首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 671 毫秒
1.
超声波-H2O2协同作用处理孔雀绿废水   总被引:2,自引:0,他引:2  
范拴喜  江元汝 《化工环保》2007,27(5):404-408
采用超声波(US)-H2O2协同作用处理含孔雀绿的废水(简称废水);考察了H2O2加入量、US功率、反应温度、反应时间对废水色度、COD去除率的影响,并对US-H2O2体系降解孔雀绿的机理进行了探讨。实验结果表明:在US作用下,H2O2加入量对废水色度、COD去除率的影响较大;废水色度、COD去除率均随US功率和反应时问的增加而提高;在US~H2O2体系中,低温对处理废水有利,高温反而不利;US—H2O2处理废水具有协同作用。在废水量为100mL、pH为7.3、反应温度为40℃、H2O2加入量为10mL、US功率为240W、反应时间60min的条件下对废水进行处理,废水COD、色度去除率分别为97.5%,98.8%。  相似文献   

2.
光催化氧化法处理石灰法草浆造纸废水   总被引:5,自引:2,他引:3  
采用光催化氧化法处理石灰法草浆造纸废水,考察了ZnO加入量、H2O2加入量、废水pH、光照时间与光照强度对废水COD去除率的影响。在ZnO加入量为3g/L、H2O2加入量为14g/L、pH为10.00的条件下,废水经功率500W的低压汞灯照射8h后,其COD为153.8mg/L,COD总去除率可达90%以上。  相似文献   

3.
UV/Fenton氧化-混凝联合工艺处理含酚废水   总被引:8,自引:0,他引:8  
采用UV/Fenton氧化-混凝联合工艺对模拟苯酚废水进行处理,探讨了UV/Fenton预氧化程度和混凝处理条件对模拟苯酚废水处理效果的影响。结果表明,采用混凝处理,COD去除率仅为14.1%;当UV/Fenton预氧化处理过程中H2O2的质量浓度为150~300mg/L时,废水的混凝性能可提高1.5倍以上;当H2O2质量浓度为450mg/L、光反应时间为30min时,采用UV/Fenton氧化一混凝工艺联合处理后COD去除率达82.7%。苯酚废水采用UV/Fenton预氧化处理后,进行混凝处理过程的适宜pH为6.5,混凝剂Fe^3 的适宜质量浓度为500mg/L.  相似文献   

4.
采用Zn-Se/不锈钢阴极的超声-电解法处理罗丹明B废水   总被引:1,自引:1,他引:0  
采用超声-电解法考察了Zn-Se/不锈钢阴极处理罗丹明B废水的效果及影响因素。正交实验优化结果表明:在电流密度为2.4A/dm2、废水初始pH为6、超声功率为160W、通气量为10L/h、m(Zn)∶m(Se)为1∶1.5的Zn-Se/不锈钢作阴极、Ti/TiO2和铁网为双阳极的条件下,超声-电解法处理罗丹明B废水120min,废水脱色率为98.97%,COD去除率为88.11%。  相似文献   

5.
将臭氧分别与超声波、H2O2、紫外光等联用,深度处理干法腈纶生产厂生化池出水,对各种联用技术的处理效果进行了研究。实验结果表明:在进水流量2 L/min、反应时间30 min、臭氧加入量3.5 g/(L?h)的条件下,当超声功率为300 W时,臭氧-超声联用技术的COD去除率为30.0%;当H2O2加入量为0.4 mL/L时,臭氧-H2O2联用技术的COD去除率为50.7%;当紫外灯功率为40 W时,臭氧-紫外光联用技术的COD去除率为49.9%;在各种联用技术中,臭氧-H2O2联用技术的运行成本最低(为7.5 元/t),且处理后出水COD为143 mg/L,达到《<污水综合排放标准>(GB8978—1996)中石化工业COD标准值修改单》中的一级排放标准。综合考虑,臭氧-H2O2联用技术是深度处理干法腈纶废水的最优工艺。  相似文献   

6.
采用交流变频磁场预处理聚合硫酸铁(PFS),用于混凝处理造纸废水。考察了有无磁化作用、PFS加入量、磁化强度、磁化频率、磁化时间等因素对造纸废水的COD去除率和色度去除率的影响。实验结果表明:磁化PFS对造纸废水的处理效果较未磁化时明显提高;在PFS加入量为1 000 mg/L、磁化强度为6 mT、磁化频率为90 Hz、磁化时间为3 min的条件下,处理初始COD为650 mg/L、初始色度为180倍的造纸废水,COD去除率为93.22%,色度去除率为88.89%。  相似文献   

7.
在旋转填充床(RPB)中,采用O3-Fenton氧化法深度处理实际彩涂废水。实验结果表明:在反应温度为25℃、气体流量为150 L/h、液体流量为30 L/h、初始p H为7、反应时间为5.0 min、Fe2+浓度为0.10 mmol/L、H2O2浓度为1.0 mmol/L、RPB转速为1 000 r/min的条件下,彩涂废水的COD去除率达到99.7%,比非超重力O3-Fenton体系的处理效果高出60.0百分点。表明超重力技术对O3-Fenton氧化法深度处理彩涂废水具有良好的强化效果。  相似文献   

8.
Fenton试剂催化氧化法处理模拟酸性红B染料废水   总被引:2,自引:0,他引:2       下载免费PDF全文
李文军  胡翔  康灵玲  邵磊 《化工环保》2012,32(5):393-396
采用Fenton试剂催化氧化处理用酸性红B配制的模拟偶氮染料废水,考察了影响处理效果的主要因素,并探讨了酸性红B降解的动力学.实验结果表明,Fenton试剂催化氧化处理酸性红B废水的最佳工艺条件为:H2O2加入量49.0 mmol/L,Fe2+加入量2.0 mmol/L,反应温度25℃,初始废水pH 3~6.在此最佳工艺条件下反应5min时,酸性红B去除率为99.8%,COD去除率为62.3%;反应60 min后,酸性红B去除率为99.9%,COD去除率为80.0%.Fenton试剂催化氧化降解酸性红B的反应符合二级反应动力学规律.  相似文献   

9.
用絮凝#x02014;微波辐射#x02014;Fenton试剂氧化法深度处理焦化废水,研究了微波辐射时间、微波功率、FeSO4加入量、H2O2加入量和废水pH对废水处理效果的影响。实验结果表明:在聚合氯化铝加入量为350mg/L、聚丙烯酰胺加入量为12mg/L、废水pH=5、FeSO4加入量为250mg/L、H2O2总加入量为1400mg/L、H2O2分3次投加、微波功率为400W、微波辐射时间为60min的条件下,处理后出水的浊度、色度和COD去除率分别为98.59%,97.62%,86.21%。处理后出水澄清透明,COD为50.34mg/L,满足GB50050#x02014;2007《工业循环冷却水处理设计规范》的要求。  相似文献   

10.
微波催化氧化法处理甲基橙废水   总被引:27,自引:1,他引:26  
采用微波催化氧化法处理模拟甲基橙废水,考察了微波功率、辐射时间、H2O2用量、活性炭用量对甲基橙去除率的影响。在微波功率630w、辐射时间9min、H2O2用量10mL/L,活性炭用量10g/L的条件下,甲基橙的去除率达到90%左右,并对实际染料废水、炼焦废水、炼油废水、餐饮废水进行了处理,取得了满意的结果。  相似文献   

11.
采用微电解—Fenton氧化—絮凝组合工艺处理油田压裂废水,优化了工艺条件。实验结果表明:最佳工艺条件为初始废水pH 3.0、铁屑加入量1.5 g/L(铁屑与活性炭的质量比1∶1)、微电解时间80 min、Fenton氧化时间120 min、H2O2加入量940 mg/L,阳离子聚丙烯酰胺加入量120 mg/L;在最佳工艺条件下处理废水后,COD由3 116.0 mg/L降至681.3 mg/L,总COD去除率达78.1%,3个工段的COD去除率依次为33.1%,37.9%,7.1%,出水水质满足现场回注标准(SY/T 5329—2012《碎屑岩油藏注水水质推荐指标及分析方法》);该组合工艺对废水的处理效果远优于单独微电解、Fenton氧化或絮凝工艺,且方法简单易行、药剂利用率高。  相似文献   

12.
采用酸析—微电解—Fenton试剂氧化联合工艺预处理苯达松废水。考察了酸析pH、铸铁粉加入量、微电解时间、双氧水加入量、Fenton试剂氧化时间等因素对废水处理效果的影响。实验结果表明:最佳工艺条件为酸析pH 3.0,铸铁粉加入量1.0 g/L,微电解时间2 h,Fenton试剂氧化时间4 h,双氧水加入量25 mL/L;在最佳工艺条件下处理初始COD为22 500 mg/L、BOD5/COD为0.08、色度为2 500倍的苯达松废水,总COD去除率为96.2%,出水COD为858 mg/L,出水色度为150倍,BOD5/COD为0.38;采用微电解—Fenton试剂氧化联合工艺预处理酸析后的苯达松废水,处理效果远高于单独微电解和单独Fenton试剂氧化工艺。  相似文献   

13.
采用酸析—撞击流旋转填料床( IS-RPB)强化Fenton试剂氧化法预处理二硝基甲苯(DNT)生产废水.最佳工艺条件为:酸析工段废水pH 1.0,IS-RPB转速1 500 r/min,FeSO4加入量0.06 mol/L,H2O2加入量0.45mol/L,反应温度40 ℃,反应时间4h.在该条件下处理DNT生产废水,COD去除率可达98.95%,硝基化合物去除率达98.32%,BOD5/COD为 0.65.经该方法预处理后的DNT生产废水可适用于生化法进行后续处理.  相似文献   

14.
Fenton氧化-生物接触氧化工艺处理甲醛和乌洛托品废水   总被引:5,自引:3,他引:5  
采用Fenton氧化一生物接触氧化工艺处理含甲醛和乌洛托品的模拟废水(简称废水),在H2O2(体积分数30%)加入量2.5g/L、H2O2与Fe^2+质量浓度比3.75、反应时间3h、不调节废水初始pH的Fenton氧化预处理最佳操作条件下,废水COD从1000mg/L左右降至300mg/L,COD去除率达72%。原废水完全无法直接进行生化处理,经Fenton氧化预处理后其BOD,/COD约为0.5,易于生化处理。Fenton氧化一生物接触氧化工艺处理废水,生物接触氧化停留时间为12h时,废水COD去除率高达94%,处理后出水COD小于70mg/L,处理效果很好。  相似文献   

15.
日光辐照H_2O_2-草酸铁氧化法处理棉浆粕废水   总被引:1,自引:0,他引:1  
采用日光辐照H_2O_2-草酸铁氧化法处理棉浆粕废水.最佳工艺条件为:正午日光辐照10 min,废水pH5.00,废水体积150 mL,H_2O_2加入量2.0 mL,Fe_SO_4·7H_2O加入量0.600 0 g,K_2C_2O_4·H_2O加入量0.290 9 g.在此条件下COD由初始时的3 200 mg/L降至608 mg/L,COD去除率可达81.0%.采用气相色谱-质谱联用仪对处理前后的废水进行分析,实验结果表明该法可有效去除废水中大部分有机污染物.  相似文献   

16.
铁碳微电解法处理高盐度有机废水   总被引:3,自引:0,他引:3  
黄瑾  胡翔  李毅  魏杰 《化工环保》2007,27(3):250-252
用铁碳微电解法处理高盐度有机废水,考察了反应初始pH、铁碳质量比、反应时间、曝气及过氧化氢加入量等对该废水处理效果的影响。实验结果表明:在反应初始pH为4.0、铁碳质量比为1、反应时间为60m in、过氧化氢加入量为0.10%(体积分数)、曝气条件下,COD去除率为57.6%,盐去除率为47.0%;处理后废水的可生化性有明显的改善,BOD5/COD可达0.65;对COD的去除基本符合一级动力学规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号