首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 775 毫秒
1.
Assessing the market opportunities of landfill mining   总被引:4,自引:0,他引:4  
Long-term estimates make clear that the amount of solid waste to be processed at landfills in the Netherlands will sharply decline in coming years. Major reasons can be found in the availability of improved technologies for waste recycling and government regulations aiming at waste reduction. Consequently, market size for companies operating landfills shrinks. Among the companies facing the problem is the Dutch company Essent. Given the expected market conditions, it looks for alternative business opportunities. Landfill mining, i.e., the recycling of existing landfills, is considered one of them. Proceeds of landfill mining are related to, for example, recycled materials available for re-use, regained land, and possibilities for a more efficient operation of a landfill. The market for landfill mining is of a considerable size--there are about 3800 landfills located in the Netherlands. Given market size the company faces the dilemma of how to explore this market, i.e., select the most profitable landfills in a fast and efficient way. No existing methods or tools could be found to do so. Therefore, to answer to the problem posed, we propose a step-wise research method for market exploration. The basic idea behind the method is to provide an adequate, cost-saving and timely answer by relying on a series of quick scans. Relevant aspects of a mining project concern the proceeds of regained land and recyclables, the costs of the mining operation and the associated business and environmental risks. The method has been tested for its practical use in a pilot study. The pilot study addressed 147 landfills located in the Dutch Province of Noord-Brabant. The study made clear how method application resulted in the selection of a limited number of high potential landfills in a few weeks, involving minimal research costs.  相似文献   

2.
Generally speaking, landfilling is one of the prominent methods of waste disposal around the globe, but some under-developed and developing countries still continue to practice uncontrolled open dumping of waste. These uncontrolled landfills pose a relatively high threat to the various elements of the environment in comparison with the conventional engineered landfills that are used in many developed countries. However, some closed, un-engineered landfills do exist in developing countries. This paper presents a novel approach to compare the pollution potential of uncontrolled landfills using an index. The landfill pollution potential index (LPPI) has been developed using the Delphi technique and is an aggregation of six pollution indices that have already been developed for the quantification of different environmental elements. The LPPI is an increasing scale index, in which a higher index value indicates a higher pollution threat. The LPPI of a landfill in Delhi was calculated and the high LPPI value indicates that the respective landfill poses a significant threat to the environment. The LPPI can be used as an aid to diagnose a landfill's pollution potential relative to other landfills and therefore also to rank remediation investments.  相似文献   

3.
A methodology for estimating the methane emissions from waste landfills in Hanoi, Vietnam, as part of a case study on Asian cities, was derived based on a survey of documents and statistics related to waste management, interviews with persons in charge, and field investigations at landfill sites. The waste management system in Hanoi was analyzed to evaluate the methane emissions from waste landfill sites. The quantity of waste deposited into the landfill was evaluated from an investigation of the waste stream. The composition of municipal waste was surveyed in several districts in the Hanoi city area, and the quantities of degradable organic waste that had been deposited into landfill for the past 15 years were estimated. Field surveys on methane emissions from landfills of different ages (0.5, 2, and 8 years) were conducted and their methane emissions were estimated to be 120, 22.5, and 4.38 ml/min/m2, respectively. The first-order reaction rate of methane generation was obtained as 0.51/year. Methane emissions from waste landfills were calculated by a first-order decay model using this emission factor and the amount of landfilled degradable waste. The estimates of methane emissions using the model accorded well with the estimates of the field survey. These results revealed that methane emissions from waste landfills estimated by regional-specific and precise information on the waste stream are essential for accurately determining the behavior of methane emissions from waste landfills in the past, present, and future.  相似文献   

4.
In today’s context of waste management, landfilling of Municipal Solid Waste (MSW) is considered to be one of the standard practices worldwide. Leachate generated from municipal landfills has become a great threat to the surroundings as it contains high concentration of organics, ammonia and other toxic pollutants. Emphasis has to be placed on the removal of ammonia nitrogen in particular, derived from the nitrogen content of the MSW and it is a long term pollution problem in landfills which determines when the landfill can be considered stable. Several biological processes are available for the removal of ammonia but novel processes such as the Single Reactor System for High Activity Ammonia Removal over Nitrite (SHARON) and Anaerobic Ammonium Oxidation (ANAMMOX) process have great potential and several advantages over conventional processes. The combined SHARON–ANAMMOX process for municipal landfill leachate treatment is a new, innovative and significant approach that requires more research to identify and solve critical issues. This review addresses the operational parameters, microbiology, biochemistry and application of both the processes to remove ammonia from leachate.  相似文献   

5.
Large amounts of solid waste are disposed in landfills and the potential of particulate matter (PM) emissions into the atmosphere is significant. Particulate matter emissions in landfills are the result of resuspension from the disposed waste and other activities such as mechanical recycling and composting, waste unloading and sorting, the process of coating residues and waste transport by trucks. Measurements of ambient levels of inhalable particulate matter (PM10) were performed in a landfill site located at Chania (Crete, Greece). Elevated PM10 concentrations were measured in the landfill site during several landfill operations. It was observed that the meteorological conditions (mainly wind velocity and temperature) influence considerably the PM10 concentrations. Comparison between the PM10 concentrations at the landfill and at a PM10 background site indicates the influence of the landfill activities on local concentrations at the landfill. No correlation was observed between the measurements at the landfill and the background sites. Finally, specific preventing measures are proposed to control the PM concentrations in landfills.  相似文献   

6.
Recently, roofed landfills have been gaining popularity in Japan. Roofed landfills have several advantages over non-roofed landfills such as eliminating the visibility of waste and reducing the spread of offensive odours. This study examined the moisture balance and aeration conditions, which promote waste stabilisation, in a roofed landfill that included organic waste such as food waste. Moisture balance was estimated using waste characterization and the total amount of landfilled waste. Internal conditions were estimated based on the composition, flux, and temperature of the landfill gas. Finally, in situ aeration was performed to determine the integrity of the semi-aerobic structure of the landfill.With the effects of rainfall excluded, only 15% of the moisture held by the waste was discharged as leachate. The majority of the moisture remained in the waste layer, but was less than the optimal moisture level for biodegradation, indicating that an appropriate water spray should be administered. To assess waste degradation in this semi-aerobic landfill, the concentration and flow rate of landfill gas were measured and an in situ aeration test was performed. The results revealed that aerobic biodegradation had not occurred because of the unsatisfactory design and operation of the landfill.  相似文献   

7.
The practice of operating municipal solid waste landfills as bioreactor landfills has become more common over the past decade. Because simulating moisture balance and flow is more critical in such landfills than in dry landfills, researchers have developed methods to address this problem using the hydrologic evaluation of landfill performance (HELP) model. This paper discusses three methods of applying the HELP model to simulate the percolation of liquids added to landfill waste: the leachate recirculation feature (LRF), the subsurface inflow (SSI) feature, and additional rainfall to mimic liquids addition. The LRF is simple to use but may not be able to bring the landfill to bioreactor conditions. The SSI feature provides a convenient user interface for modeling liquids addition to each layer. The additional rainfall feature provides flexibility to the model, allowing users to estimate the leachate generation rate and the leachate head on bottom liner associated with daily variation in the liquids addition rate. Additionally, this paper discusses several issues that may affect the HELP model, such as the time of model simulation, layers of liquids addition, and the limitations of the HELP model itself. Based on the simulation results, it is suggested that the HELP model should be run over an extended period of time after the cessation of liquids addition in order to capture the peak leachate generation rate and the head on the liner (HOL). From the perspectives of leachate generation and the HOL, there are few differences between single-layer injection and multiple-layer injection. This paper also discusses the limitations of using the HELP model for designing and permitting bioreactor landfills.  相似文献   

8.
The characteristics of municipal solid waste (MSW) play a key role in many aspects of waste disposal facilities and landfills. Because most of a landfill is made up of MSW, the overall stability of the landfill slopes are governed by the strength parameters and physical properties of the MSW. These parameters are also important in interactions involving the waste body and the landfill structures: cover liner, leachate and gas collection systems. On the other hand, the composition of the waste, which affects the geotechnical behavior of the MSW, is dependent on a variety of factors such as climate, disposal technology, the culture and habits of the local community. It is therefore essential that the design and stability evaluations of landfills in each region be performed based on the local conditions and the geotechnical characteristic of the MSW. The Bandeirantes Landfill, BL, in São Paulo and the Metropolitan Center Landfill, MCL, in Salvador, are among the biggest landfills in Brazil. These two disposal facilities have been used for the development of research involving waste mechanics in recent years. Considerable work has been made in the laboratory and in the field to evaluate parameters such as water and organic contents, composition, permeability, and shear strength. This paper shows and analyzes the results of tests performed on these two landfills. The authors believe that these results could be a good reference for certain aspects and geotechnical properties of MSW materials in countries with similar conditions.  相似文献   

9.
Environmental management by the learning curve   总被引:1,自引:0,他引:1  
This is a futuristic appreciation of waste management challenges and their solution by means of good management models. A literature review, administrative initiatives, research results, and experiences from practice are combined in this study to render an evolutionary picture of the change in paradigm relative to municipal solid waste possible to occur between 2000 and 2025. The principal stages of progress in the 25 years studied were: the correct characterization of municipal solid waste as a function of geographical location and recycling potential, the divided collection model and its corresponding learning curve, correct opportunity cost accounting tools, and the generally admitted and accepted changeover of municipal solid waste treatment from a technical to a management problem. It is reported that as a result of this progress, the municipal landfill is a species in extinction. Regional landfills with long life spans are the rule in 2025.  相似文献   

10.
In China, controlling environmental pollution resulting from solid waste (SW) and hazardous waste (HW) has become one of the most pressing tasks in the field of environmental engineering. It is reported that the annual generation of industrial solid waste (ISW) in China exceeded 0.6 billion tons in the 1990s, and is increasing every year. Although ISW management has been strengthened in recent years, about 40% of SW is put in uncontrolled landfill without appropriate treatment. According to statistics from the national Environmental Protection Agency, the cumulative ISW uncontrolled landfill in China had reached 6.6 billion tons by the end of 1995, occupying around 55 000 hectares of land. Although some major uncontrolled landfills were constructed, nonetheless groundwater contamination resulted from the use of low-standard liners and poor management. Furthermore, about 20 million tons of ISW was discharged into the environment illegally, and a third of this waste was discharged directly into water bodies, making ISW one of the greatest pollution sources for surface water and ground water. Environmental pollution accidents resulting from SW occur about 100 times a year in China, and environmental issues frequently arise because of ISW pollution. The practices of SW management, treatment, and disposal started relatively late in China, and for a long time the management of SW pollution has received little attention compared with water and air pollution management. China faces problems such as the insufficiency of management laws and regulations, insufficient investment, inadequate treatment and disposal technology, and a lack of qualified technicians. At present, most treatment and disposal technology cannot meet the requests for solid waste pollution control. In order to protect, restore, and improve environmental quality in China and to realize sustainable development, the safe management and disposal of solid and hazardous wastes is a pressing challenge. In recent years, much attention has been paid to SW management in China, and investment to develop management and treatment technologies has increased. In 1995, the Law for Solid Waste Pollution Protection was issued, and work on solid waste treatment and disposal began to be legally managed. SW treatment and disposal facilities have been constructed, and now operate in some large and medium-sized cities. In particular, rapid improvements have been seen in ISW recycling, collection, and disposal of municipal solid waste and regional HW management. All the figures in this paper are from 1995, and represent the situation in China in that year. Received: April 18, 2000 / Accepted: May 15, 2000  相似文献   

11.
This article discusses the appropriateness of using landfills as part of remediating hazardous chemical and Superfund sites, with particular emphasis on providing for true long‐term public health and environmental protection from the wastes and contaminated soils that are placed in the landfills. On‐site landfilling or capping of existing wastes is typically the least expensive approach for gaining some remediation of existing hazardous chemical/Superfund sites. The issues of the deficiencies in US EPA and state landfilling approaches discussed herein are also applicable to the landfilling of municipal and industrial solid “nonhazardous” wastes. These deficiencies were presented in part as “Problems with Landfills for Superfund Site Remediation” at the US EPA National Superfund Technical Assistance Grant Workshop held in Albuquerque, New Mexico, in February 2003. They are based on the author's experience in investigating the properties of landfill liners and the characteristics of today's landfills, relative to their ability to prevent groundwater pollution and to cause other environmental impacts. Discussed are issues related to both solid and hazardous waste landfills and approaches for improving the ability of landfills to contain wastes and monitor for leachate escape from the landfill for as long as the wastes in the landfill will be a threat. © 2004 Wiley Periodicals, Inc.  相似文献   

12.
The magnitude of annual global emissions of methane from municipal solid waste landfills without landfill gas control systems implies that these landfills are significant contributors to the atmospheric load of greenhouse gases. There have been a number of field studies undertaken internationally to measure actual fluxes of methane and carbon dioxide from landfills, with a view to corroborating modelled predictions of the contribution of landfills to the global greenhouse gas budget. The vast majority of these studies have been undertaken in more temperate climates and in developed countries. This paper reports a study of landfill gas emissions from four large landfills located in the semi-arid interior of South Africa. A static accumulation chamber was used and measurements were made at each site over a period of two to three days. The results were analysed by three different methods, all of them leading to the same general conclusion that landfill gas emission rates were lower than expected. A common conclusion based on results from all four sites was that capping of landfills in semi-arid climates with low permeability covers would probably significantly retard the already low rate of waste degradation and thus gas generation. While this may be regarded as advantageous in the short term, it cannot be relied upon in perpetuity as clayey landfill covers will inevitably desiccate and crack in a semiarid environment. In addition, reasonable after-care periods for such landfills are likely to extend well beyond the currently stipulated 30-year period, and efforts to encourage energy recovery from landfills may be hampered because gas generation rates decrease as the waste dries out under conditions of minimal recharge from precipitation. A landfill cover that allows small amounts of percolation of rainfall into the waste may therefore in fact be beneficial in semiarid climates, although care would need to be taken to carefully regulate this infiltration.  相似文献   

13.
The biological conversion of sulfate from disposed gypsum drywall to hydrogen sulfide (H(2)S) in the anaerobic environment of a landfill results in odor problems and possible health concerns at many disposal facilities. To examine the extent and magnitude of such emissions, landfill gas samples from wells, soil vapor samples from the interface of the waste and cover soil, and ambient air samples, were collected from 10 construction and demolition (C&D) debris landfills in Florida and analyzed for H(2)S and other reduced sulfur compounds (RSC). H(2)S was detected in the well gas and soil vapor at all 10 sites. The concentrations in the ambient air above the surface of the landfill were much lower than those observed in the soil vapor, and no direct correlation was observed between the two sampling locations. Methyl mercaptan and carbonyl sulfide were the most frequently observed other RSC, though they occurred at smaller concentrations than H(2)S. This research confirmed the presence of H(2)S at C&D debris landfills. High concentrations of H(2)S may be a concern for employees working on the landfill site. These results indicate that workers should use proper personal protection at C&D debris landfills when involved in excavation, landfill gas collection, or confined spaces. The results indicate that H(2)S is sufficiently diluted in the atmosphere to not commonly pose acute health impacts for these landfill workers in normal working conditions. H(2)S concentrations were extremely variable with measurements occurring over a very large range (from less than 3 ppbv to 12,000 ppmv in the soil vapor and from less than 3 ppbv to 50 ppmv in ambient air). Possible reasons for the large intra- and inter-site variability observed include waste and soil heterogeneities, impact of weather conditions, and different site management practices.  相似文献   

14.
Forest products decomposition in municipal solid waste landfills   总被引:1,自引:0,他引:1  
Cellulose and hemicellulose are present in paper and wood products and are the dominant biodegradable polymers in municipal waste. While their conversion to methane in landfills is well documented, there is little information on the rate and extent of decomposition of individual waste components, particularly under field conditions. Such information is important for the landfill carbon balance as methane is a greenhouse gas that may be recovered and converted to a CO(2)-neutral source of energy, while non-degraded cellulose and hemicellulose are sequestered. This paper presents a critical review of research on the decomposition of cellulosic wastes in landfills and identifies additional work that is needed to quantify the ultimate extent of decomposition of individual waste components. Cellulose to lignin ratios as low as 0.01-0.02 have been measured for well decomposed refuse, with corresponding lignin concentrations of over 80% due to the depletion of cellulose and resulting enrichment of lignin. Only a few studies have even tried to address the decomposition of specific waste components at field-scale. Long-term controlled field experiments with supporting laboratory work will be required to measure the ultimate extent of decomposition of individual waste components.  相似文献   

15.
Landfilling in South Africa is controlled by a set of statutory Minimum Requirements, based on a landfill classification system. Landfills are classified according to the type of waste, the projected final size of the landfill and the climate. Climate is important as climatic conditions in South Africa vary from humid sub-tropical in the east, to semi-arid on the central plateau, to semi-desert in the west. Anti-pollution measures are closely related to climate and size, with the pollution potential of small, general (i.e. domestic) waste landfills in dry climates being regarded as negligible. At the other end of the scale, large landfills where hazardous wastes are disposed have a serious pollution potential and must be designed as containment systems. The paper describes the method currently in use for deciding on the climatic classification of a site, followed by the new method that will be adopted when the latest revision of the Minimum Requirements appears shortly.  相似文献   

16.
Practice review of five bioreactor/recirculation landfills   总被引:1,自引:0,他引:1  
Five landfills were analyzed to provide a perspective of current practice and technical issues that differentiate bioreactor and recirculation landfills in North America from conventional landfills. The bioreactor and recirculation landfills were found to function in much the same manner as conventional landfills, with designs similar to established standards for waste containment facilities. Leachate generation rates, leachate depths and temperatures, and liner temperatures were similar for landfills operated in a bioreactor/recirculation or conventional mode. Gas production data indicate accelerated waste decomposition from leachate recirculation at one landfill. Ambiguities in gas production data precluded a definitive conclusion that leachate recirculation accelerated waste decomposition at the four other landfills. Analysis of leachate quality data showed that bioreactor and recirculation landfills generally produce stronger leachate than conventional landfills during the first two to three years of recirculation. Thereafter, leachate from conventional and bioreactor landfills is similar, at least in terms of conventional indicator variables (BOD, COD, pH). While the BOD and COD decreased, the pH remained around neutral and ammonia concentrations remained elevated. Settlement data collected from two of the landfills indicate that settlements are larger and occur much faster in landfills operated as bioreactors or with leachate recirculation. The analysis also indicated that more detailed data collection over longer time periods is needed to draw definitive conclusions regarding the effects of bioreactor and recirculation operations. For each of the sites in this study, some of the analyses were limited by sparseness or ambiguity in the data sets.  相似文献   

17.
The long-term effectiveness of the geological barrier beneath municipal-waste landfills is a critical issue for soil and groundwater protection. This study examines natural clayey soils directly in contact with the waste deposited in three landfills over 12 years old in Spain. Several physicochemical and geological parameters were measured as a function of depth. Electrical conductivity (EC), water-soluble organic carbon (WSOC), Cl, NH4+, Na+ and exchangeable NH4+ and Na+ were used as parameters to measure the penetration of landfill leachate pollution. Mineralogy, specific surface area and cationic-exchange capacities were analyzed to characterize the materials under the landfills. A principal component analysis, combined with a Varimax rotation, was applied to the data to determine patterns of association between samples and variables not evident upon initial inspection. The main factors explaining the variation in the data are related to waste composition and local geology. Although leachates have been in contact with clays for long time periods (13-24 years), WSOC and EC fronts are attenuated at depths of 0.2-1.5 m within the clay layer. Taking into account this depth of the clayey materials, these natural substrata (>45% illite-smectite-type sheet silicates) are suitable for confining leachate pollution and for complying with European legislation. This paper outlines the relevant differences in the clayey materials of the three landfills in which a diffusive flux attenuation capacity (Ac) is defined as a function (1) of the rate of decrease of the parameters per meter of material, (2) of the age and area of the landfill and (3) of the quantity and quality of the wastes.  相似文献   

18.
包装垃圾是由废弃的包装物产生的固体垃圾,约占我国城市生活垃圾的1/3,虽然政府进行了必要回收,但仍有1/3以上的塑料、玻璃等包装物没能被有效回收利用,成了填埋场的主要填埋物,造成了环境污染和土地、石油等不可再生资源大量浪费。从回收利用和源头减量两方面提出包装垃圾的应对,一是对包装垃圾按来源、成分等进行详细分类,并建议回收处置方法;二是从制定行业政策方面来减少过度包装和扶持再生资源行业健康发展,有效处置包装垃圾等可再生资源。  相似文献   

19.
The influence of socioeconomic factors, such as population and rapid economic growth, and the change of consumption and living patterns make waste management in Singapore, a complex issue. Due to limited land and resources, the solid waste management scheme requires a comprehensive approach. Therefore, system dynamics (SD) modeling was applied to assess alternative strategies for solid waste management by interconnecting landfill capacity and recycling efficiency with reference to the projection on waste generation. Nine different scenarios were investigated to identify the best approach to maintain environmental sustainability without inhibiting the economic growth. Four subsystems (i.e., population, economy, waste recycling, and waste disposal) have been incorporated into the SD model to broaden the effectiveness of the waste management system. Research findings revealed that a high economic pattern and a high recycling rate are recommended to satisfy the requirements for economic growth and environmental sustainability while extending landfill capacity for waste disposal. Even though the balance of expenditure could be increased by the high recycling rate, it meets the need for long-term incineration and landfill planning.  相似文献   

20.
Municipal solid waste disposal sites in arid countries such as Kuwait receive various types of waste materials like sewage sludge, chemical waste and other debris. Large amounts of leachate are expected to be generated due to the improper disposal of industrial wastewater, sewage sludge and chemical wastes with municipal solid waste at landfill sites even though the rainwater is scarce. Almost 95% of all solid waste generated in Kuwait during the last 10 years was dumped in five unlined landfills. The sites accepting liquid waste consist of old sand quarries that do not follow any specific engineering guidelines. With the current practice, contamination of the ground water table is possible due to the close location of the water table beneath the bottom of the waste disposal sites. This study determined the percentage of industrial liquid waste and sludge of the total waste dumped at the landfill sites, analyzed the chemical characteristics of liquid waste stream and contaminated water at disposal sites, and finally evaluated the possible risk posed by the continuous dumping of such wastes at the unlined landfills. Statistical analysis has been performed on the disposal and characterization of industrial wastewater and sludge at five active landfill sites. The chemical analysis shows that all the industrial wastes and sludge have high concentrations of COD, suspended solids, and heavy metals. Results show that from 1993 to 2000, 5.14+/-1.13 million t of total wastes were disposed per year in all active landfill sites in Kuwait. The share of industrial liquid and sludge waste was 1.85+/-0.19 million t representing 37.22+/-6.85% of total waste disposed in all landfill sites. Such wastes contribute to landfill leachate which pollutes groundwater and may enter the food chain causing adverse health effects. Lined evaporation ponds are suggested as an economical and safe solution for industrial wastewater and sludge disposal in the arid climate of Kuwait.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号