首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 406 毫秒
1.
沸石-陶粒BAF处理微污染水源水的影响因素研究   总被引:2,自引:0,他引:2  
探讨沸石-陶粒BAF工艺对微污染水源水中CODMn、氨氮、UV254、浊度等污染物质的去除效果.通过模型试验,研究了填料高度、水力负荷、气水比等因素对沸石-陶粒曝气生物滤池(BAF)工艺处理效果的影响.结果表明,在水力负荷为1.2~4.8 m3/(m2·h)、气水比为1时,CODMn、氨氮、UV254和浊度的去除率随填料层高度的增加而增加,其中CODMn、UV254、浊度的去除在最初的440 mm内最为显著,而氨氮的去除在220~440 mm范围内较明显; 在气水比为1,水力负荷分别为1.2 m3/(m2·h)、2.4 m3/(m2·h)和4.8 m3/(m2·h)时,CODMn的总去除率分别为38.62%、32.23%和25.37%,较合适的水力负荷为1.2 m3/(m2·h); 在水力负荷为1.2 m3/(m2·h)、气水比由0.5增为1时,CODMn的平均去除率由26.34%增为36.31%,氨氮的平均去除率由78.15%增为94.4%,当气水比增大为2时,CODMn、氨氮的去除率增加很少,合适的气水比为1.研究表明,沸石-陶粒BAF工艺处理微污染水源水的效果良好,且所需的填料高度小,气水比低.  相似文献   

2.
通过实验室模拟试验分析了进水氮负荷对污水地下渗滤系统出水水质及N2O产生的影响。结果表明:随进水氮负荷升高,系统对NH_4~+-N、COD等污染物的去除率呈下降趋势,而对TN的去除率呈先增加后降低的趋势;在低进水氮负荷(≤1.6 g/(m~2·d))和高进水氮负荷(≥6.4 g/(m~2·d))时,生物脱氮作用的N_2O气体产率相对较低,不超过(31.8±2.7)mg/(m~2·d);在中等进水氮负荷(2.4~5.6g/(m~2·d))时,N_2O气体产率最大值达到(60.6±2.0)mg/(m~2·d);N_2O的转化率也呈先升高后降低的变化趋势,在氮负荷为2.4 g/(m~2·d)时,转化率达到最大值,即1.33%±0.03%。综合考虑地下渗滤系统处理效果及N_2O产率等方面的要求,建议在工程应用中,污水地下渗滤系统的进水氮负荷为4.0~5.6 g/(m~2·d)。在该负荷区间下,N_2O主要产生在地下渗滤系统的下层,即厌氧区域是N_2O的主要释放源,占总体的70%以上。  相似文献   

3.
为提高人工湿地污水处理的冬季处理效果,建议在人工湿地处理系统中构建缓冲单元,并将天然蛭石作为缓冲单元的主体填料.结果表明:在水力负荷为1.4 m3/(m2·d)和蛭石层填充高度≥60 cm的条件下,对于经初沉处理的生活污水(COD值为150-350 mg/L,NH4 -N为10-30 mg/L,TP为1.0-1.5 mg/L),无植物天然蛭石缓冲单元至少可在45 d内保持其出水各项水质指标达到一级排放标准,从而可基本满足人工湿地在植物换季时期的处理需要.另外,适当增加系统含氧量和蛭石用量可提高体系缓冲性能.  相似文献   

4.
铵态氮在人工快渗系统中迁移转化的数值模拟研究   总被引:1,自引:0,他引:1  
针对肠衣加工厂含盐废水中铵态氮在人工快渗(CRI)系统中迁移转化的过程,利用HYDRUS-1D软件构建水分与溶质运移模型,研究CRI系统不同填料层厚度及不同运行条件对铵态氮的调控效果。选取CRI系统7个周期内铵态氮进出水浓度对模型进行验证,结果表明,决定系数R~2=0. 97,均方误差MSE为0. 027,模型拟合度良好。采用率定后的模型模拟分析了填料层厚度与铵态氮处理效果之间的关系,结果表明该CRI系统前50 cm对铵态氮去除起主要作用;该肠衣加工厂废水出水铵态氮浓度达到GB 8978—1996《污水综合排放标准》一级标准填料层需46 cm以上。改变模型边界条件,模拟研究不同水力负荷、污染物负荷对CRI系统中铵态氮迁移转化的影响,结果表明该CRI系统水力负荷在2 m~3/(m~2·d)以下时,随水力负荷增加,CRI系统出水铵态氮浓度增长率越来越高,达到GB 8978—1996《污水综合排放标准》一级标准所需滤料厚度、增长率也越来越高;当该CRI系统进水铵态氮浓度在12. 8 mmol/L以下,无外界条件干扰时,进出水铵态氮浓度呈线性关系。  相似文献   

5.
曝气生物滤池在酱油废水深度处理中的应用研究   总被引:1,自引:1,他引:0  
采用陶粒、活性炭混合填料的曝气生物滤池深度处理酱油废水,在不同的水力负荷条件下,以上向流的运行方式,研究了滤池对COD和色度的去除效果,用生物量(MLVSS)进一步证实了对污染物去除起主要作用的填料层高度范围.结果表明:陶粒与活性炭填装比例3∶1,水力负荷0.75 m/h下,进水COD和色度为126 mg/L和155倍;出水COD和色度为43.8 mg/L和50倍,去除率分别达到了65.2%和68.6%,出水COD和色度优于废水综合排放标准(GB 8978-1996)的一级排放标准.污染物的去除主要发生在填料层0~65 cm高度范围内,微生物量也达到最大.  相似文献   

6.
为缩短启动时间,提高脱氮效果,通过添加自制生物制剂(由原土、活性污泥、草炭、鸡粪、炉渣等按比例配成)的方法对地下渗滤工艺加以改进,并对改进型地下渗滤系统的启动、微生物种群分布、脱氮效果以及运行情况进行了试验研究.结果表明:进水水力负荷6.5cm·d-1、COD的污染负荷300mg·L-1时,改进型地下渗滤系统22~25d即可完成启动过程;氨化、硝化以及反硝化细菌在进、出水口分布均匀,活性强;水力负荷4.0~8.1 cm·d-1,进水NH3-N、TN质量浓度分别为92~103 mg·L-1、108~122mg·L-1时,NH3-N的去除率96.3%~97.4%,总氮的去除率88.5%~89.8%,改进后系统处理污水的最佳水力负荷为8.1 cm·d-1.  相似文献   

7.
本试验以生活污水处理厂CASS池活性污泥为接种污泥,通过好氧-高效沉淀组合反应器进行AOB菌的富集驯化,并用驯化后的污泥对高氨氮稀土废水进行批次试验研究。以人工配水作为模拟废水进行的AOB菌筛选与驯化试验共运行32 d,进水总氮负荷从0.29 kg/(m3·d)提升至5.25 kg/(m3·d),亚硝态氮积累率达90%以上。驯化完成后,用广西某稀土冶炼企业所产生的稀土废水作为进水共进行4个批次试验,考察短程硝化对稀土废水的去除效果。结果表明,经过一个月的培养驯化,短程硝化污泥对高氨氮稀土废水具有较高的转化效果,出水亚硝态氮积累率较高,出水亚硝态氮与氨氮比值约为1.32左右,符合厌氧氨氧化反应器进水的要求。  相似文献   

8.
以人工模拟海水养殖废水为处理对象,探讨了PE(聚乙烯)环、珊瑚石和PP(聚丙烯)方便面净水板3种生物滤料对氨氮的吸附性能,获得了动态吸附的穿透曲线。研究了3种滤料的生物挂膜情况以及挂膜成熟后在不同水力负荷下的净水效果。结果表明,珊瑚石滤料的挂膜成熟时间明显短于PE和PP材质的滤料,生物膜厚度与水流流速呈负相关。水力负荷对3种滤料生物滤器的净水效果有显著影响,当水力负荷为19~51 m3/(m2.h)时,生物滤器对TAN、TOC和NO2--N有较为理想的去除效果。  相似文献   

9.
构建曝气式矿化垃圾反应器,研究其对高水力负荷垃圾渗滤液的处理效果。结果表明,在水力负荷为70 L/(m~3垃圾·d),曝气量为0.744 m~3/(m~3垃圾·d)的条件下,进水渗滤液中COD_(Cr)、氨氮、总磷、总氮质量浓度分别为4 776~5 305,1 659~2 200,15~22,2 115~2 578 mg/L时,COD_(Cr)、氨氮、总磷的平均去除率分别为75.2%,96.0%,89.0%。总氮去除率呈下降趋势,从56.6%降至16.1%,平均去除率为25.8%。  相似文献   

10.
接种厌氧氨氧化(Anaerobic Ammonium Oxidation,ANAMMOX)颗粒污泥至上流式厌氧污泥床反应器(Up-flow Anaerobic Sludge Blanket,UASB),并控制进水NO_3~--N/NO_2~--N质量比为1∶1。在(33±1)℃下,通过研究不同进水总氮质量浓度(200 mg/L、400mg/L、600 mg/L)和水力停留时间(12 h、8 h、6 h、4 h)下的脱氮效能、污泥形态及微生物群落结构,多维分析上流式ANAMMOX反应器氮负荷提升过程中的运行性状。结果表明,在进水NO_3~--N和NO_2~--N质量浓度均为200 mg/L、总氮质量浓度为400 mg/L、水力停留时间为6h的运行工况下反应器可获得最佳处理效能,NO_3~--N、NO_2~--N和总氮去除负荷分别达到0.76 kg N/(m3·d)、0.75 kg N/(m3·d)和1.32kg N/(m3·d),三者去除率分别为95.0%、93.8%和82.5%。氮负荷提升过程中的污泥形态和微生物群落结构动态变化显示,相较于水力停留时间的缩短,进水总氮质量浓度增加对上流式ANAMMOX反应器运行过程的影响更为显著,其不仅导致了颗粒污泥解聚,还显著降低了微生物种群的多样性和均匀度。核酸测序结果表明,反应器中分布着3种潜在的ANAMMOX优势功能菌,且三者丰度会随进水总氮质量浓度增加而发生明显演替。研究表明,在上流式ANAMMOX反应器氮负荷提升过程中,进水总氮浓度的控制更为关键。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号