首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 589 毫秒
1.
Accidental release of pressurized high flash point heat transfer fluids can result in fire and explosion hazard scenarios in the process industry. An experimental investigation on ignition of aerosols of a heat transfer fluid is carried out, and characterization of aerosol and its ignition process by non-intrusive laser diffraction technique is reported. Propagation speed of the aerosol combustion flame front as analyzed from the laser diffraction measurement agrees with high-speed visual camera observation. Flammability of the aerosol, which is based on the chances of the global flame appearance in the aerosol, is mainly controlled by aerosol droplet size and the droplet volume concentration.  相似文献   

2.
Heat transfer fluids tend to form aerosols due to the operating conditions at high pressure when accidental leaking occurs in pipelines or storage vessels, which may cause serious fires and explosions. Due to the physical property complexity of aerosols, it is difficult to define a standard term of “flammability limits” as is possible for gases. The study discussed in this paper primarily focuses on the characterization of ignition conditions and flame development of heat transfer fluid aerosols. The flammable region of a widely-used commercial heat transfer fluid, Paratherm NF (P-NF), was analyzed by electro-spray generation with a laser diffraction particle analysis method. The aerosol ignition behavior depends on the droplet size and concentration of the aerosol. From the adjustment of differently applied electro-spray voltages (7–10 kV) and various liquid feeding rates, a flammable condition distribution was obtained by comparison of droplet size and concentration. An appropriate amount (0.3–1.2 ppm) of smaller droplets (80–110 μm) existing in a given space could result in successful flame formation, while larger droplets (up to 190 μm) have a relatively narrowed range of flammable conditions (0.7–0.9 ppm). It is possible to generate a more useful reference for industry and lab scale consideration when handling liquids. This paper provides initial flammability criteria for analyzing P-NF aerosol fire hazards in terms of droplet size and volumetric concentration, discusses the observation of aerosol combustion processes, and summarizes an ignition delay phenomenon. All of the fundamental study results are to be applied to practical cases with fire hazards analysis, pressurized liquid handling, and mitigation system design once there is a better understanding of aerosols formed by high-flash point materials.  相似文献   

3.
The current work examines regimes of the hydrogen–oxygen flame propagation and ignition of mixtures heated by radiation emitted from the flame. The gaseous phase is assumed to be transparent for the radiation, while the suspended particles of the dust cloud ahead of the flame absorb and reemit the radiation. The radiant heat absorbed by the particles is then lost by conduction to the surrounding unreacted gaseous phase so that the gas phase temperature lags that of the particles. The direct numerical simulations solve the full system of two phase gas dynamic time-dependent equations with a detailed chemical kinetics for a plane flames propagating through a dust cloud. It is shown that depending on the spatial distribution of the dispersed particles and on the value of radiation absorption length the consequence of the radiative preheating of the mixture ahead of the flame can be either the increase of the flame velocity for uniformly dispersed particles or ignition either new deflagration or detonation ahead of the original flame via the Zel'dovich gradient mechanism in the case of a layered particle-gas cloud deposits. In the latter case the ignited combustion regime depends on the radiation absorption length and correspondingly on the steepness of the formed temperature gradient in the preignition zone that can be treated independently of the primary flame. The impact of radiation heat transfer in a particle-laden flame is of paramount importance for better risk assessment and represents a route for understanding of dust explosion origin.  相似文献   

4.
The objective of the study reported herein is to simulate various physical and chemical phenomena accompanying fuel-rich n-butane–oxygen mixture preparation, ignition, preflame oxidation, and combustion in the standard 20-l explosion vessel, by applying mathematical models. Based on the computational fluid dynamics (CFD) simulations of the mixing process and natural convection of the ignition kernel, as well as on the analysis of the detailed reaction mechanism of n-butane oxidation, laminar flame propagation, and self-ignition, possible explanations for the phenomena observed experimentally have been suggested. The results of the study indicate that seemingly inflammable mixtures can become hazardous depending on the mixture preparation procedure and forced ignition timing.  相似文献   

5.
Computational modeling is a useful tool in determining the consequences from vapor cloud explosions. Here an approach that uses a flame-speed based combustion model is evaluated. Various scenarios of explosions in full-scale off-shore modules are simulated and compared to available test data. The ignition location of the cloud and available venting paths are found to affect the overpressure field in and outside the module. For end ignition cases, the combustion of gas pushed out of the module is found to play a key role. Using the flame-speed based model with appropriate effective flame speeds is found to provide accurate simulations.  相似文献   

6.
Flammable aerosols have created many fire and explosion hazards in the process industry, but the flammability of aerosols has not been fully understood. The minimum ignition energy has been widely used as an indicator for flammability of combustible mixtures, but the amount of experimental data on the minimum ignition energy of aerosols is very limited. In this work, the minimum ignition energy of tetralin aerosols is predicted using an integrated model. The model applies the flame front propagation theory in aerosol systems to the growth of the flame kernel, which was created during the spark discharge in the ignition process. The aerosol minimum ignition energy was defined as the minimum level of energy in the initial flame kernel to maintain the kernel temperature above the minimum ignition temperature of 1073 K specific for tetralin aerosols during the kernel growth. The minimum ignition energy obtained in the model is influenced by the fuel-air equivalence ratio and the size of the aerosol droplets. For tetralin aerosols of 40 μm diameter, Emin decreases significantly from 0.32 mJ to 4.3 × 10 e−3 mJ when the equivalence ratio rises from 0.57 to 1.0. For tetralin aerosols of 0.57 equivalence ratio, Emin increases from as 0.09 mJ to 0.32 mJ when the droplet diameter rises from 10 μm to 60 μm. The trends are in agreement with previous experimental observations. The method used in current work has the potential to prediction of the minimum ignition energy of aerosol.  相似文献   

7.
Damage caused by the 2005 Buncefield explosion indicates pressures in excess of 2000 mbar over all of the area covered by the vapour cloud. Such high overpressures are normally associated with high (super-sonic) rates of flame spread. On the other hand, evidence from witnesses, building damage analysis and CCTV cameras all suggest the average rate of progress of the explosion flame front was only around 150 m/s.The high overpressures in the cloud and low average rate of flame advance can be reconciled if the rate of flame advance was episodic, with periods of very rapid combustion being punctuated by pauses when the flame advanced very slowly. The widespread high overpressures were caused by the rapid phases of combustion; the low average speed of advance was caused by the pauses.Mechanisms of flame spread through radiative ignition of particulates ahead of the flame front provide possible explanations for such unusual episodic behaviour.The first part of this paper reviews a wide range of empirical evidence on average flame speed and rate of blast pressure increase.The second part explores the theoretical consequences of forward radiation and how the new theory might be developed into a practical means of assessment.  相似文献   

8.
The paper describes the analysis of the potential effects of releases from compressed gaseous hydrogen systems on commercial vehicles in urban and tunnel environments using computational fluid dynamics (CFD). Comparative releases from compressed natural gas systems are also included in the analysis.

This study is restricted to typical non-articulated single deck city buses. Hydrogen releases are considered from storage systems with nominal working pressures of 20, 35 and 70 MPa, and a comparative natural gas release (20 MPa). The cases investigated are based on the assumptions that either fire causes a release via a thermally activated pressure relief device(s) (PRD) and that the released gas vents without immediately igniting, or that a PRD fails. Various release strategies were taken into account. For each configuration some worst-case scenarios are considered.

By far the most critical case investigated in the urban environment, is a rapid release of the entire hydrogen or natural gas storage system such as the simultaneous opening of all PRDs. If ignition occurs, the effects could be expected to be similar to the 1983 Stockholm hydrogen accident [Venetsanos, A. G., Huld, T., Adams, P., & Bartzis, J. G. (2003). Source, dispersion and combustion modelling of an accidental release of hydrogen in an urban environment. Journal of Hazardous Materials, A105, 1–25]. In the cases where the hydrogen release is restricted, for example, by venting through a single PRD, the effects are relatively minor and localised close to the area of the flammable cloud. With increasing hydrogen storage pressure, the maximum energy available in a flammable cloud after a release increases, as do the predicted overpressures resulting from combustion. Even in the relatively confined environment considered, the effects on the combustion regime are closer to what would be expected in a more open environment, i.e. a slow deflagration should be expected.

Among the cases studied the most severe one was a rapid release of the entire hydrogen (40 kg) or natural gas (168 kg) storage system within the confines of a tunnel. In this case there was minimal difference between a release from a 20 MPa natural gas system or a 20 MPa hydrogen system, however, a similar release from a 35 MPa hydrogen system was significantly more severe and particularly in terms of predicted overpressures. The present study has also highlighted that the ignition point significantly affects the combustion regime in confined environments. The results have indicated that critical cases in tunnels may tend towards a fast deflagration, or where there are turbulence generating features, e.g. multiple obstacles, there is the possibility that the combustion regime could progress to a detonation.

When comparing the urban and tunnel environments, a similar release of hydrogen is significantly more severe in a tunnel, and the energy available in the flammable cloud is greater and remains for a longer period in tunnels. When comparing hydrogen and natural gas releases, for the cases and environments investigated and within the limits of the assumptions, it appears that hydrogen requires different mitigation measures in order that the potential effects are similar to those of natural gas in case of an accident. With respect to a PRD opening strategy, hydrogen storage systems should be designed to avoid simultaneous opening of all PRD, and that for the consequences of the released energy to be mitigated, either the number of PRDs opening should be limited or their vents to atmosphere should be restricted (the latter point would require validation by a comprehensive risk assessment).  相似文献   


9.
为了研究初始温度变化对湿法成型硫磺粉尘燃烧爆炸特性的影响,通过对初始温度分别为35℃、 45℃、 55℃、 65℃、 75℃的硫磺粉尘试样进行测试,发现随着初始温度的上升硫磺粉尘的粉尘云最低着火温度,粉尘云最小点火能逐渐降低;随着初始温度的上升硫磺粉尘的爆炸下限和粉尘层最低着火温度不发生变化。随着温度的升高,硫磺粉尘的燃烧爆炸危险性增加,因此在气温较高的夏秋季节要提高硫磺粉尘燃爆的防护等级。  相似文献   

10.
Although the hazards of aerosol fires and explosions have been studied for decades the data for aerosol flame propagation is still scarce. Additionally there is a lack of standard techniques and measurement apparatus, which impedes the development of optimal aerosol hazard mitigation measures. The focus of this study is development of an improved aerosol electrospray device for the generation of high quality aerosol data. The goal is achieved through higher nozzle packing, precise nozzle and mesh hole alignment and adding two ground meshes. In addition to a flat ground mesh, the utilization of a cylindrical ground mesh demonstrated improved confinement and guidance of droplets. Duratherm 600, heat transfer fluid, was examined to demonstrate the modified electrospray device capabilities as compared to previous design. Results show the modified electrospray can produce more uniform droplets, more even test chamber dispersion, smaller droplet size and higher concentration aerosol, which is essential to study aerosol flame propagation. Accordingly, the results of aerosol flame speed tests for the improved design were more reproducible. Moreover, it was found that a traditional propane pilot flame was unable to ignite the smaller aerosol droplet size due to the strong turbulence generated by the open flame. However, by careful modification of the pilot flame length, the turbulence decreased dramatically and the small droplet size aerosol can be tested.  相似文献   

11.
Current status and expected future trends in dust explosion research   总被引:4,自引:0,他引:4  
In spite of extensive research and development for more than 100 years to prevent and mitigate dust explosions in the process industries, this hazard continues to threaten industries that manufacture, use and/or handle powders and dusts of combustible materials. Lack of methods for predicting real dust cloud structures and flame propagation processes has been a major obstacle to prediction of course and consequences of dust explosions in practice. However, work at developing comprehensive numerical simulation models for solving these problems is now on its way. This requires detailed experimental and theoretical studies of the physics and chemistry of dust cloud generation and combustion. The present paper discusses how this kind of work will promote the development of means for prevention and mitigation of dust explosions in practice. However, progress in other areas will also be discussed, e.g. ignition prevention. The importance of using inherently safe process design, building on knowledge in powder science and technology, and of systematic education/training of personnel, is also emphasized.  相似文献   

12.
The modern world depends greatly on hydrocarbons, which are ubiquitous, indispensable fuels used in nearly every existing industry. Although important, their use may trigger dangerous incidents, whether in their production, handling, storage, or transporting phase, especially when aerosolized. In light of proposing a standard procedure to assess the flammability and explosivity of fuel mists, a new test method was established based on the EN 14034 standards series. For the previous purposes, a gravity-fed mist generation system was designed and employed in a modified 20 L explosion vessel. This test method allowed the determination of the ignition sensitivity of several fuels. In addition, their explosion severity was represented by the explosion overpressure Pex, and the rate of pressure rise dP/dtex, two thermo-kinetic parameters determined with a specifically developed control system and custom software. Nonetheless, a noticeable difference in the ignition sensitivity and the explosion severity was perceived when changing suppliers or petroleum cuts of some fuels. Moreover, sensitivity studies showed that both the droplet size distribution and the temperature of the droplets play a significant role in fuel mist explosion. These parameters can be directly related to the vapor fraction surrounding a droplet during its ignition. Consequently, this study focuses on the influence of varying the composition of three well-known and abundantly used fuels. Different petroleum cuts were introduced in different fractions into isooctane, Jet A1 aviation fuel, and diesel fuel mixtures, which were then aerosolized into a uniformly distributed turbulent mist cloud and ignited using spark ignitors of 100 J. Subsequently, complementary tests were executed in a vertical flame propagation tube coupled with a high-speed video camera allowing the visualization of the flame and the determination of the spatial flame velocity, and a tentative estimation of the laminar burning velocity. The latter was also estimated from the pressure-time evolution in the 20 L sphere using existing correlations. Indeed, the determination of the laminar burning velocity can be useful in modeling such accidents. Finally, highlighting the essential role of the mist and vapor fraction during their ignition has led to a better understanding of their explosion mechanisms.  相似文献   

13.
Structure of flames propagating through aluminum particles clouds and combustion processes of the particles have been examined experimentally to understand the fundamental behavior of a metal dust explosion. The combustion process of individual aluminum particles in a flame propagating through the aluminum particles cloud has been recorded by using a high-speed video camera with a microscopic optical system, and analyzed. The flame is shown to be consisted of a preheat zone of about 3 mm thick, followed by a combustion zone of 5–7 mm thick. In the combustion zone, discrete gas phase flames are observed around each aluminum particle. Also an asymmetric flame around a particle is observed, which might be caused by an ejection of aluminum vapor from a crack of oxide shell surrounding the particle.  相似文献   

14.
为了研究彩虹粉引燃危险性,应用固体燃烧速率试验仪初步甄别了彩虹粉传播燃烧能力,发现堆垛状彩虹粉固体火焰传播危险性较低;采用粉尘爆炸筛选装置,判定彩虹粉具有爆炸性;应用最小点火能测定装置测定彩虹粉粉尘云的最小点火能在24~60 mJ之间,最优爆炸浓度为1 167 g/m3;应用快速筛选量热仪测试,彩虹粉在227℃开始分解;固体自燃点测试仪显示彩虹粉在250℃附近会发生自燃。向彩虹粉内添加不同比例相近粒径分布的食用盐粉体进行抑爆研究,结果证明食用盐对彩虹粉具有明显的抑爆效果。  相似文献   

15.
In order to explore flame propagation characteristics during wood dust explosions in a semi-closed tube, a high-speed camera, a thermal infrared imaging device and a pressure sensor were used in the study. Poplar dusts with different particle size distributions (0–50, 50–96 and 96–180 μm) were respectively placed in a Hartmann tube to mimic dust cloud explosions, and flame propagation behaviors such as flame propagation velocity, flame temperature and explosion pressure were detected and analyzed. According to the changes of flame shapes, flame propagations in wood dust explosions were divided into three stages including ignition, vertical propagation and free diffusion. Flame propagations for the two smaller particles were dominated by homogeneous combustion, while flame propagation for the largest particles was controlled by heterogeneous combustion, which had been confirmed by individual Damköhler number. All flame propagation velocities for different groups of wood particles in dust explosions were increased at first and then decreased with the augmentation of mass concentration. Flame temperatures and explosion pressures were almost similarly changed. Dust explosions in 50–96 μm wood particles were more intense than in the other two particles, of which the most severe explosion appeared at a mass concentration of 750 g/m3. Meanwhile, flame propagation velocity, flame propagation temperature and explosion pressure reached to the maximum values of 10.45 m/s, 1373 °C and 0.41 MPa. In addition, sensitive concentrations corresponding to the three groups of particles from small to large were 500, 750 and 1000 g/m3, separately, indicating that sensitive concentration in dust explosions of wood particles was elevated with the increase of particle size. Taken together, the finding demonstrated that particle size and mass concentration of wood dusts affected the occurrence and severity of dust explosions, which could provide guidance and reference for the identification, assessment and industrial safety management of wood dust explosions.  相似文献   

16.
为对变压器油池火灾进行准确有效的灭火,研究不同尺寸和不同厚度下变压器油的火灾动力学特征和基本燃烧特性,具体分析变压器油的燃烧过程和变压器油燃烧速率、火焰温度以及辐射热流随油池直径以及厚度的变化规律。结果表明:整个油品的燃烧过程分为预热燃烧阶段、稳定燃烧阶段和火焰熄灭阶段。对于厚度大于10 mm的油池燃烧,稳定阶段的燃烧速率与油层厚度无关,稳定阶段的燃烧速率随着油池直径的增加而增加。同时,变压器油火灾连续火焰区温度接近750 ℃。对于稳定燃烧阶段下的变压器油燃烧,基于辐射通量可得出在燃烧过程中,辐射热量占总燃烧热的占比约为1/3。研究结果可丰富变压器油燃烧的基础数据,为变压器火灾的灭火提供参考。  相似文献   

17.
Fire and explosion accidents are frequently caused by combustible dust, which has led to increased interest in this area of research. Although scholars have performed some research in this field, they often ignored interesting phenomena in their experiments. In this paper, we established a 2D numerical method to thoroughly investigate the particle motion and distribution before ignition. The optimal time for the corn starch dust cloud to ignite was determined in a semi-closed tube, and the characteristics of the flame propagation and temperature field were investigated after ignition inside and outside the tube. From the simulation, certain unexpected phenomena that occurred in the experiment were explained, and some suggestions were proposed for future experiments. The results from the simulation showed that 60–70 ms was the best time for the dust cloud to ignite. The local high-temperature flame clusters were caused by the agglomeration of high-temperature particles, and there were no flames near the wall of the tube due to particles gathering and attaching to the wall. Vortices formed around the nozzle, where the particle concentration was low and the flame spread slowly. During the explosion venting, particles flew out of the tube before the flame. The venting flame exhibited a “mushroom cloud” shape due to interactions with the vortex, and the flame maintained this shape as it was driven upward by the vortex.  相似文献   

18.
Current liquid flammability classification mainly relies on flash point and its risk is largely dependent on consequence and probability. However, combustions of liquefied marine fuels have their uniqueness, leading to a less consistent with the common classification. This work aims at classifying flammable liquids in compression ignition engines for further safety evaluation. Besides liquid flammability characteristics, flame propagation and aerosol formulation are considered. Two unsupervised machine learning clustering algorithms, k-means and spectral clustering, are applied to the collected liquid compounds database. To consider both cluster cohesion and separation, the global mean silhouette value is used to find the optimal number of clusters and to evaluate the clustering performance. The results show that the spectral clustering outperforms k-means on classifying the risk ratings for all proposed models, while the clustering accuracy of the optimal model has been doubled by employing spectral clustering algorithm. Moreover, principal component analysis and star coordinate diagrams are presented to visualize high dimensional data to 2-D graphs. Finally, the overall liquid safety performance is evaluated by a novel combustion risk index via the weight values determined by the information entropy approach. This index can be used to explore inherently safer fuels in the process industries.  相似文献   

19.
The propagation and acceleration of a flame surface past obstructions in a closed square channel was investigated using large eddy simulation. The dynamic Smagorinsky–Lilly subgrid model and the Boger flame surface density combustion model were used. The geometry is essentially two-dimensional with fence-type obstacles distributed on the top and bottom surfaces, equally spaced along the channel length at the channel height. Flame propagation, however, is three dimensional as ignition occurs at a point at the center of the channel cross-section. The effect of obstacle blockage ratio on the development of the flame structure was investigated by varying the obstacle height. Three-dimensional cases were simulated from the initiation of a combustion kernel through spark ignition to the acceleration of the flame front at speeds up to 80 m/s. The transition from laminar flame propagation to turbulent flame propagation within the “thin reaction zone” regime was observed in the simulations. By analyzing the development of the three dimensional flame surface and unburned gas flow field, the formation of several flame structures observed experimentally are explained. Global quantities such as the total flame area and centerline flame velocity were ascertained and compared to the experimental data. High amplitude oscillations in the centerline flame velocity were found to occur from a combination of the unburned gas flow field and fluctuations in the volumetric burning rate.  相似文献   

20.
为研究水分对低阶煤在堆积状态下自然发火特性的影响,基于Frank-Kamenetskii理论,采用开放式恒温加热试验法,分析不同水分含量(4%~23%)白音华褐煤的升温过程及临界自燃着火温度.进一步研究不同煤样粒径(0.5~5 mm)和煤堆体积(1.25 ~10 ×105 mm3)条件下,水分对堆积褐煤自燃特性的影响....  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号