首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Corrosion associated with aqueous environments containing carbon dioxide (CO2) and/or hydrogen sulphide (H2S), is a well-known phenomenon in oil and gas industries. This type of corrosion is of particular importance in transportation through steel pipelines. This transportation process could involve the movement of a complex mixture of gas and liquids. This moving mixture is in close contact with the inner surface of the steel pipelines and corrosion can occur. It has been demonstrated that this corrosion is influenced by flow.In oil and gas industries, film-forming corrosion inhibitors are the main tool used to control inner corrosion in pipelines. The movement of the environment generates mechanical shear stresses on the surface of the steel that can interfere with the formation of the film. This phenomenon is frequently not taken into account in corrosion control strategies and could cause problems. Despite the importance of this, there are few scientific studies available, which can provide control criteria.This work presents some ideas developed in order to understand the influence of flow on the corrosion process, making emphasis in the corrosion process associated with carbon dioxide (CO2).  相似文献   

2.
The aim of this work is to investigate the level of damage to the heat exchanger in a Sulfur Recovery Unit (SRU) of a petroleum refinery. The by-products of oil refining are submitted to special treatment in order to meet technical specifications of corrosivity, sulfur content, acidity, formation of pollutant compounds, and color alteration. Sulfur is removed from the by-products in the form of H2S, which is an acid gas that is sent to the SRU for sulfur production. The gases in the SRU are H2S, CO2, SO2, and SO3, which are corrosive to the mild steel equipment. The Unit is frequently forced to paralyze its activities due to the corrosion of its heat exchangers and pressure vessels, and the acid gas load is burnt causing the release of SOx into the atmosphere. The above occurs when generalized corrosion damages SRU equipment. The importance of this work is to emphasize that the leakage of acid gas and sulfur into the atmosphere is a direct result of corrosion, which causes economical and environmental damage. This study may be used to improve the control of The Claus Process and to minimize corrosion damage. The SRU does not, at present, carry out any corrosion prevention methods. The corrosion of mild steel is controlled by correct air admission to oxide H2S, and to produce SO2, which is the reagent in the reaction of sulfur production.  相似文献   

3.
Hydrogen (H2) explosion effects recently examined, are confirming the devastating loss scenarios to humans, environment, assets, and associated business interruption. H2 production is a core process in refineries used in further process steps. Steam reforming of natural gas or a mix with naphtha or LPG is a common hydrogen production technique, where the latest technologies have adopted enhanced metallurgies to minimize explosion risk and the associated maintenance cost following plant degradation owing to corrosion effects. However, corrosion rates are still high in specific areas of piping and process equipment. The aim of this paper is to present a methodology based on semi-quantitative RBI modeling according to regulations by API and recent EN standards, adopting a family of linear regression forecasting models that depict the yearly corrosion rate (per corrosion loop) of a hydrogen production steam reforming unit; this is done under different operating conditions (e.g., temperature, pressure, and fluid speed), metallurgy and other related physicochemical variables. The model is based on the examination of both ultrasonic wall thinning measurements and the examination of quantitative crosslinking total corrosion effects along with the physicochemical properties prevailing in different plant corrosion loops. The outcome of the regression analysis is an expansive family of multivariable equations describing, with a defined accuracy, the yearly corrosion rate and associated lifespan forecast per corrosion loop, and per examined part. These equations were further utilized in a custom-made database that can be used as an additional loss prevention tool by the hydrogen production unit management team. Evaluation results regarding the tool efficiency are presented in the following of this paper.  相似文献   

4.
针对铬盐废水蒸发系统运行过程中的腐蚀问题,采用失重法、pH值检测、扫描电镜(SEM、EDS)和XRD等手段,模拟研究了温度、Cr^3+质量浓度对20#碳钢腐蚀速率、腐蚀产物的影响,并从废水pH值和形貌分析角度探索腐蚀速率发生突变的原因。研究表明:废水Cr^3+质量浓度在150~180 mg/L范围,碳钢腐蚀速率发生突增,废水酸性迅速增强(pH<4)以及腐蚀产物的致密度和结晶遭到破坏是腐蚀速率发生突变的重要原因;工业生产中可调节工况(温度约65℃和Cr^3+质量浓度低于150 mg/L)来实现安全、经济缓蚀,亦可通过废水pH值和腐蚀产物形貌初步判定蒸发系统腐蚀程度。  相似文献   

5.
The process chain for Carbon Capture and Sequestration (CCS) includes tubing for injection of CO2 into saline aquifers. The compressed CO2 is likely to contain specific impurities; small concentrations of SO2 and NO2 in combination with oxygen and humidity are most harmful. In addition, CO2 saturated brine is supposed to rise in the well when the injection process is interrupted. The material selection has to ensure that neither CO2 nor brine or a combination of both will leak out of the inner tubing. In this comprehensive paper the investigated materials range from low-alloy steels and 13% Cr steels up to high-alloy materials. Electrochemical tests as well as long term exposure tests were performed in CO2, in brine and combination of both; pressure was up to 100 bar, temperature up to 60 °C. Whereas the CO2 stream itself can be handled using low alloy steels, combinations of CO2 and brine require more resistant materials to control the strong tendency to pitting corrosion. The corrosion behavior of heat-treated steels depends on factors such as microstructure and carbon content. For different sections of the injection tube, appropriate materials should be used to guarantee safety and consider cost effectiveness.  相似文献   

6.
为缩短无机酸对金属腐蚀性的检测时间,提高危险性鉴定效率,在联合国《关于危险货物运输的建议书-试验和标准手册》关于化学品对金属腐蚀性检测方法的基础上,以微波辐射装置代替传统的电加热水浴,以20#碳钢和7075-T6铝作为金属试片,研究了不同温度下采用微波法与标准试验方法时稀盐酸和硫酸溶液对金属的腐蚀速率。研究表明,金属的重量损失率随着测试温度的升高而增加,微波法下金属试片的质量损失率显著高于相同腐蚀时间和温度下的标准试验方法。微波法在75℃下40h可与标准试验方法55℃下168h的腐蚀效果进行等效,可以明显提高无机酸对于金属腐蚀性的检测效率。  相似文献   

7.
Experimental studies were done with a small pipe with a diameter of 0.043 m and a large pipe with a diameter of 0.49 m to demonstrate the flame propagation suppression with inertia isolation in a long duct. Tests were carried in an ignition section containing propylene/air mixture near stoichiometric concentration and generating a peak flame propagation speed of approximately 100 m/s. The ignition section is connected to a section filled with an inert gas, another section with flammable mixtures, and finally a sufficiently long, ambient section to accommodate flame propagation. The critical length of the inert gas section required for successful suppression of flame from the igniting the flammable section is found to be 0.6 m for CO2 and 0.9 m for N2 in the large pipe and 0.2 m for CO2 and 0.3 m for N2 in the small pipe. Additional tests with a 3 m of ignition section and peak flame propagation speed of 225 m/s showed that the critical length for successful suppression by CO2 is only increased slightly to 0.9 m, confirming that the suppression is a result of inertia isolation rather than inert gas dilution. Finally, application of the results in responding to large-scale leak into a long, underground duct is discussed.  相似文献   

8.
Corrosion is one of the most significant contributors to structural degradation in process industries. It causes process equipment failure, which can led to severe safety issues. One approach to address this concern is to provide a preventive barrier-coating to equipment. Due to its superior reductive property, zinc is usually employed as a sacrificial anode in conventional corrosion-resistance methods. Nickel is also used to both mechanically strengthen the barrier and improve overall corrosion resistance; therefore, zinc, zinc-nickel alloys, and zinc-nickel-oxide composite coatings are commonly employed for anti-corrosion purposes. The complexation of zinc and nickel ions by agents (citrate, acetate and EDTA) can stabilize the electrodeposition bath and extend the pH of Ni(OH)2 and ZnO precipitation to improve corrosion resistance in the resultant coating. This paper reviews the challenge with these type of coatings and presents progress in Zn and Zn-Ni composite corrosion resistance coatings co-deposited with Al2O3, TiO2, ZrO2, SiO2, and Fe2O3 as means of corrosion control to reduce the probability of process equipment failure due to corrosion, which will improve the overall safety and reliability of processing equipment.  相似文献   

9.
为了更加精确地计算X80高钢级管道剩余强度,以有限元分析理论基础为依据,采用ANSYS WORKBENCH软件对含腐蚀缺陷的X80高钢级管道进行仿真模拟。基于X80高钢级管道有限元模型计算结果,选用1stOpt软件,用拟合的方法构建出以腐蚀缺陷长度、腐蚀缺陷深度、管径、壁厚等因素为变量的X80高钢级管道剩余强度计算公式,将拟合公式与PCORRC,DNV RP-F101和LPC-1等3种评价方法的准确性进行对比、验证和分析。结果表明:拟合公式的误差较小,具有较好的适用性。研究结果对改进现有评价方法具有参考作用。  相似文献   

10.
Sulfuric acid is heavily used in concentrated rubber latex factories to coagulate rubber particles in skim latex. The resulting sulfate-rich wastewater creates the onset of toxic H2S gas production in the wastewater holding ponds, causing severe corrosion to materials and community disturbance when dispersed to ambient air. This work identified and evaluated measures to reduce H2S production by minimizing sulfate concentration in the wastewater. Sulfuric acid use could be cut down by pre-removal of ammonia in the skim latex as well as a stricter manipulation of acid dosing. In search of a more benign chemical, a heat sensitive polymer was identified and tested as sulfuric acid substitute. The use of hydroxypropyl methylcellulose polymer (HPMC) changed wastewater characteristics and was found to increase biogas production approximately by 2.4 times in batch assay at the initial pH 7.0 and methane yield by 2.7 times in continuous digester operation at HRT 7 days. Finally, a resource recovery option was evaluated. The remaining H2S in the produced biogas was oxidized in the biotrickling filter to sulfuric acid that has a potential to partially supplement the fresh acid. This work demonstrated an integrated approach in waste management to improve environmental performance, safety and energy recovery in the concentrated latex industry.  相似文献   

11.
The high-gas and low-permeability are the common problems of China coal mine, which restrain the mining of coal-seam gas resources safely and efficiently. Hence, to solve the problem of low permeability of coal seam, an experimental system was set up and experimental research was conducted to investigate the effect of the displacement of methane by injecting supercritical CO2 into coal samples. The experimental results indicated that, the extraction effect of supercritical CO2 changes the coal’s porosity, and broadens the seepage channel for methane. Thus, the methane could be desorbed effectively from the coal matrix, and flow through more cracks at higher speed.  相似文献   

12.
An air-recirculated stripping involved two processes and did not require any pretreatment. First, stripping CO2 decreased the buffer capacity of the anaerobic digestate, thereby reducing the amount of lime used to achieve a high pH. Second, lime was added to increase pH and remove ammonia from the anaerobic digestate of pig manure. pH increased from 8.03 to 8.86 by stripping CO2 in the first process (gas-to-liquid ratio = 180) and further reached 12.38 in the second process (gas-to-liquid ratio = 300). During process optimization, the maximum ammonia removal efficiency reached 96.78% with a lime dose of 22.13 g. The value was close to 98.25%, which was the optimal result predicted by response surface methodology using the software Design-Expert 8.05b. All these results indicated that air-recirculated stripping coupled with absorption was a promising technology for the removal and recovery of nitrogen in the anaerobic digestate of pig manure.  相似文献   

13.
Laboratory experiments were conducted to investigate carbon monoxide (CO) and carbon dioxide (CO2) emissions from spontaneous heating of three U.S. coal samples in an isothermal oven at temperatures between 50 and 110 °C. The oxygen (O2) concentration of an oxygen/nitrogen (N2) mixture flowing through the coal sample was 3, 5, 10, 15, and 21%, respectively. The temperature at the center of the coal sample was continuously monitored, while the CO, CO2, and O2 concentrations of the exit gas were continuously measured. The results indicate that the CO and CO2 concentrations and the CO/CO2 ratio increased when the initial temperature was increased. As the inlet O2 concentration increased, the CO and CO2 concentrations increased, while the CO/CO2 ratios tended to converge to the same value. The ratio of CO/CO2 was found to be independent of coal properties, approaching a constant value of 0.2. The maximum CO production rate correlated well with the maximum coal temperature rise. The apparent order of reaction for coal oxidation was estimated to be between 0.52 and 0.72. The experimental results in this study could be used for early detection and evaluation of a spontaneous heating in underground coal mines.  相似文献   

14.
The exploitation of a low-quality gas field with high CO2 concentration is more viable through liquid CO2 produced from cryogenic distillation technology. Despite the bright potential of the technology, there are deficiencies in handling high concentration of CO2 at low temperature and high pressure during the blowdown condition. This study focuses on the CO2 blowdown at a cryogenic pilot plant designed to manage high concentrations of CO2 in the feed gas, high pressures, and low temperatures. A comprehensive design review and risk assessment using Inherent Safer Design (ISD) indexes were carried out in this study. The ISD was performed to identify the current risk level, and the critical parameters that may cause solid CO2 formation in the piping or equipment as well as to identify mitigation measures to avoid the temperature to drop below the CO2 freezing point during blowdown. The present findings confirmed that the initial pressure and temperature, as well as CO2 concentration are key parameters towards significant impact on blowdown conditions. Therefore, the reduction of the feed gas pressure from 80 bar to 70 bars has minimized the Joule Thomson (JT) effect during blowdown and avoided the CO2 solid formation in the system. Moreover, the relocation of the blowdown valve at the downstream heater resulted in a higher final temperature above the CO2 freezing point. The ISD indexes confirmed that the cryogenic facilities are inherently safer during blowdown with the mitigation measures adopted.  相似文献   

15.
Transportation safety is a key aspect of carbon capture and storage (CCS), which is a major technology used to reduce greenhouse gas emissions. Supercritical CO2 pipelines have been certified as an optimised choice for CO2 transportation. The results of this study show that the Peng–Robinson (PR) equation of state is recommended for analysis of the properties of supercritical CO2. The influence of nonpolar and polar impurities on the two-phase region and the location of the sharp discontinuity in the density are found by analysing the ternary phase equilibrium and physical parameters using the PR equation of state. A transitional area between the supercritical phase and the dense phase, where the density changes abruptly, is defined as the quasi-critical region. This study describes the functional relation between the temperature and the pressure that defines the quasi-critical line by calculating the partial derivative equations and then determines the effect of impurities on the quasi-critical region of transported CO2. Operational recommendations for pipeline transportation of flue CO2 are developed using a pipeline operated by Sinopec as an example, demonstrating the influence of impurities in flue CO2 on saturation pressure for control and prevention of fractures in CO2 pipelines.  相似文献   

16.
The aim of this work is to investigate the impact of various CO2/N2 ratios on coal pyrolysis and combustion properties and to provide theoretical guidance for better preventing and controlling coal spontaneous combustion in the goaf. The dynamic pyrolysis and combustion characteristics of DX coal were analyzed by using a thermal gravimetric analyzer (TGA) in a constant oxygen atmosphere with different CO2/N2 blend ratios. The Málek method combining Coats-Redfern and Achar methods was used to determine the most probable mechanism functions. CO2 containing atmospheres increased characteristic temperatures, burnout rate, maximum mass loss rate and comprehensive combustion performance index compared to O2/N2 atmospheres. In stages I-III, a lower apparent activation energy was observed in O2/CO2 atmospheres. Apparent activation energy and enthalpy changes showed upward trends in the reaction stage (I→III→IV), whereas Gibbs free energy change and entropy change decreased. The dynamic pyrolysis and combustion of DX coal necessitated increased energy in environment with a CO2/N2 ratio of 4:6, revealing the optimal inhibitory effect on DX coal with this particular ratio.  相似文献   

17.
Pressurized pipelines are the most reliable and cost-effective option for the long-distance transportation of CO2 from an emitter to an onshore storage site. Propagating or unstable factures are considered catastrophic pipeline failures, resulting in a massive escape of inventory within a short period of time. The decompression curve for CO2 exhibits a large drop in decompression wave speed at the phase transition pressure, leading to a higher driving force for crack propagation. The study of fracture control plans is very important for assessing the possibility of fracture propagation and preventing unstable fracturing along CO2 pipelines. Three full-bore rupture (FBR) experiments were performed using an industrial-scale (258 m long, 233 mm inner diameter) CO2 pipeline with initial CO2 states of gaseous, dense and supercritical phases, respectively. The relation between the decompression velocity and the pipeline fracture propagation velocity was analyzed during the process of buried CO2 pipeline release. A fracture propagation criterion was established for the buried CO2 pipeline. For the gaseous CO2 leakage, the pressure plateau corresponding to the decompression wave velocity only appeared near the closed end of the pipeline. For the dense CO2 leakage, the pressure plateau corresponding to the decompression wave velocity was observed near the saturation pressure after rapid decompression. For the supercritical CO2 leakage, the pressure plateau corresponding to the decompression wave velocity was observed in the stage when the supercritical CO2 transformed into the two phases of gas and liquid. Compared with the gaseous and dense CO2, for the supercritical CO2, the initial decompression wave velocity was the smallest, and the requirement of the pipeline safety factor was the highest.  相似文献   

18.
Liquid-phase nitration of toluene was carried out using a silica supported Cs salt of phosphomolybdic acid (Cs2.5H0.5PMoO40) as catalyst with dilute nitric acid under mild conditions. The Cs2.5H0.5PMoO40 particles with Keggin-type structure were well dispersed on the surface of silica, and the catalysts exhibited strong acidity, which may be responsible for the high catalytic nitration activity. The effects of various parameters on nitration were tested, which included reaction temperature, reaction time, catalyst amount and reactants ratio. Under suitable conditions, the nitrations gave high toluene conversion (99.6%) and good mono-nitration selectivity. Compared to the conventional process, there was no other organic solvent or sulfuric acid used in the reaction system, which made it more environment-friendly. Moreover, the supported catalyst was proven to have excellent stability in the nitration process.  相似文献   

19.
A dispersion model validation study is presented for atmospheric releases of dense-phase carbon dioxide (CO2). Predictions from an integral model and two different Computational Fluid Dynamics (CFD) models are compared to data from field-scale experiments conducted by INERIS, as part of the EU-funded CO2PipeHaz project.The experiments studied consist of a 2 m3 vessel fitted with a short pipe, from which CO2 was discharged into the atmosphere through either a 6 mm or 25 mm diameter orifice. Comparisons are made to measured temperatures and concentrations in the multi-phase CO2 jets.The integral dispersion model tested is DNV Phast and the two CFD models are ANSYS-CFX and a research and development version of FLACS, both of which adopt a Lagrangian particle-tracking approach to simulate the sublimating solid CO2 particles in the jet. Source conditions for the CFD models are taken from a sophisticated near-field CFD model developed by the University of Leeds that simulates the multi-phase, compressible flow in the expansion region of the CO2 jet, close to the orifice.Overall, the predicted concentrations from the various models are found to be in reasonable agreement with the measurements, but generally in poorer agreement than has been reported previously for similar dispersion models in other dense-phase CO2 release experiments. The ANSYS-CFX model is shown to be sensitive to the way in which the source conditions are prescribed, while FLACS shows some sensitivity to the solid CO2 particle size. Difficulties in interpreting the results from one of the tests, which featured some time-varying phenomena, are also discussed.The study provides useful insight into the coupling of near- and far-field dispersion models, and the strengths and weaknesses of different modelling approaches. These findings contribute to the assessment of potential hazards presented by Carbon Capture and Storage (CCS) infrastructure.  相似文献   

20.
A methodology is presented for global sensitivity analysis of consequence models used in process safety applications. It involves running a consequence model around a hundred times and using the results to construct a statistical emulator, which is essentially a sophisticated curve fit to the data. The emulator is then used to undertake the sensitivity analysis and identify which input parameters (e.g. operating temperature and pressure, wind speed) have a significant effect on the chosen output (e.g. vapour cloud size). Performing the sensitivity analysis using the emulator rather than the consequence model itself leads to significant savings in computing time.To demonstrate the methodology, a global sensitivity analysis is performed on the Phast consequence model for discharge and dispersion. The scenarios studied consist of above-ground, horizontal, steady-state discharges of dense-phase carbon dioxide (CO2), with orifices ranging in diameter from ½ to 2 inch and the liquid CO2 stagnation conditions maintained at between 100 and 150 bar. These scenarios are relevant in scale to leaks from large diameter above-ground pipes or vessels.Seven model input parameters are varied: the vessel temperature and pressure, orifice size, wind speed, humidity, ground surface roughness and height of the release. The input parameters that have a dominant effect on the dispersion distance of the CO2 cloud are identified, both in terms of their direct effect on the dispersion distance and their indirect effect, through interactions with other varying input parameters.The analysis, including the Phast simulations, runs on a standard office laptop computer in less than 30 min. Tests are performed to confirm that a hundred Phast runs are sufficient to produce an emulator with an acceptable degree of accuracy. Increasing the number of Phast runs is shown to have no effect on the conclusions of the sensitivity analysis.The study demonstrates that Bayesian analysis of model sensitivity can be conducted rapidly and easily on consequence models such as Phast. There is the potential for this to become a routine part of consequence modelling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号