首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
指出了近断层脉冲型地震动耦合效应的存在。以典型走滑断层型地震动为数据基础,考虑场地条件的影响,对近断层方向性效应地震动分量(CFN)、滑冲效应地震动分量(CFP)以及相互垂直的两耦合地震动分量(C45°和C-45°)的峰值、反应谱分别做了定性的比较。结果表明,各地震动分量的加速度峰值之间差别不明显,但方向性效应地震动分量的速度和位移峰值明显大于其它分量相应的峰值;不同场地、不同周期段的绝对加速度、相对速度和相对位移反应谱谱比呈现不同的变化特点;岩石场地上方向性效应地震动分量长周期段的加速度反应谱最高,而土层场地上各分量加速度反应谱之间的差别不大;近断层结构抗震设计时,地震动分量和设计谱的选取应适当考虑地震动的方向效应。  相似文献   

2.
通过振动台模型试验探讨震动强度对反倾层状岩质边坡动力响应规律的影响,着重分析边坡加速度响应峰值、加速度放大系数随震动强度增加的变化规律。结果表明:①随着震动强度增加,模型边坡各测点的加速度响应峰值不断增大,地震波频率和测点位置影响加速度响应峰值的增加方式;②震动强度对模型边坡各测点加速度放大系数的影响因地震波频率、测点位置的不同而有不同的表现。同一频率地震波作用下,相同高程的测点加速度放大系数随震动强度增加的变化规律相同;③0.20g是边坡变形破坏的临界加速度值;④震动强度的变化并不改变加速度响应峰值、加速度放大系数在边坡中的分布。该研究结果对高地震区的地质灾害防治具有指导和借鉴-意义。  相似文献   

3.
以黄土丘陵沟壑地区大规模平山填沟造地工程为背景,结合相关工程实例,定量分析新型挖填场地在地震作用下场地动力响应特征及其关键影响因素。以场地地球物理勘测和压实黄土室内动三轴试验为基础,构建考虑场地横向不均匀性的场地地震反应分析模型,给出场地填方厚度、挖填交界面和土层参数对场地挖方区、填土区和界面区地震动特征参数的影响规律。研究发现:场地覆盖土层厚度在一定范围内对地震动峰值加速度影响明显,而大厚度覆盖层对地震波能量传递有抑制作用;填方土层压实参数影响填方区地震动放大范围;挖填界面的平均坡度和界面阻抗对平面内地震波场折射和反射影响较大。研究结果可为黄土地区大规模挖填场地地震稳定性分析提供参考依据。  相似文献   

4.
深厚软弱场地地震反应特性研究   总被引:9,自引:0,他引:9  
以南京、盐城、上海的 3个典型场地作为长江下游地区深厚软弱场地的代表 ,探讨了深厚软弱场地的地震效应特性。首先 ,利用南京工业大学岩土工程研究所自行研制的GZZ 1自振柱试验机 ,对 3个典型场地的原状土样进行试验研究 ,获得了各类典型土的动剪切模量和阻尼比随剪应变的变化曲线 ;其次 ,选用Taft、ElCentro和Northridge地震记录作为输入地震动 ,将Taft、ElCentro和Northridge地震波加速度时程的峰值水平调整为 0 .35m/s2 ,0 .70m/s2和 0 .98m/s2 ,利用程序SHAKE91对 3个场地进行了输入不同地震波、不同峰值加速度水平的 2 7种组合的地震反应分析。数值分析表明 :场地条件和基岩输入地震动特性对土层的地震加速度放大效应有显著影响 ,地表处的地震加速度放大系数随着输入地震波峰值的增加而减小 ,土层内部的这种规律性不如地表处表现得明显 ;地表软弱土的存在使土层地表处的地震加速度放大系数急剧增大 ,场地内部软弱土夹层处的地震加速度放大系数急剧增大 ,强震时易失效 ;互层土特殊的层理构造会造成该土层的剪应变幅值急剧增大。  相似文献   

5.
为研究山岭隧道洞口段在地震动力作用下对边坡变形特征及其二者之间的相互影响,以宝兰客专某黄土隧道为工程背景,开展了大比例尺的黄土隧道洞口段大型振动台模型试验,输入不同类型的地震动参数,分析在地震动力作用下黄土隧道洞口段的动力响应及变形破坏特征。结果表明:(1)随着地震动强度的增大,模型表观和内部经历了弹性阶段、弹塑性阶段和破坏阶段;(2)阿里亚斯强度(Arias Intensity)的水平与垂直分量的放大系数云图呈现颜色区域互补状态,能量衰减区集中在洞口拱顶附近的围岩,仰拱底部 1~4.50 倍洞径和拱顶 2.50~4 倍洞径围岩范围则为能量加强区;(3)不同地震波形、相同加载方向,加速度水平、垂直分量的峰值连线线形相似,个别测点的加速度峰值突出到线形之外,峰值出现时刻明显提前或滞后,说明围岩发生较大的塑性变形或破坏;(4)单向加载时,拱顶、仰拱底部围岩沿隧道进深方向的加速度放大效应基本一样,沿垂直方向的放大系数连线的台阶式变化更为明显。双向耦合加载时,拱顶、仰拱底部围岩的放大系数连线的台阶式变化都较为明显。  相似文献   

6.
时程响应是发展锚索抗滑桩抗震技术和改进抗震设计方法的基础。基于离心模型试验平台,设计完成了50g离心加速度条件下锚索抗滑桩加固滑坡体的振动台模型试验。输入了4种不同强度的Taft地震波,利用布设在不同位置的微型传感器,记录了桩身和滑坡体的动态时程数据,并以此为基础分析了桩身和滑坡体不同位置的时程响应规律。结果表明,锚索抗滑桩和坡体的时程响应均受输入地震动控制,其动态变化形式与输入地震动基本一致;峰值加速度在基岩内部变化不大,在坡体内部从外向内呈现先减小后增大的趋势;不同高程的PGA放大系数呈现高程效应,坡面存在浅表动力效应;坡体内部PGA放大系数总体上随输入地震动的增大而增加,但在基岩面附近放大效应不明显;锚索的加设有效降低了坡体内部中心位置的加速度放大效应。研究成果可为开发科学合理的锚索抗滑桩抗震设计方法和验证数值模拟成果提供参考依据。  相似文献   

7.
基于室内直剪试验,得到不同含水率下花岗岩残积土的强度参数,并采用有限差分软件研究了花岗岩残积土边坡在不同含水率(13%、17%、21%、25%)和地震加速度峰值(0.05g、0.1g、0.2g、0.4g)下的位移场、加速度场和锚杆轴力变化规律。结果表明:在EL波作用下,边坡水平位移主要集中在残积土层内。含水率越高、地震峰值加速度越大,同一位置处坡体水平位移越大;PGA放大系数随着坡高的增加而增大,且表现为趋表放大效应。含水率越高、地震峰值加速度越小,同一位置处PGA放大系数越大;预应力锚杆最大轴力位于锚头处,且轴力沿自由段变化较小,而在内锚段由始端向末端逐渐减小。含水率越高、地震峰值加速度越大,同一位置处锚杆轴力越大。当地震加速度峰值较小时(PGA=0.05g),坡脚处锚杆轴力最大,当地震加速度峰值较大时(PGA=0.4g),坡顶处锚杆轴力最大。  相似文献   

8.
采用有限元数值模拟方法探讨了在SV波斜入射时,入射角度θ、入射方向和陡坎坡角α等参数变化对陡坎场地地表震动加速度峰值放大系数影响。结果表明:1)对x分量,从陡坎底部到陡坎顶部,放大系数逐渐增大,入射角度、坡角和入射方向没有影响;对z分量,放大系数分布规律相对复杂。2)入射角度θ一定时,无论地震波顺着陡坎方向(左)入射还是逆着陡坎方向(右)入射,陡坎上侧的放大系数大于陡坎下侧的放大系数。同时,放大系数随着坡角α的增大而增大。3)坡角α不变,地震波顺着陡坎方向(左)入射时,x分量的放大系数随着入射角的增大而减小,z分量的放大系数随着入射角的增大而增大。4)地震波逆着陡坎方向(右)入射时,x分量放大系数随入射角的变化与输入波有关,但最大值基本在陡坎上侧边缘。z分量放大系数随入射角的增大而增大,最大值的位置无一致规律。5)地震波顺着陡坎方向(左)入射时,x分量的放大系数比地震波逆着陡坎方向(右)入射时的小,z分量与之相反。  相似文献   

9.
采用等效线性动粘弹性模型描述土的动力非线性特性,基于一维等效线性波传法,对泉州盆地地震效应进行了分析;同时,采用修正Martin-Seed-Davidenkov动粘弹塑性模型描述土的动力非线性特性,对泉州盆地非线性地震效应进行了大尺度二维精细化有限元分析,研究了地形地貌和土层横向不均匀性对地震效应的影响。将两种分析结果进行对比,结果表明:①随着基岩输入地震动强度增大,地表峰值加速度PGA放大效应总体呈现减小趋势,中震与小震、大震与小震的地表PGA放大系数之比依次为0.83~0.99、0.72~0.97;②该盆地Ⅲ类场地处,基岩、地表起伏不大,且土层横向分布较均匀,两种方法计算得到的地震效应特征类似;基岩或地表起伏剧烈、土层横向分布明显不均匀的Ⅱ类场地上,二维非线性分析给出的地表PGA放大系数明显大于一维等效线性结果,两种方法得到的地表加速度反应谱及PGA随土层深度的变化特征存在显著差异,二维非线性分析给出的地表加速度反应谱大多呈现双峰甚至多峰现象,且PGA在土层特定深度处存在聚集效应,使PGA随土层深度的变化呈现非单调性。  相似文献   

10.
为了定量表征场地效应对概率地震危险性分析(PSHA)结果的影响,采用 OpenQuake 软件计算方法,针对玉溪地区,开展了考虑场地效应的 PSHA 分析,生成了基于基岩场地和实际场地的玉溪市 50 年超越概率 10% 的地震动峰值加速度(PGA)和 0.5 秒反应谱加速度(Sa(0.5 s))危险分布图。结果表明:考虑场地效应(实际场地)的 PGA 和 Sa(0.5 s)危险值分别分布在 0.12g~0.45g 和 0.15g~0.55g 区间;场地效应显著增大了玉溪市东部地区的地震危险性,原因是该区域地势平坦且上覆软土层;考虑场地效应的 PSHA 结果可用于生成针对某一特定场地的一致危险性反应谱。因此,应重点关注软弱土层场地放大效应对 PSHA 结果的影响,从而更为合理、科学地表征地震动危险性。  相似文献   

11.
利用二维显式有限元场地地震反应分析程序,把不同频谱特性的地震动作为输入基岩的SH波,探讨了阶跃基岩覆盖土层场地地震动空间分布特征,重点研究了覆盖土层厚度和土层性状对场地地表加速度峰值和反应谱的影响。研究表明:对于阶跃基岩覆盖土层场地,覆盖土层厚度变化对相应区域地表地震反应有较为明显的影响,对土层厚度不变区域的地表地震反应影响不明显。土层性状对阶跃基岩覆盖土层场地地表的加速度峰值和反应谱均有重要的影响。软土和上软土下硬土组合土层场地地表的加速度峰值要比硬土场地地表上的大。软土场地中反应谱的峰值要比硬土场地中反应谱的峰值大,硬土场地反应谱峰值对应的周期较短,软土场地反应谱峰值对应的周期较长。土层性状对地震动反应谱的影响,主要体现在短周期分量上。  相似文献   

12.
为考虑地震动特性对隔震连续梁桥顺桥向主梁与桥台碰撞响应的影响,以某三跨混凝土隔震连续梁桥为例,基于ABAQUS建立了考虑混凝土材料损伤及三维接触碰撞的有限元模型。采用12条典型地震动输入,分析了不考虑碰撞时地震动峰值加速度与峰值速度的比值(PGA/PGV)对主梁顺桥向最大位移的影响;并进一步分析了考虑碰撞效应时PGA/PGV对主梁碰撞响应的影响;在此基础上,以一条典型地震动为例,分析了地震动峰值加速度对碰撞响应的影响。结果表明,当不考虑碰撞效应时,主梁顺桥向最大位移随着PGA/PGV的增大而呈现减小趋势;考虑碰撞时,碰撞次数和最大碰撞力的变化具有一定的相似性,但随PGA/PGV的变化并不明显。随着伸缩缝间隙的不同,最大碰撞力随着峰值加速度的增加既可能表现出线性增加的特征,也可能表现出较大波动。  相似文献   

13.
利用SMART-1台阵3次地震的水平分量加速度记录统计了局部场地上地震动加速度最大幅值、到时的变化特性。统计结果表明:在局部场地上,地震动加速度的最大幅值随土层厚度和测点坐标的变化是显著的,而到时变化仅依赖于测点坐标  相似文献   

14.
运用有限差分软件FLAC3D,建立了某一黄土边坡三维模型,首先对其在地震作用下的动力响应规律进行了总结,然后探讨了地震动参数对黄土边坡动力响应的影响。结果表明:黄土边坡对地震波存在垂直放大和临空面放大作用;当输入地震波振幅或频率增加时,坡面监测点加速度放大系数随坡高增加呈"增加→衰减→增加"的三段形态;速度放大系数随坡高的增大而增大,并在坡顶达到最大值;位移放大系数随振幅和频率的增加而增加;地震持时对加速度、速度峰值的影响不大,但坡体位移随持时的增加而显著增加。强震作用下的最大剪应变增量区域的位置和形状表明,黄土边坡的破坏模式仍是沿着某一弧形潜在滑动面失稳破坏。研究结果有助于进一步揭示黄土边坡在地震作用下的失稳机制,为黄土地区边坡抗震设计与防灾减灾提供参考。  相似文献   

15.
采用基于Davidenkov和Matasovic骨架曲线构造的不规则加卸荷应力—应变滞回圈,数值模拟了2个剖面的苏州第四纪深厚场地二维非线性地震反应。结果表明:(1)采用Matasovic模型计算的地表峰值加速度稍大于采用Davidenkov模型计算的地表峰值加速度,但前者计算的地表地震动持续时间稍小于后者计算的。随着基岩输入地震动强度的增大,两者给出的地表峰值加速度差异呈现逐渐增大的趋势,并与土体的横向不均匀特性有关;(2)两者给出的地表谱加速度谱形基本相似,其差异随基岩输入地震动强度的增大而增大;远场地震动作用下地表谱加速度的卓越周期也随输入地震动强度的增大而增大;(3)两者给出的峰值加速度随土层深度和横向的空间变化特征基本一致,远场地震动作用下的地表峰值加速度明显大于近场地震动作用下的地表峰值加速度。  相似文献   

16.
为了准确描述地裂缝场地动力特征,利用 ABAQUS 有限元软件建立了地裂缝场地三维动力数值分析模型, 定量分析了地裂缝场峰值加速度(PGA)、峰值速度(PGV)、Housner 强度(HI)和 Arias 强度(Ia )在不同地震作用下的变化趋势,获得了地裂缝场地动力响应规律,并与振动台模型试验结果进行了对比,表现出较好的一致性。结果表明:上盘的动力响应放大系数及影响范围均比下盘大,在地裂缝附近达到最大并向两侧递减,呈“λ”分布;随着地震烈度增大,土体软化程度增强,动力响应放大系数和裂缝两侧放大系数的差值逐渐减小;场地下盘的地震动长周期分量较丰富,平均周期相对上盘表现出较大的特性;在同一地震烈度不同输入方向引起的上、下盘动力响应中, 垂直地裂缝方向作用的地震波对场地破坏较为严重。其研究结果可为地裂缝场地的工程应用提供重要参考。  相似文献   

17.
软土场地地震反应计算分析方法是公认难题。以日本KiK-net强震观测台网中所有软土场地井下记录为样本,对传统等效线性化方法SHAKE2000、时域非线性方法DEEPSOIL和频率一致等效线性化方法SOILQUAKE三者在软土场地地震反应分析计算中的可靠性进行对比检验。检验工况包括KiK-net井下台网中地表峰值加速度不小于0.05 g的所有水平软土场地的总计309台次的加速度记录,涉及24个台站,土层厚度28 m~240 m,地表峰值加速度范围0.050 g~0.580 g。对比结果表明:烈度6度和7度偏下(地表PGA在0.12 g以下)的较弱地震动下,对三类、四类和巨厚场地,SOILQUAKE、SHAKE2000和DEEPSOIL三个方法计算结果相差不大,与实际记录较为接近,皆可采用;烈度7度中上以上(地表PGA在0.12 g以上)的较强地震动下,无论是三类、四类和巨厚场地,DEEPSOIL和SHAKE2000计算出的地表PGA和反应谱较实际记录偏小,且随地震动强度增加差距急剧增大,甚至小于井下输入,而SOILQUAKE计算出结果与实际记录基本相当,可体现出软土场地放大作用,也证明了频率一致等效线性化方法的有效性。  相似文献   

18.
地震作用下混合式加筋土挡墙动力特性∗   总被引:1,自引:1,他引:0       下载免费PDF全文
为了研究混合式加筋土挡墙在地震作用下的动力特性,采用 FLAC3D动力分析模块建立了混合式加筋土挡墙的三维动力分析模型,对挡墙墙背填土为全砂土和混合式(薄砂层厚度分别为 3、5、8、10 cm)2 种情况下的加筋土挡墙在地震作用下的水平位移响应、筋材内力以及破坏模式、加速度响应进行了计算。通过对比分析了 2 种情况下加筋土挡墙受力及受形特性,揭示了混合式加筋土挡墙的作用机制。分析结果表明:混合式加筋土挡墙的薄砂层厚度存在一个最优值;在同样的地震峰值加速度作用下,在薄砂层厚度由 3 cm 增加到 10 cm 的过程中,水平位移、加速度放大系数、筋材最大内力均呈现出先减小后增大的变化趋势;在地震峰值加速度为 0.4g 的情况下,薄砂层厚度为 5 cm 时,水平位移达到最小值 31 cm,加速度放大系数达到最小值 1.74,筋材最大内力达到最小值 22.5 kN。  相似文献   

19.
土体非线性性能对地表地震动的影响主要体现在其频谱成分和强度的改变上。采用修正Matasovic本构模型描述土的动力非线性特性,利用专业软件DeepSoil对深厚场地的50个钻孔剖面土柱模型进行了场地地震反应分析。采用加速度反应谱卓越周期Tp、平均谱周期Tavg及加速度傅氏谱平均周期Tm表征地表地震动频谱特性;以Arias强度Ia和地表峰值加速度PGA表征地表地震动强度。结果表明:(1) 特定场地条件下,Tp不能反映土体非线性对地震动从基岩传播至地表时频谱成分变化的影响;Tavg和Tm在表征地震动频谱成分特性时具有较高的一致性;(2) 基岩地震动高频丰富时,Tavg和Tm随着基岩地震动峰值加速度的增大而呈现出线性增长的趋势;而基岩地震动低频较发育时,Tavg和Tm的增长趋势线存在明显的拐点;(3)PGA与Ia值随基岩地震动峰值加速度的增大呈现出基本一致的非线性增长趋势,且其离散性均随基岩峰值加速度的增大而增大。  相似文献   

20.
基于多次透射边界和有限元数值模拟方法,研究了 SV 波垂直入射下,山体高度、盆地深度、以及山体与盆地剪切波速变化对盆山耦合场地位移峰值放大系数、位移频谱及谱比的影响。结果表明:(1)盆地与山体均对地震波有放大作用,从坡底到坡顶位移放大效用逐渐增大,从盆地外边缘到盆地中心位移放大效应逐渐增大,但盆地内放大系数分布特征受盆地深宽比的强烈影响。(2)山体测点位移峰值放大系数 AF 随山体高度增大而增大;山体的存在减弱了盆地的地表地震动放大效应,导致盆地远离山体一侧的放大更强烈,反之亦然。(3)随盆地波速的减小或山体波速的增大,盆地 AF 最大值增大,且最大 AF 出现的位置向远离山体一侧偏移,而山体各测点的 AF 值受此影响较小。(4)山顶处谱比峰值主要受山高、盆地深度及盆地波速影响,但最大放大频率及分布特征基本不变;山体波速对山顶处谱比分布影响显著。盆地中点处谱比受各参数影响均较显著,但规律较复杂。盆山复合场地的地震动分析中需考虑二者的耦合效应对地震动的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号