-motion, in combination with a relatively soft lumbar spine. CONCLUSIONS: The THOR Alpha provides head trajectories similar to those of the PMHS under these loading conditions, provided the shoulder belt remains in position on the shoulder. When the shoulder belt slipped off the dummy shoulder, the head kinematics was altered. The shoulder range-of-motion may be a contributing factor to the overall kinematics of an occupant in oblique frontal impact situations where the occupant moves in a trajectory at an angle from that of the longitudinal direction of the car.  相似文献   

4.
Abstract

Objective: The goal of the study was to develop experimental chest loading conditions that would cause up to Abbreviated Injury Scale (AIS) 2 chest injuries in elderly occupants in moderate-speed frontal crashes. The new set of experimental data was also intended to be used in the benchmark of existing thoracic injury criteria in lower-speed collision conditions.

Methods: Six male elderly (age >63) postmortem human subjects (PMHS) were exposed to a 35?km/h (nominal) frontal sled impact. The test fixture consisted of a rigid seat, rigid footrest, and cable seat back. Two restraint conditions (A and B) were compared. Occupants were restrained by a force-limited (2.5?kN [A] and 2?kN [B]) seat belt and a preinflated (16?kPa [A] and 11?kPa [B]; airbag). Condition B also incorporated increased seat friction. Matching sled tests were carried out with the THOR-M dummy. Infra-red telescoping rod for the assessment of chest compression (IRTRACC) readings were used to compute chest injury risk. PMHSs were exposed to a posttest injury assessment. Tests were carried out in 2 stages, using the outcome of the first one combined with a parametric study using the THUMS model to adjust the test conditions in the second. All procedures were approved by the relevant ethics board.

Results: Restraint condition A resulted in an unexpected high number of rib fractures (fx; 10, 14, 15 fx). Under condition B, the adjustment of the relative airbag/occupant position combined with a lower airbag pressure and lower seat belt load limit resulted in a reduced pelvic excursion (85 vs. 110?mm), increased torso pitch and a substantially lower number of rib fractures (1, 0, 4 fx) as intended.

Conclusions: The predicted risk of rib fractures provided by the THOR dummy using the Cmax and PC Score injury criteria were lower than the actual injuries observed in the PMHS tests (especially in restraint condition A). However, the THOR dummy was capable of discriminating between the 2 restraint scenarios. Similar results were obtained in the parametric study with the THUMS model.  相似文献   

5.
A majority of laboratory-driven side-impact injury assessments are conducted using postmortem human subjects (PMHS) under the pure lateral mode. Because real-world injuries occur under pure and oblique modes, this study was designed to determine chest deflections and injuries using PMHS under the latter mode. Anthropometrical data were obtained and x-rays were taken. Specimens were seated on a sled and lateral impact acceleration corresponding to a change in velocity of 24 km/h was applied such that the vector was at an angle of 20 or 30 degrees. Chestbands were fixed at the level of the axilla (upper), xyphoid process (middle), and tenth rib (lower) location. Deflection contours as a function of time at the levels of the axilla and mid-sternum, representing the thorax, and at the tenth rib level, representing the abdomen, were evaluated for peak magnitudes. All data were normalized using mass-scaling procedures. Injuries were identified following the test at autopsy. Trauma graded according to the Abbreviated Injury Score, 1990 version, indicated primarily unilateral rib fractures and soft tissue abnormalities such as lung contusion and diaphragm laceration occurred. Mean peak deflections at the upper, middle, and lower levels of the chest for the 30-degree tests were 96.2, 78.5, and 76.8 mm. For the 20-degree tests, these magnitudes were 77.5, 89.9, and 73.6 mm. Statistical analysis indicated no significant (p > 0.05) differences in peak chest deflections at all levels between the two obliquities although the metric was significantly greater in oblique than pure lateral impacts at the mid and lower thoracic levels. These response data are valuable in oblique lateral impact assessments.  相似文献   

6.
Objective: The purpose of this study was to use the detailed medical injury information in the Crash Injury Research and Engineering Network (CIREN) to evaluate patterns of rib fractures in real-world crash occupants in both belted and unbelted restraint conditions. Fracture patterns binned into rib regional levels were examined to determine normative trends associated with belt use and other possible contributing factors.

Methods: Front row adult occupants with Abbreviated Injury Scale (AIS) 3+ rib fractures, in frontal crashes with a deployed frontal airbag, were selected from the CIREN database. The circumferential location of each rib fracture (with respect to the sternum) was documented using a previously published method (Ritchie et al. 2006) and digital computed tomography scans. Fracture patterns for different crash and occupant parameters (restraint use, involved physical component, occupant kinematics, crash principal direction of force, and occupant age) were compared qualitatively and quantitatively.

Results: There were 158 belted and 44 unbelted occupants included in this study. For belted occupants, fractures were mainly located near the path of the shoulder belt, with the majority of fractures occurring on the inboard (with respect to the vehicle) side of the thorax. For unbelted occupants, fractures were approximately symmetric and distributed across both sides of the thorax. There were negligible differences in fracture patterns between occupants with frontal (0°) and near side (330° to 350° for drivers; 10° to 30° for passengers) crash principal directions of force but substantial differences between groups when occupant kinematics (and contacts within the vehicle) were considered. Age also affected fracture pattern, with fractures tending to occur more anteriorly in older occupants and more laterally in younger occupants (both belted and unbelted).

Conclusions: Results of this study confirmed with real-world data that rib fracture patterns in unbelted occupants were more distributed and symmetric across the thorax compared to belted occupants in crashes with a deployed frontal airbag. Other factors, such as occupant kinematics and occupant age, also produced differing patterns of fractures. Normative data on rib fracture patterns in real-world occupants can contribute to understanding injury mechanisms and the role of different causation factors, which can ultimately help prevent fractures and improve vehicle safety.  相似文献   

7.

Problem

Side impacts are a serious automotive injury problem; they represent about 30% of all fatalities for passenger vehicle occupants. This literature review focuses on occupant injuries resulting from real lateral collisions. It emphasizes the interaction between injury patterns and crash factors, taking into account type of injuries and their severity. It highlights what is known on the subject and suggests further studies.

Method

We reviewed papers identified by searches in two electronic databases for the 1996-2009 publication period, and in specific journals and conference proceedings.

Results

Studies on the Primary Direction of Force (PDOF) have revealed that fatal crashes occur most frequently when the PDOF is at 3 or 9 o'clock. The risk of serious injury is two to three times higher for the near-side occupant than for the far-side occupant. Head injuries predominate in oblique impacts and thoracic injuries in perpendicular ones. A few results are also reported on side airbag protection.

Conclusions

This literature review presents an overall picture of the injuries caused by lateral collisions, though each of the papers or articles examined focuses mostly on some particular aspect of the problem. The incidence of specific injuries depends on the data source used. Very few population-based analyses of lateral collision injuries were found.

Impact on industry

New studies are needed to evaluate new protective devices (e.g., lateral airbags, inflatable curtains). Without interfering with their care duties, Emergency Medical Technicians could be systematically trained to observe the collision's specific characteristics and to report all their relevant observations to the emergency physicians to increase the likelihood of prompt diagnosis and proper care.  相似文献   

8.
Objective: In minicars, the survival space between the side structure and occupant is smaller than in conventional cars. This is an issue in side collisions. Therefore, in this article a solution is studied in which a lateral seat movement is imposed in the precrash phase. It generates a pre-acceleration and an initial velocity of the occupant, thus reducing the loads due to the side impact.

Methods: The assessment of the potential is done by numerical simulations and a full-vehicle crash test. The optimal parameters of the restraint system including the precrash movement, time-to-fire of head and side airbag, etc., are found using metamodel-based optimization methods by minimizing occupant loads according to European New Car Assessment Programme (Euro NCAP).

Results: The metamodel-based optimization approach is able to tune the restraint system parameters. The numerical simulations show a significant averaged reduction of 22.3% in occupant loads.

Conclusion: The results show that the lateral precrash occupant movement offers better occupant protection in side collisions.  相似文献   

9.
Objective: To conduct near-side moving deformable barrier (MDB) and pole tests with postmortem human subjects (PMHS) in full-scale modern vehicles, document and score injuries, and examine the potential for angled chest loading in these tests to serve as a data set for dummy biofidelity evaluations and computational modeling.

Methods: Two PMHS (outboard left front and rear seat occupants) for MDB and one PMHS (outboard left front seat occupant) for pole tests were used. Both tests used sedan-type vehicles from same manufacturer with side airbags. Pretest x-ray and computed tomography (CT) images were obtained. Three-point belt-restrained surrogates were positioned in respective outboard seats. Accelerometers were secured to T1, T6, and T12 spines; sternum and pelvis; seat tracks; floor; center of gravity; and MDB. Load cells were used on the pole. Biomechanical data were gathered at 20 kHz. Outboard and inboard high-speed cameras were used for kinematics. X-rays and CT images were taken and autopsy was done following the test. The Abbreviated Injury Scale (AIS) 2005 scoring scheme was used to score injuries.

Results: MDB test: male (front seat) and female (rear seat) PMHS occupant demographics: 52 and 57 years, 177 and 166 cm stature, 78 and 65 kg total body mass. Demographics of the PMHS occupant in the pole test: male, 26 years, 179 cm stature, and 84 kg total body mass. Front seat PMHS in MDB test: 6 near-side rib fractures (AIS = 3): 160–265 mm vertically from suprasternal notch and 40–80 mm circumferentially from center of sternum. Left rear seat PMHS responded with multiple bilateral rib fractures: 9 on the near side and 5 on the contralateral side (AIS = 3). One rib fractured twice. On the near and contralateral sides, fractures were 30–210 and 20–105 mm vertically from the suprasternal notch and 90–200 and 55–135 mm circumferentially from the center of sternum. A fracture of the left intertrochanteric crest occurred (AIS = 3). Pole test PMHS had one near-side third rib fracture. Thoracic accelerations of the 2 occupants were different in the MDB test. Though both occupants sustained positive and negative x-accelerations to the sternum, peak magnitudes and relative changes were greater for the rear than the front seat occupant. Magnitudes of the thoracic and sternum accelerations were lower in the pole test.

Conclusions: This is the first study to use PMHS occupants in MDB and pole tests in the same recent model year vehicles with side airbag and head curtain restraints. Injuries to the unilateral thorax for the front seat PMHS in contrast to the bilateral thorax and hip for the rear seat occupant in the MDB test indicate the effects of impact on the seating location and restraint system. Posterolateral locations of fractures to the front seat PMHS are attributed to constrained kinematics of occupant interaction with torso side airbag restraint system. Angled loading to the rear seat occupant from coupled sagittal and coronal accelerations of the sternum representing anterior thorax loading contributed to bilateral fractures. Inward bending initiated by the distal femur complex resulting in adduction of ipsilateral lower extremity resulted in intertrochanteric fracture to the rear seat occupant. These results serve as a data set for evaluating the biofidelity of the WorldSID and federalized side impact dummies and assist in validating human body computational models, which are increasingly used in crashworthiness studies.  相似文献   

10.
Objective: The objective of this study was to discuss the influence of the pre-impact posture to the response of a finite element human body model (HBM) in frontal impacts.

Methods: This study uses previously published cadaveric tests (PMHS), which measured six realistic pre-impact postures. Seven postured models were created from the THUMS occupant model (v4.0): one matching the standard UMTRI driving posture as it was the target posture in the experiments, and six matching the measured pre-impact postures. The same measurements as those obtained during the cadaveric tests were calculated from the simulations, and biofidelity metrics based on signals correlation (CORA) were established to compare the response of the seven models to the experiments.

Results: The HBM responses showed good agreement with the PMHS responses for the reaction forces (CORA = 0.80 ± 0.05) and the kinematics of the lower part of the torso but only fair correlation was found with the head, the upper spine, rib strains (CORA= 0.50 ± 0.05) and chest deflections (CORA = 0.67 ± 0.08). All models sustained rib fractures, sternal fracture and clavicle fracture. The average number of rib fractures for all the models was 5.3 ± 1.0, lower than in the experiments (10.8 ± 9.0).

Variation in pre-impact posture greatly altered the time histories of the reaction forces, deflections and the rib strains, mainly in terms of time delay, but no definite improvement in HBM response or injury prediction was observed. By modifying only the posture of the HBM, the variability in the impact response was found to be equivalent to that observed in the experiments. The postured HBM sustained from 4 to 8 rib fractures, confirming that the pre-impact posture influenced the injury outcome predicted by the simulation.

Conclusions: This study tries to answer an important question: what is the effect of occupant posture on kinematics and kinetics. Significant differences in kinematics observed between HBM and PMHS suggesting more coupling between the pelvis and the spine for the models which makes the model response very sensitive to any variation in the spine posture. Consequently, the findings observed for the HBM cannot be extended to PMHS. Besides, pre-impact posture should be carefully quantified during experiments and the evaluation of HBM should take into account the variation in the predicted impact response due to the variation in the model posture.  相似文献   

11.
Objective: This study aimed to investigate the crash characteristics, injury distribution, and injury mechanisms for Maximum Abbreviated Injury Score (MAIS) 2+ injured belted, near-side occupants in airbag-equipped modern vehicles. Furthermore, differences in injury distribution for senior occupants compared to non-senior occupants was investigated, as well as whether the near-side occupant injury risk to the head and thorax increases or decreases with a neighboring occupant.

Method: National Automotive Sampling System's Crashworthiness Data System (NASS-CDS) data from 2000 to 2012 were searched for all side impacts (GAD L&R, all principal direction of force) for belted occupants in modern vehicles (model year > 1999). Rollovers were excluded, and only front seat occupants over the age of 10 were included. Twelve thousand three hundred fifty-four MAIS 2+ injured occupants seated adjacent to the intruding structure (near-side) and protected by at least one deployed side airbag were studied. To evaluate the injury risk influenced by the neighboring occupant, odds ratio with an induced exposure approach was used.

Result: The most typical crash occurred either at an intersection or in a left turn where the striking vehicle impacted the target vehicle at a 60 to 70° angle, resulting in a moderate change of velocity (delta-V) and intrusion at the B-pillar. The head, thorax, and pelvis were the most frequent body regions with rib fracture the most frequent specific injury. A majority of the head injuries included brain injuries without skull fracture, and non-senior rather than senior occupants had a higher frequency of head injuries on the whole. In approximately 50% of the cases there was a neighboring occupant influencing injury outcome.

Conclusion: Compared to non-senior occupants, the senior occupants sustained a considerably higher rate of thoracic and pelvis injuries, which should be addressed by improved thorax side airbag protection. The influence on near-side occupant injury risk by the neighboring occupant should also be further evaluated. Furthermore, side airbag performance and injury assessments in intersection crashes, especially those involving senior occupants in lower severities, should be further investigated and side impact dummy biofidelity and injury criteria must be determined for these crash scenarios.  相似文献   

12.
Objective: The Insurance Institute for Highway Safety (IIHS) introduced its side impact consumer information test program in 2003. Since that time, side airbags and structural improvements have been implemented across the fleet and the proportion of good ratings has increased to 93% of 2012–2014 model year vehicles. Research has shown that drivers of good-rated vehicles are 70% less likely to die in a left-side crash than drivers of poor-rated vehicles. Despite these improvements, side impact fatalities accounted for about one quarter of passenger vehicle occupant fatalities in 2012. This study is a detailed analysis of real-world cases with serious injury resulting from side crashes of vehicles with good ratings in the IIHS side impact test.

Methods: NASS-CDS and Crash Injury Research and Engineering Network (CIREN) were queried for occupants of good-rated vehicles who sustained an Abbreviated Injury Scale (AIS) ≥ 3 injury in a side-impact crash. The resulting 110 cases were categorized by impact configuration and other factors that contributed to injury. Patterns of impact configuration, restraint performance, and occupant injury were identified and discussed in the context of potential upgrades to the current IIHS side impact test.

Results: Three quarters of the injured occupants were involved in near-side impacts. For these occupants, the most common factors contributing to injury were crash severities greater than the IIHS test, inadequate side-airbag performance, and lack of side-airbag coverage for the injured body region. In the cases where an airbag was present but did not prevent the injury, occupants were often exposed to loading centered farther forward on the vehicle than in the IIHS test. Around 40% of the far-side occupants were injured from contact with the struck-side interior structure, and almost all of these cases were more severe than the IIHS test. The remaining far-side occupants were mostly elderly and sustained injury from the center console, instrument panel, or seat belt. In addition, many far-side occupants were likely out of position due to events preceding the side impact and/or being unbelted.

Conclusion: Individual changes to the IIHS side impact test have the potential to reduce the number of serious injuries in real-world crashes. These include impacting the vehicle farther forward (relevant to 28% of all cases studied), greater test severity (17%), the inclusion of far-side occupants (9%), and more restrictive injury criteria (9%). Combinations of these changes could be more effective.  相似文献   

13.
OBJECTIVE: Since the shoulders are rarely seriously injured in frontal or oblique collisions, they have been given low priority in the development of frontal impact crash test dummies. The shoulder complex geometry and its kinematics are of vital importance for the overall dummy kinematics. The shoulder complex also influences the risk of the safety belt slipping off the shoulder in oblique forward collisions. The first aim of this study was to develop a new 50th percentile male THOR shoulder design, while the second was to compare the new shoulder, mounted on a THOR NT dummy, with volunteer, THOR NT, and Hybrid III range of motion and stiffness data. The third aim was to test the repeatability of the new shoulder during dynamic testing and to see how the design behaves with respect to belt slippage in a 45 degrees far-side collision. METHODS: The new 50th percentile THOR shoulder design was developed with the aid of a shell model of the seated University of Michigan Transportation Research Institute (UMTRI) 50th percentile male with coordinates for joints and bony landmarks (Schneider et al., 1983). The new shoulder design has human-like bony landmarks for the acromion and coracoid processes. The clavicle curvature and length are also made similar to that of a male human, as is the range of motion in the anterior-posterior, superior-inferior, and medial-lateral directions. The new shoulder design was manufactured and tested under the same conditions that T?rnvall et al. (2005b) used to compare the shoulder range of motion for the volunteers, Hybrid III, and THOR Alpha. The new design was also tested in two dynamic test configurations: the first was a 0 degrees full-frontal test and the second was a 45 degrees far-side test. The dummy tests were conducted with an R-16 seat with a three-point belt, the Delta V was 27.0+/-0.5 km/h and the maximum peak acceleration was approximately 14.6+/-0.5 g for each test. RESULTS: A new shoulder design with geometry close to that of humans was developed to be retrofitted to the THOR NT dummy. The results showed that the range of motion for the new shoulder complex during static loading was larger by at least a factor of three, for the maximum load (200 N/arm), than that of either the Hybrid III or the THOR NT; this means it was more similar to the volunteers' range of motion. It was observed that the THOR NT with the new shoulder did not slide out of the shoulder belt during a far-side collision. The performance of the new shoulder was reasonably repeatable and stable during both the static tests and the sled tests. CONCLUSION: A new shoulder for the THOR NT has been designed and developed, and data from static range of motion tests and sled tests indicate that the new shoulder complex has the potential to function in a more human-like manner on the THOR dummy.  相似文献   

14.
Objective: The lower extremity of the occupant represents the most frequently injured body region in motor vehicle crashes. Knee airbags (KABs) have been implemented as a potential countermeasure to reduce lower extremity injuries. Despite the increasing prevalence of KABs in vehicles, the biomechanical interaction of the human lower extremity with the KAB has not been well characterized. This study uses computational models of the human body and KABs to explore how KAB design may influence the impact response of the occupant's lower extremities.

Methods: The analysis was conducted using a 50th percentile male occupant human body model with deployed KABs in a simplified vehicle interior. The 2 common KAB design types, bottom-deploy KAB (BKAB) and rear-deploy KAB (RKAB), were both included. A state-of-the-art airbag modeling technique, the corpuscular particle method, was adopted to represent the deployment dynamics of the unfolding airbags. Validation of the environment model was performed based on previously reported test results. The kinematic responses of the occupant lower extremities were compared under both KAB designs, 2 seating configurations (in-position and out-of-position), and 3 loading conditions (static, frontal, and oblique impacts). A linear statistical model was used to assess factor significance considering the impact responses of the occupant lower extremities.

Results: The presence of a KAB had a significant influence on the lower extremity kinematics compared to no KAB (P <.05) by providing early restraint and distributing contact force on the legs during airbag deployment. For in-position occupants, the KAB generally tended to decrease tibia loadings. The RKAB led to greater lateral motion of the legs compared to the BKAB, resulting in higher lateral displacement at the knee joint and abduction angle change (51.2 ± 21.7 mm and 15° ± 6.0°) over the dynamic loading conditions. Change in the seating position led to a significant difference in occupant kinematic and kinetic parameters (P <.05). For the out-of-position (forward-seated) occupant, the earlier contact between the lower extremity and the deploying KAB resulted in 28.4° ± 5.8° greater abduction, regardless of crash scenarios. Both KAB types reduced the axial force in the femur relative to no KAB. Overall, the out-of-position occupant sustained a raised axial force and bending moment of the tibia by 0.8 ± 0.2 kN and 21.1 ± 8.7 Nm regardless of restraint use.

Conclusions: The current study provided a preliminary computational examination on KAB designs based on a limited set of configurations in an idealized vehicle interior. Results suggested that the BKAB tended to provide more coverage and less leg abduction compared to the RKAB in oblique impact and/or the selected out-of-position scenario. An out-of-position occupant was associated with larger abduction and lower extremity loads over all occupant configurations. Further investigations are recommended to obtain a full understanding of the KAB performance in a more realistic vehicle environment.  相似文献   


15.
Objective: To evaluate the influence of forward-facing child restraint systems’ (FFCRSs) side impact structure, such as side wings, on the head kinematics and response of a restrained, far- or center-seated 3-year-old anthropomorphic test device (ATD) in oblique sled tests.

Methods: Sled tests were conducted utilizing an FFCRS with large side wings and with the side wings removed. The CRS were attached via LATCH on 2 different vehicle seat fixtures—a small SUV rear bench seat and minivan rear bucket seat—secured to the sled carriage at 20° from lateral. Four tests were conducted on each vehicle seat fixture, 2 for each FFCRS configuration. A Q3s dummy was positioned in FFCRS according to the CRS owner's manual and FMVSS 213 procedures. The tests were conducted using the proposed FMVSS 213 side impact pulse. Three-dimensional motion cameras collected head excursion data. Relevant data collected during testing included the ATD head excursions, head accelerations, LATCH belt loads, and neck loads.

Results: Results indicate that side wings have little influence on head excursions and ATD response. The median lateral head excursion was 435 mm with side wings and 443 mm without side wings. The primary differences in head response were observed between the 2 vehicle seat fixtures due to the vehicle seat head restraint design. The bench seat integrated head restraint forced a tether routing path over the head restraint. Due to the lateral crash forces, the tether moved laterally off the head restraint reducing tension and increasing head excursion (477 mm median). In contrast, when the tether was routed through the bucket seat's adjustable head restraint, it maintained a tight attachment and helped control head excursion (393 mm median).

Conclusion: This testing illustrated relevant side impact crash circumstances where side wings do not provide the desired head containment for a 3-year-old ATD seated far-side or center in FFCRS. The head appears to roll out of the FFCRS even in the presence of side wings, which may expose the occupant to potential head impact injuries. We postulate that in a center or far-side seating configuration, the absence of door structure immediately adjacent to the CRS facilitates the rotation and tipping of the FFCRS toward the impact side and the roll-out of the head around the side wing structure. Results suggest that other prevention measures, in the form of alternative side impact structure design, FFCRS vehicle attachment, or shared protection between the FFCRS and the vehicle, may be necessary to protect children in oblique side impact crashes.  相似文献   

16.
Objectives: An airbag system for motorcycle applications was developed and marketed in 2006 followed by many research projects on the system. In the airbag system, the bag should be supported during the kinetic energy–absorbing period of a rider in a collision. The previously developed system employed a configuration in which motorcycle structures support the airbag, such as a gauge unit and/or a steering structure. The supporting structure functions to receive the reaction force to hold the airbag during a crash to properly absorb the rider's kinetic energy. However, the previous system requires a larger area for this reaction structure and is applicable only to the motorcycles that can provide that area. To overcome this limitation, we propose an airbag system employing another concept. In this concept, the airbag does not use its vehicle structures as a reaction structure but uses the structures of an opposing vehicle, such as doors and/or pillars of an opposing vehicle. In this project, we aim to verify the effectiveness of the proposed system when installed in a motorcycle that cannot provide a larger area for the reaction structure.

Methods: In the system with this concept, it is assumed that the occupant protection performance is largely affected depending on impact configurations. Accordingly, full-scale motorcycle-to-car crash tests using 125 cm3 scooter-type models with and without the proposed system were conducted in various impact configurations. The 7 impact configurations specified in ISO 13232 were selected as the test configurations. Injury variables and injury indices of head, neck, chest, and abdomen were evaluated with the motorcyclist dummy.

Results: Injury variables and indices obtained from the crash tests with the airbag were compared to those of the baseline tests. In 2 impact configurations, the airbags were supported by the side structures of the opposing vehicle and performed to reduce the injury variable of head and/or chest compared to that of the baseline test.

Conclusion: Through the crash tests, beneficial protection effects of the airbag system were confirmed in particular impact configurations. No significant risk for the occupant due to the airbag was observed in the conducted crash tests. It was concluded that the proposed airbag system has feasibility to reduce rider injury in a collision of a motorcycle without sufficient reaction structure.  相似文献   

17.
Introduction: A simplified and computationally efficient human body finite element model is presented. The model complements the Global Human Body Models Consortium (GHBMC) detailed 50th percentile occupant (M50-O) by providing kinematic and kinetic data with a significantly reduced run time using the same body habitus.

Methods: The simplified occupant model (M50-OS) was developed using the same source geometry as the M50-O. Though some meshed components were preserved, the total element count was reduced by remeshing, homogenizing, or in some cases omitting structures that are explicitly contained in the M50-O. Bones are included as rigid bodies, with the exception of the ribs, which are deformable but were remeshed to a coarser element density than the M50-O. Material models for all deformable components were drawn from the biomechanics literature. Kinematic joints were implemented at major articulations (shoulder, elbow, wrist, hip, knee, and ankle) with moment vs. angle relationships from the literature included for the knee and ankle. The brain of the detailed model was inserted within the skull of the simplified model, and kinematics and strain patterns are compared.

Results: The M50-OS model has 11 contacts and 354,000 elements; in contrast, the M50-O model has 447 contacts and 2.2 million elements. The model can be repositioned without requiring simulation. Thirteen validation and robustness simulations were completed. This included denuded rib compression at 7 discrete sites, 5 rigid body impacts, and one sled simulation. Denuded tests showed a good match to the experimental data of force vs. deflection slopes. The frontal rigid chest impact simulation produced a peak force and deflection within the corridor of 4.63 kN and 31.2%, respectively. Similar results vs. experimental data (peak forces of 5.19 and 8.71 kN) were found for an abdominal bar impact and lateral sled test, respectively. A lateral plate impact at 12 m/s exhibited a peak of roughly 20 kN (due to stiff foam used around the shoulder) but a more biofidelic response immediately afterward, plateauing at 9 kN at 12 ms. Results from a frontal sled simulation showed that reaction forces and kinematic trends matched experimental results well. The robustness test demonstrated that peak femur loads were nearly identical to the M50-O model. Use of the detailed model brain within the simplified model demonstrated a paradigm for using the M50-OS to leverage aspects of the M50-O. Strain patterns for the 2 models showed consistent patterns but greater strains in the detailed model, with deviations thought to be the result of slightly different kinematics between models. The M50-OS with the deformable skull and brain exhibited a run time 4.75 faster than the M50-O on the same hardware.

Conclusions: The simplified GHBMC model is intended to complement rather than replace the detailed M50-O model. It exhibited, on average, a 35-fold reduction in run time for a set of rigid impacts. The model can be used in a modular fashion with the M50-O and more broadly can be used as a platform for parametric studies or studies focused on specific body regions.  相似文献   

18.
Purpose: This is a study that updates earlier research on the influence of a front passenger on the risk for severe driver injury in near-side and far-side impacts. It includes the effects of belt use by the driver and passenger, identifies body regions involved in driver injury, and identifies the sources for severe driver head injury.

Methods: 1997–2015 NASS-CDS data were used to investigate the risk for Maximum Abbreviated Injury Scale (MAIS) 4 + F driver injury in near-side and far-side impacts by front passenger belt use and as a sole occupant in the driver seat. Side impacts were identified with GAD1 = L or R without rollover (rollover ≤ 0). Front-outboard occupants were included without ejection (ejection = 0). Injury severity was defined by MAIS and fatality (F) by TREATMNT = 1 or INJSEV = 4. Weighted data were determined. The risk for MAIS 4 + F was determined using the number of occupants with known injury status MAIS 0 + F. Standard errors were determined.

Results: Overall, belted drivers had greater risks for severe injury in near-side than far-side impacts. As a sole driver, the risk was 0.969 ± 0.212% for near-side and 0.313 ± 0.069% for far-side impacts (P < .005). The driver's risk was 0.933 ± 0.430% with an unbelted passenger and 0.596 ± 0.144% with a belted passenger in near-side impacts. The risk was 2.17 times greater with an unbelted passenger (NS). The driver's risk was 0.782 ± 0.431% with an unbelted passenger and 0.361% ± 0.114% with a belted passenger in far-side impacts. The risk was 1.57 times greater with an unbelted passenger (P < .10). Seat belt use was 66 to 95% effective in preventing MAIS 4 + F injury in the driver. For belted drivers, the head and thorax were the leading body regions for Abbreviated Injury Scale (AIS) 4+ injury. For near-side impacts, the leading sources for AIS 4+ head injury were the left B-pillar, roof, and other vehicle. For far-side impacts, the leading sources were the other occupant, right interior, and roof (8.5%).

Conclusions: Seat belt use by a passenger lowered the risk of severe driver injury in side impacts. The reduction was 54% in near-side impacts and 36% in far-side impacts. Belted drivers experienced mostly head and thoracic AIS 4+ injuries. Head injuries in the belted drivers were from contact with the side interior and the other occupant, even with a belted passenger.  相似文献   


19.
OBJECTIVE: The objective of this study was to evaluate the far-side occupant kinematics in low-speed lateral pulses with and without a seatbelt system. METHODS: The kinematics responses of three volunteers and a Hybrid III were compared in three low-to-moderate lateral pulses. The parameters evaluated were pulses and belt usage. A total of 24 tests were carried out in a side-impact sled. The subjects consisted of two 50th-percentile males (Vol 1 & 2), one 5th-percentile female (Vol 3), and a Hybrid III 50th-percentile male (ATD). All subjects were seated in a far-side impact. Three low speed pulses were used: Pulse 1: a 4 g at 6 km/h, Pulse 2: 4 g/8 kph followed by a -2.5 g pulse to simulate a low curb impact, and Pulse 3: a 4 g's pulse at 10 km/h. In addition, the kinematics result from Pulse 2 was used to assess the performance of a human model. The human model was developed by TNO. RESULTS: For all three pulses, the peak head lateral displacement was greater with the 5th female (Vol 3) than the male volunteers. The ATD results in the 6 and 10 km/h pulses were comparable to the volunteers. However, in Pulse 2, the ATD motion was higher than the volunteers. CONCLUSION: The results obtained in this study suggest the Hybrid III is a somewhat conservative device for an evaluation of occupant kinematics in low-speed lateral pulses. The human model also seemed to be representative of volunteer kinematics.  相似文献   

20.
Objective: Thoracic side airbags (tSABs) were integrated into the vehicle fleet to attenuate and distribute forces on the occupant's chest and abdomen, dissipate the impact energy, and move the occupant away from the intruding structure, all of which reduce the risk of injury. This research piece investigates and evaluates the safety performance of the airbag unit by cross-correlating data from a controlled collision environment with field data.

Method: We focus exclusively on vehicle–vehicle lateral impacts from the NHTSA's Vehicle Crash Test Database and NASS-CDS database, which are replicated in the controlled environment by the (crabbed) barrier impact. Similar collisions with and without seat-embedded tSABs are matched to each other and the injury risks are compared.

Results: Results indicated that dummy-based thoracic injury metrics were significantly lower with tSAB exposure (P <.001). Yet, when the controlled collision environment data were cross-correlated with NASS-CDS collisions, deployment of the tSAB indicated no association with thoracic injury (tho. MAIS 2+ unadjusted relative risk [RR] = 1.14; 90% confidence interval [CI], 0.80–1.62; tho. MAIS 3+ unadjusted RR = 1.12; 90% CI, 0.76–1.65).

Conclusion: The data from the controlled collision environment indicated an unequivocal benefit provided by the thoracic side airbag for the crash dummy; however, the real-world collisions demonstrate that no benefit is provided to the occupant. This has resulted from a noncorrelation between the crash test/dummy-based design taking the abstracting process too far to represent the real-world collision scenario.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号