首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
考虑土与结构动力相互作用的影响,将地基土—地铁区间隧道结构体系视为平面应变问题,建立了土—地铁区间隧道非线性动力相互作用的有限元分析模型,对圆形和直墙拱形隧道的地震反应进行了数值模拟;分析了在相同的埋深和场地条件的情况下不同隧道结构形式在不同地震动作用下的应力、加速度和相对水平位移反应特性。结果表明:圆形隧道结构的应力和相对水平位移反应明显小于直墙拱形隧道。从抗震设计角度考虑,选择隧道形状时应优先采用圆形隧道。  相似文献   

2.
针对上覆0.3m粘土层、下伏1.2m饱和砂层的可液化场地,采用2×2群桩-低承台-独柱墩结构,完成了可液化场地桥梁群桩基动力反应振动台试验。结果表明:随着埋深增加,土体孔压、加速度和位移趋于减小,随着输入频率的增大,土体孔压和加速度增大,土体位移则减小;桩的加速度和弯矩反应自下而上呈现增大趋势,桩的弯矩在承台处达到最大值,且随着输入频率的增大而减小;随着埋深的增加,桩上土反力和桩-土相对位移减小,土体模量增大;随着输入频率的增大,土体模量及耗能变小。  相似文献   

3.
通过数值计算,采用考虑基坑开挖过程中土体剪切模量随应变增大而衰减特性的HSS模型,研究了基坑开挖卸荷作用下,邻近地铁隧道的埋深、隧道和基坑地连墙距离及刚度比等关键因素对地铁结构附加弯矩和附加位移的影响。结果表明:对于坑底隧道,在地下墙埋置深度范围内,与地连墙水平距离越大,隧道的侧移越小,在地下墙埋深以下,隧道侧移随与地连墙水平距离的增大而增大;通过比较坑侧与坑底隧道的附加弯矩与位移,得出地连墙底附近区域因基坑开挖卸荷引起的隧道附加弯矩较大,出现应力集中和明显的隧道-土-挡墙相互作用效应,坑侧隧道水平附加位移普遍大于竖向附加位移;此外,隧道与地连墙刚度比增大,对挡墙侧移和隧道附加位移都有明显的抑制作用。该研究揭示了基坑开挖作用下隧道-土-挡墙之间的相互作用规律,对深基坑开挖优化设计以及临近地铁结构的保护和安全运行具有一定的指导意义。  相似文献   

4.
基于相似理论,设计并制作了几何相似比为1:20的浅埋偏压连拱隧道物理模型,完成了振动台试验并测得衬砌的应变响应与加速度响应。在试验基础上,通过MIDAS GTS NX有限元软件建立数值模型,验证了数值模型的合理性与可靠性,研究了浅埋偏压连拱隧道的地震响应规律。结果表明:(1)上覆土层厚度、偏压、衬砌与临空面的距离对浅埋偏压连拱隧道加速度响应的影响较大。(2)浅埋偏压连拱隧道中墙上的应变由于截面几何形式突变与集中力的原因,相对其余测点较大。(3)大小主应变与加速度放大系数趋势线的整体形状不随激振强度的增加而改变。(4)偏压与覆土厚度对连拱隧道位移的影响较小。(5)浅埋偏压连拱隧道中隔墙的应变、轴力、剪力和弯矩相对其他部位均较大,在进行浅埋偏压连拱隧道的抗震设计时,应给与重视。  相似文献   

5.
地基基础与建筑场地类别划分   总被引:3,自引:0,他引:3  
基于与建筑地基震害密切相关的地基土性状及基础条件,讨论了岩土工程勘察设计工作中关于场地土和建筑场地类别划分的主要依据,提出了对我国现行《建筑抗震设计规范(GB50011 2001)》进行基础埋深、覆盖层厚度和复合地基的地基土性状的修正, 并经场地土层地震反应分析论述了进一步划分建筑场地类别的必要性和可能性。以北京的2个典型工程场地为代表,分别讨论了基础埋深和覆盖层厚度对建筑场地类别划分的影响,并通过场地土层地震反应分析,得到自然地面上、基础埋深处土层的反应谱,同时也计算了在考虑或不考虑低速粘性土夹层情况下对土层地震反应结果的影响程度。最后,根据综合峰值加速度、加速度反应谱最大值的对比结果认为对原有的建筑场地类别划分方法有必要进行修正。  相似文献   

6.
为了研究含软弱夹层场地中埋地管道的地震反应特性,基于管土接触模型,运用ADINA软件,采用非线性分析,研究埋深、厚度和倾角等因素对含软弱夹层场地中埋地管道地震反应的影响规律。结果表明:软弱夹层各因素对埋地管道地震动力响应产生影响不同,一定厚度和埋深条件下,软弱夹层具有隔震作用,当软弱夹层的存在增大其场地不均匀程度,则会对埋地管道地震动响应具有非常不利的影响;管道有效应力和位移随着软弱夹层厚度的增大而减小,当厚度达到一定值时,软弱夹层起到一定的缓冲作用;管道有效应力和位移随着软弱夹层埋深的增大而减小,但影响程度小于夹层厚度所产生的;软弱夹层因倾角变大增大了场地不均匀程度,导致管道有效应力和位移变大。  相似文献   

7.
本文进行了砂质粉土层自由场地震响应的离心机振动台模型试验,研究了不同地震荷载条件下自由场的响应。研究结果表明,自由场响应与地震强度条件密切相关,地层响应加速度具体量值随入射地震波强度的增加而增大,但加速度放大系数却随地震强度的增大而减小,此外,地震强度对场地的侧向水平位移和地表沉降同样存在影响。  相似文献   

8.
为研究多点地震激励下埋地油气管道的地震响应,设计并制作缩尺埋地油气管道及周围土体模型,利用双台阵地震模拟振动台对其进行纵向一致及多点地震激励下的地震响应研究,分析纵向多点地震激励时不同地震动各加载工况下埋地油气管道土体加速度、位移及管道加速度、应变等地震响应的变化规律。结果表明:土箱内不同深度测点位移增量不同,致使土体间产生剪切效应,多点激励时土体变形及破坏程度相较于一致激励明显;土体加速度峰值随加载等级的提高呈增长状态,多点激励时箱内土体加速度峰值变化曲线一致性较差,土体加速度响应产生较大差异;随着加载等级的提高,管道与土体间加速度峰值差值逐渐增大,多点激励会造成管道加速度峰值产生滞后现象;管道顶部轴向应变随管轴表现为两侧小,中间大,多点激励时管道应变增长速率更快,产生的应变更大。  相似文献   

9.
采用修正惯用法,在考虑土拱效应对圆形隧道结构受力状态影响的基础上,研究了埋深对地下结构地震反应的影响规律。首先,对比分析了不考虑和考虑土拱效应时、地震荷载作用前,隧道结构内力分布及随埋深的变化规律;将作用于隧道结构上的水平地震荷载等效为围岩土体变形导致的土压力的改变值;继而探讨了考虑土拱效应后,地震荷载引起的隧道结构内力的改变,研究了不同地震动强度下,埋深对圆形隧道结构地震反应的影响规律。 研究结果显示,地震作用下,圆形隧道结构的内力随着埋置深度的增加呈现出先增大后减小或趋于稳定的趋势,即圆形隧道结构地震反应存在一个抗震关键埋深。  相似文献   

10.
目前已有土?挡土墙动力相互作用的理论分析方法通常把墙后土体假设为均质土,很少能考虑层状土对挡土墙动力响应的影响。已有研究表明,挡土墙后层状土对挡土墙的地震反应及其抗震设计至关重要。鉴于此,采用 Pasternak 地基模型,建立了地震作用下层状地基中挡土墙的动力位移控制方程,通过引入修正 Vlasov 地基模型中的迭代算法,推导了层状地基弹簧系数和剪切系数的表达式。通过本文方法计算结果与已有方法计算结果的对比分析,充分证明了本文方法的正确性和可行性。同时,通过设计不同的挡土墙后软夹层厚度、埋深和土层模量比, 进一步明确了软夹层的不同存在条件对挡土墙地震反应的影响规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号