首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The flow pathways of water in the soils of the Gnangara Mound are highly irregular and depend upon the moisture content, the repellency and preferential wettability potential of the soils. The occurrence of preferential flow is more evident in dry soils. As the soil wets during the rainy season, the water repellence and differential wettability decreases, the fingering and the preferential flow paths disappear. Most of the agricultural sites in the Spearwood Sands which showed more irregular flow than the Bassendean Sands are under continuous irrigation during cultivation season. As the repellency problems are chemically treated, it is therefore expected that the flow will be more uniform all the year round. Landuse is mainly responsible for variation in recharge rates; however, the hydraulic properties control aquifer response and water level pattern to a greater degree. Water levels in the mid 1970s were in a semi steady state. Since that time, a combination of increasing water use by pine plantations, heavy pumping from private boreholes in market gardens and private homes and intensive pumping from the Gnangara Mound for the metropolitan water supply have caused water levels to continually decline in the Superficial aquifer. Nitrate and phosphate concentrations in the regional Superficial aquifer are generally very low. None of the tested pesticides (atrazine, diazinon, dimethoate, endosulfan, fenamiphos, iprodione, malathion and chlorpyrifos) were detected in the groundwater samples collected from the monitoring bores.  相似文献   

2.
In a large area around the former open-pit lignite mines near Bitterfeld, Germany, groundwater taken from wells was analyzed for the major cations, anions, and trace elements. Quaternary and Tertiary sediments were collected from aquifers exposed on the sides of the pits and from boreholes outside the mines and analyzed for major and trace elements, as well as for carbonate, pyritic sulfur and total organic carbon. The pH and electrical conductivity of the sediments in suspension were measured. Significant differences were determined between the Tertiary sediments of the aquifers that were exposed to atmospheric oxygen during the lowering of the groundwater table and those outside the cone of depression. The greatest differences were found in the pyrite content, the pH values, and the electrical conductivity. In order to map the degree to which the mining of the lignite has affected the quality of the groundwater in the study area, the water samples were divided into six classes on the basis of their sulfate content. The neutralization potential was calculated to estimate the potential for acidification. Prediction of future groundwater quality is based on both (i) the present composition of the groundwater, surface water, and Quaternary and Tertiary aquifer sediments and (ii) the present and future groundwater flow directions. These studies have shown which parameters are important for future groundwater monitoring.  相似文献   

3.
The health of near shore marine ecosystems has long been a concern because of its importance to coastal areas. Jiaozhou Bay (JZB) is one such marine ecosystem experiencing rapid water quality degradation in the last several decades. From the area surrounding the bay, the nutrients discharged into the bay through surface water and groundwater has been greatly changed. The thickness of the aquifers and the permeability is relatively high, the concentrations of nutrients in the groundwater are generally high, and so the groundwater discharged into JZB is very significant. However, no attempt has ever been made to evaluate the amount of nutrients discharged into the bay area via groundwater. In this study, the cross-section method and water balance method were used to estimate the amount of groundwater and nutrients discharged into JZB via the subsurface. Groundwater was monitored and sampled at aquifers surrounding the bay area, and some previously available data was also analyzed. The results indicated that groundwater from the Baisha Aquifer east of JZB now is the major source of nutrients (nitrate, dissolved SiO2) being discharged into the bay. The concentrations of nutrients in the groundwater have been increasing with intensive agricultural land use. However, Dagu Aquifer, the largest aquifer north of JZB, only provides limited nutrients to the bay area because of the construction of a low permeability subsurface dam. Historically, during the 1970s to the 1990s, the Baisha Aquifer experienced seawater intrusion due to excessive groundwater withdrawal. The same was true for the Dagu Aquifer from the 1980s to the 1990s. Because of this, no significant nutrients were discharged into the bay.  相似文献   

4.
The Rattaphum Catchment comprises four major hydrogeomorphic units: mountains, footslopes, plains and inland swamps around a lake system. The area accommodates three main agro-ecosystems: vegetable, rubber and fruits. During the high-rainfall period, groundwater levels rise near to the soil surface in all agro-ecosystems. The high water levels remain for 3–4 months in the coastal plain, while in other areas the groundwater level fluctuates according to the intensity of rainfall events during the 2–3 months of the rainy season. Groundwater salinity is higher near Songkhla Lake and decreases rapidly inland. It is generally lower near streams. Salinity is also lower during periods of higher recharge, increasing slightly during the dry season due to leaching of chemicals from the agricultural areas. In the saturated sandy soils with high hydraulic conductivity and in the vegetable agro-ecosystem areas with high water levels, the NO3 level in groundwater always exceeds the WHO standard. Variations in NO3 levels are closely related to patterns of landuse, with higher nitrate levels commonly found in vegetable areas and lower levels associated with fruit and rubber tree plantations. Nearly all groundwater and surface water is contaminated by coliform bacteria, with the level of contamination controlled by groundwater levels, the amount of rainfall and farm activities. Vegetable agro-ecosystems, which have the most intensive cropping system, were found to be the most polluted. In all of the agro-ecosystems, the most polluted period coincided with the first series of rainfall events.  相似文献   

5.
Numerical models were used to simulate alternative funnel‐and‐gate groundwater remediation structures near property corners in hypothetical homogeneous and heterogeneous unconfined aquifers. Each structure comprised a highly permeable central gate (hydraulic conductivity = 25 m/d) and soil‐bentonite slurry walls (hydraulic conductivity = 0.00009 m/d). Gates were perpendicular to regional groundwater flow and approximately 5 m from a contaminant plume's leading tip. Funnel segments collinear to the central gate reached property boundaries; additional funnel segments followed property boundaries in the most hydraulically upgradient direction. Structures were 1 m thick and anchored into the base of the aquifer. Two structures were simulated for each aquifer: one with a 3.0‐m‐long central gate and funnels on either side; and a second with a 1.5‐m‐long central gate, funnels on either side, and 0.75‐m‐long end gates. Funnels were lengthened in successive simulations, until a structure contained a contaminant plume. Results suggest that, for the same total gate length, one‐gate structures may facilitate more rapid remediation, up to 44 percent less time in trials conducted in this study, than multiple‐gate structures constructed near property corners. However, in order to effectively contain a plume, one‐gate structures were up to 46 percent larger than multiple‐gate structures. © 2011 Wiley Periodicals, Inc.  相似文献   

6.
This study aims to investigate the impact of MSW landfill on the contamination of phthalate esters (PAEs) in nearby environment. Landfill leachate, surface water, groundwater and soil profile samples were collected from a MSW landfill area in Wuhan, China. Contents of 16 PAEs were detected for each sample using gas chromatography method. Results showed that landfill had an obvious effect on the contamination of PAEs in groundwater, whereas showed no tremendous effect on the PAEs contamination in surface water and topsoil. Seven possible transportation processes of PAEs in landfill area were put forward. However, the especially important processes are the invasion of PAEs into aquifer through weathered crevice, horizontal transportation in aquifer and upward infiltration with groundwater. It is suggested that the whole landfill area should be engineered with seepage-proof membrane and clay so as to prevent landfill leachate from flowing out of the filling area. On the other hand, no weathering crevice is permitted in the landfill area as it will affect groundwater seriously.  相似文献   

7.
Sustainability is an important consideration when designing a remedy given the value that can be demonstrated to all stakeholders. A case study is presented that illustrates an example where sustainability was emphasized during the selection and implementation of a groundwater remedy. An extensive free and/or residual product investigation was completed to demonstrate that hydraulic control is a suitable remedy and active direct treatment was not required pursuant to the state regulations. A pump and treat system for onsite hydraulic containment was installed to control plume migration. The system allows for 100 percent reuse of treated groundwater in the manufacturing process. Both the groundwater reuse and investigation conclusions have resulted in significant cost savings and sustainability benefits, including the reduction in the annual load on the drinking water aquifer by up to 138 million gallons per year.  相似文献   

8.
Old and unlined landfill sites pose a risk to groundwater and surface water resources. While landfill leachate plumes in sandy aquifers have been studied, landfills in clay till settings and their impact on receiving water bodies are not well understood. In addition, methods for quantitatively linking soil and groundwater contamination to surface water pollution are required. This paper presents a method which provides an estimate of the contaminant mass discharge, using a combination of a historical investigation and contaminant mass balance approach. The method works at the screening level and could be part of a risk assessment. The study site was Risby Landfill, an old unlined landfill located in a clay till setting on central Zealand, Denmark. The contaminant mass discharge was determined for three common leachate indicators: chloride, dissolved organic carbon and ammonium. For instance, the mass discharge of chloride from the landfill was 9.4 ton/year and the mass discharge of chloride to the deep limestone aquifer was 1.4 ton/year. This resulted in elevated concentrations of leachate indicators (chloride, dissolved organic carbon and ammonium) in the groundwater. The mass discharge of chloride to the small Risby Stream down gradient of the landfill was approximately 31 kg/year. The contaminant mass balance method worked well for chloride and dissolved organic carbon, but the uncertainties were elevated for ammonium due to substantial spatial variability in the source composition and attenuation processes in the underlying clay till.  相似文献   

9.
The treatment of per- and polyfluoroalkyl substances (PFAS) within groundwater is an emerging topic, with various technologies being researched and tested. Currently, PFAS-impacted groundwater is typically treated ex situ using sorptive media such as activated carbon and ion exchange resin. Proven in situ remedial approaches for groundwater have been limited to colloidal activated carbon (CAC) injected into aquifers downgradient of the source zones. However, treatment of groundwater within the source zones has not been shown to be feasible to date. This study evaluated the use of CAC to treat dissolved PFAS at the air–water interface within the PFAS source zone. Studies have shown that PFAS tends to preferentially accumulate at the air–water interface due to the chemical properties of the various PFAS. This accumulation can act as a long-term source for PFAS, thus making downgradient treatment of groundwater a long-term requirement. A solution of CAC was injected at the air–water interface within the source zone at a site with PFAS contamination using direct push technology. A dense injection grid that targeted the interface between the air and groundwater was used to deliver the CAC. Concentrations of PFAS within the porewater and groundwater were collected using a series of nine lysimeters installed within the vadose and saturated water columns. A total of six PFAS were detected in the porewater and groundwater including perfluorobutanoic acid (PFBA), perfluoropentanoic acid (PFPeA), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA), and perfluorononanoic acid (PFNA). Detectable concentrations of PFAS within the pore and groundwater before treatment ranged from values greater than 300 µg/L for PFPeA to less than 3 µg/L for PFNA. Following the injection of the CAC, monitoring of the porewater and groundwater for PFAS was conducted approximately 3, 6, 9, 12, and 18 months postinjection. The results indicated that the PFAS within the porewater and groundwater at and near the air–water interface was effectively attenuated over the 1.5-year monitoring program, with PFAS concentrations being below the method detection limits of approximately 10 ng/L, with the exception of PFPeA, which was detected within the porewater during the 18-month sampling event at concentrations of up to 55 ng/L. PFPeA is a five carbon-chained PFAS that has been shown to have a lower affinity for sorption onto activated carbon compared to the longer carbon-chained PFAS such as PFOA. Examination of aquifer cores in the zone of injection indicated that the total organic carbon concentration of the aquifer increased by five orders of magnitude postinjection, with 97% of the samples collected within the target injection area containing activated carbon, indicating that the CAC was successfully delivered into the source zone.  相似文献   

10.
11.
Experience with groundwater remediation over several decades has demonstrated that successful outcomes depend on quantitative conceptual site models (CSMs). Over the last 30 years, we have progressed from groundwater pump‐and‐treat remedies, which were largely designed based on a water supply perspective, to in situ and combined remedy strategies, which are only beginning to benefit from understanding the aquifer architecture and distribution of contaminant mass to assess plume maturity, mass flux, and more reliable means of fate and transport assessment. The U.S. Air Force funded the development of the Stratigraphic Flux approach to provide a framework for understanding contaminant transport pathways at its complex sites and enable more reliable and cost‐effective remediation. Stratigraphic Flux enables the development of quantitative, flux‐based CSMs that are founded in sequence stratigraphy, and high‐resolution hydraulic conductivity and contaminant distribution measurements. The result is a three‐dimensional graphical mapping of relative contaminant flux and classification of transport potential that is easy for all stakeholders to understand. The Stratigraphic Flux graphical model is based on a hydrofacies classification system that describes transport potential in three segments of the aquifer: transport zones—where the majority of groundwater flow occurs and transport rates are measured in feet per day; slow advection zones—where transport rates are measured in feet per year; and storage zones—where typically less than 1% of flow occurs, and diffusion dominates contaminant transport. The hydrofacies architectures are based on stratigraphy and transport potential is defined by grouping facies by orders of magnitude classes in hydraulic conductivity. By combining the hydrofacies architecture with contaminant concentration distributions, one can map relative contaminant flux to define and target the complex pathways that control contaminant transport and cleanup behavior. In this article, we describe the Stratigraphic Flux framework, focusing on the key information needed and the methods of analysis. We illustrate the results of its application to evaluate migration pathways for trichlorethylene and chromium at a former chrome pit at Air Force Plant 4 in Fort Worth, Texas. A comprehensive guidance document that describes the approach with a broad spectrum of tools and several site examples can be requested from the authors.  相似文献   

12.
A new method was developed to assess the effect of matrix diffusion on contaminant transport and remediation of groundwater in fractured rock. This method utilizes monitoring wells constructed of open boreholes in the fractured rock to conduct backward diffusion experiments on chlorinated volatile organic compounds (CVOCs) in groundwater. The experiments are performed on relatively unfractured zones (called test zones) of the open boreholes over short intervals (approximately 1 meter) by physical isolation using straddle packers. The test zones were identified with a combination of borehole geophysical logging and chemical profiling of CVOCs with passive samplers in the open boreholes. To confirm the test zones are within inactive flow zones, they are subjected to a series of hydraulic tests. Afterward, the test zones are air sparged with argon to volatilize the CVOCs from aqueous to air phase. Backward diffusion is then measured by periodic passive‐sampling of water in the test zone to identify rebound. The passive (nonhydraulically stressed) sampling negates the need to extract water and potentially dewater the test zone. The authors also monitor active flowing zones of the borehole to assess trends in concentrations in other parts of the fractured rock by purge and passive sampling methods. The testing was performed at the former Pease Air Force Base (PAFB) in Portsmouth, New Hampshire. Bedrock at the former PAFB consists of fractured metasedimentary rocks where the authors investigated back diffusion of cis‐1,2‐dichloroethylene (cis‐1,2‐DCE), a CVOC. Postsparging concentrations of cis‐1,2‐DCE showed initial rebounding followed by declines, excluding an episodic spike in concentrations from a groundwater recharge event. The authors theorize that there are three processes that controlled concentration responses in the test zones postsparging. First, the limited back diffusion of CVOCs from a halo or thin zone of rock around the borehole contributes to the initial rebounding. Second, aerobic degradation of cis‐1,2‐DCE occurred causing declines in concentrations in the test zone. Third, microflow from microfractures contributed to the episodic spike in concentrations following the groundwater recharge event. In active flow zones, the latter two processes are not measurable due to equilibration from groundwater transport between the borehole and active flowing fractures.  相似文献   

13.
The soil and two aquifers under an active lumber mill in Libby, Montana, had been contaminated from 1946 to 1969 by uncontrolled releases of creosote and pentachlorophenol (PCP). In 1983, because the contaminated surface soil and the shallower aquifer posed immediate risks to human health and the natural environment, the U.S. Environmental Protection Agency placed the site on its National Priorities List. Feasibility studies in 1987 and 1988 determined that in situ bioremediation would help clean up this aquifer and that biological treatment would help clean up the contaminated soils. This article outlines the studies that led to a 1988 EPA record of decision and details the EPA-approved remedial plan implemented starting in 1989; EPA estimates a total cost of about $15 million (in 1988 dollars). The plan involves extensive excavation and biological treatment of shallow contaminated soils in two lined and bermed land treatment units, extraction of heavily contaminated groundwater, an aboveground bioreactor treatment system, and injection of oxygenated water to the contaminant source area, as well as to other on-site areas affected by the shallower aquifer's contaminant plume.  相似文献   

14.
This study evaluated the effect of heterogeneity in hydraulic conductivity on the tendency for contaminant plumes to attenuate via dilution, hydrodynamic dispersion, and molecular diffusion in simulated aquifers. Simulations included one homogeneous and four increasingly heterogeneous hydraulic conductivity fields. A numerical mass transport model generated an initial contaminant plume for each case; all initial plumes had the same mass. Next, the model simulated plume migrations through the simulated aquifers. Results suggest that highly heterogeneous settings are potentially effective at plume attenuation. Low‐velocity zones in heterogeneous settings delay plume travel, enabling more time for natural processes to lower contaminant concentrations in groundwater. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
Dense nonaqueous phase liquids (DNAPLs), in particular chlorinated solvents such as trichloroethene, pose groundwater contamination problems at hazardous waste sites across North America. The mobility of DNAPLs in the subsurface, their low aqueous solubility, and the heterogeneity of typical aquifer systems combine to create conditions that inhibit the rapid remediation of DNAPL sites by traditional pump-and-treat methods. Surfactant-enhanced methods for DNAPL-site remediation accelerate the pace of remediation in granular aquifer systems, e.g., alluvium and outwash. The importance of adequate hydraulic conductivity and aquitard conditions is stressed in the application of surfactant-enhanced aquifer remediation (SEAR).  相似文献   

16.
Groundwater treatment biowalls may be located close to a surface water body to prevent contaminant discharge from a groundwater plume into the surface water. Groundwater contaminants passing through the biowall are treated within the biowall or immediately downgradient of the biowall. Biowalls designed and constructed for the treatment of chlorinated solvents typically contain either a solid and/or liquid source of organic carbon to promote contaminant degradation by enhanced anaerobic reductive dechlorination. Common solid organic materials in biowalls include wood mulch or similar waste plant material, and common liquid organic materials are vegetable oil (possibly emulsified) or other long‐chain fatty acids. Such biowalls then develop anaerobic conditions in the constructed biowall volume, and potentially downgradient, as dissolved oxygen originally present in the aquifer is consumed. This groundwater condition can lead to the appearance of sulfide if groundwater influent to the biowall contains moderate to high sulfate concentrations. Other researchers have presented evidence for groundwater conditions downgradient of a biowall or a permeable reactive barrier (PRB) that are altered in relation to groundwater quality, besides the desired effect of contaminant degradation or removal by precipitation. The objective of this work was to investigate with modeling the changes in downgradient groundwater species chemistry as a result of a constructed biowall. This was accomplished with a chemical species model to predict levels of sulfate and sulfide present in groundwater in close downgradient proximity to the biowall. The results indicate that downgradient chemical changes could impact a surface water body to which groundwater discharges. The model described could be enhanced by incorporating additional design variables that should be considered in biowall feasibility assessments.  相似文献   

17.
Residual tetrachloroethene (PCE) contamination at the former Springvilla Dry Cleaners site in Springfield, Oregon, posed a potential risk through the vapor intrusion, direct contact, and off‐site beneficial groundwater uses. The Oregon Department of Environmental Quality utilized the State Dry Cleaner Program funds to help mitigate the risks posed by residual contamination. After delineation activities were complete, the source‐area soils were excavated and treated on‐site with ex situ vapor extraction to reduce disposal costs. Residual source‐area contamination was then chemically oxidized using sodium permanganate. Dissolved‐phase contamination was subsequently addressed with in situ enhanced reductive dechlorination (ERD). ERD achieved treatment goals across more than 4 million gallons of aquifer impacted with PCE concentrations up to 7,800 micrograms per liter prior to remedial activities. The ERD remedy introduced electron donors and nutrient amendments through groundwater recirculation and slug injection across two aquifers over the course of 24 months. Adaptive and mass‐targeted strategies reduced total remedy costs to approximately $18 per ton within the treatment areas. © 2010 Wiley Periodicals, Inc.  相似文献   

18.
Pesticides can have a number of adverse impacts on crops, soil and water. In this paper, we focus on the physical and hydraulic properties of soils controlling the leaching of pesticides into the shallow groundwater of the Rattaphum Catchment in Thailand. Results from an analysis of soil physical properties, hydraulic conductivity, dye tracer and bromide tests show that the top 10–30 cm of soils in the three agro-ecosystems (vegetables, fruits and rubber) have a high clay and organic carbon content and are relatively impermeable with very low hydraulic conductivity (15–40 cm/day). Most of the dye and bromide were retained in the top clayey layer; the bromide forming a miniature bulge below 30 cm in two profiles which dissipated after 30 days, while the pesticides were mainly confined to the top 10 cm.  相似文献   

19.
Rates of trichloroethene (TCE) mass transformed by naturally occurring biodegradation processes in a fractured rock aquifer underlying a former Naval Air Warfare Center (NAWC) site in West Trenton, New Jersey, were estimated. The methodology included (1) dividing the site into eight elements of equal size and vertically integrating observed concentrations of two daughter products of TCE biodegradation—cis‐dichloroethene (cis‐DCE) and chloride—using water chemistry data from a network of 88 observation wells; (2) summing the molar mass of cis‐DCE, the first biodegradation product of TCE, to provide a probable underestimate of reductive biodegradation of TCE, (3) summing the molar mass of chloride, the final product of chlorinated ethene degradation, to provide a probable overestimate of overall biodegradation. Finally, lower and higher estimates of aquifer porosities and groundwater residence times were used to estimate a range of overall transformation rates. The highest TCE transformation rates estimated using this procedure for the combined overburden and bedrock aquifers was 945 kg/yr, and the lowest was 37 kg/yr. However, hydrologic considerations suggest that approximately 100 to 500 kg/yr is the probable range for overall TCE transformation rates in this system. Estimated rates of TCE transformation were much higher in shallow overburden sediments (approximately 100 to 500 kg/yr) than in the deeper bedrock aquifer (approximately 20 to 0.15 kg/yr), which reflects the higher porosity and higher contaminant mass present in the overburden. By way of comparison, pump‐and‐treat operations at the NAWC site are estimated to have removed between 1,073 and 1,565 kg/yr of TCE between 1996 and 2009. © 2012 Wiley Periodicals, Inc.*  相似文献   

20.
Explosives-contaminated groundwater percolating from storage ponds at the Milan Army Ammunition Plant (MAAP) in Milan, Tennessee, into the Claiborne aquifer threatens to contaminate more groundwater—and possibly surface water—in the area. The research described in this article sought to determine whether granular-activated carbon (GAC) could help remove the explosives from the water and to identify which carbons can adsorb the most TNT, RDX, HMX, Tetryl, and others. Two carbons—Atochem, Inc. GAC 830 and Calgon Filtrasorb 300—were found to be promising candidates. As for what to do with the explosives that would be adsorbed, as well as the contaminated carbon, stay tuned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号