首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The long-term monitoring of precipitation and its chemical composition are important for identifying trends in rain quality and for assessing the effectiveness of pollution control strategies. A statistical test has been used to the atmospheric concentrations measured in the French rural monitoring network (MERA) in order to bring out spatio-temporal trends in precipitation quality in France over the period 1990–2003. The non-parametric Mann–Kendall test which has been developed for detecting and estimating monotonic trends in the time series was used and applied in our study at annual values of wet-only precipitation concentrations. The emission data suggest that SO2 and NO x emissions decreased (−3.3 and −2.0% year−1, respectively) contrary to NH3 emissions that increased slightly (+0.2% year−1) over the period 1990–2002 in France. On the national scale, the pH values have a significant decreasing trend of −0.025 ± 0.02 unit pH year−1. and concentrations in precipitation have a significant decreasing trend, −3.0 ± 1.6 and −3.3 ± 0.6% year−1, respectively, corresponding with the downward trends in SO2 emissions in France (−3.3% year−1). A good correlation (R 2 = 0.84) between SO2 emissions and concentrations was obtained. The decreasing trend of was more significant (−5.4 ± 5.2% year−1) than that of (−1.3 ± 2.4% year−1). Globally, the concentration of the major ions showed a clear downward trend including marine and alkaline ions. In addition, the relative contribution of HNO3 to acidity precipitation increased by 51% over the studied period.  相似文献   

2.
Hydrogarnet was synthesized hydrothermally below 200°C using molten slag obtained from municipal solid waste. For comparison, it was also synthesized using pure-phase CaO–Al2O3–SiO2–H2O, as reported previously. The structural and textural properties of this material were investigated using various analytical and spectroscopic techniques such as X-ray diffraction, X-ray fluorescence spectrometry, atomic absorption spectrometry (AAS), thermogravimetry/differential thermal analysis, Fourier transform infrared spectroscopy, and scanning electron microscopy. The Cl fixation ability of hydrogarnet was investigated in the temperature range 500–800°C in a fixed-bed flow reactor using a HCl concentration (1000 p.p.m.v.) similar to that of incinerator exhaust gas. Under these experimental conditions, the hydrogarnet was capable of reducing the HCl gas level to less than 1 p.p.m.v. Analysis of the spent catalyst revealed that the hydrogarnet was being transformed into wadalite and CaCl2 at high temperatures. The elution test for chromium ions in hydrogarnet obtained from slag was also used, and it was found that chromium ions were not eluted from hydrogarnet. Received: January 27, 2001 / Accepted: October 11, 2001  相似文献   

3.
We have investigated a fabric-filter-supported catalyst for removing harmful solid and gaseous compounds simultaneously from municipal incinerator exhaust gas. We studied the ways in which the efficiency of NO x removal is influenced by filter temperature, gas flow rate, and catalyst content. The reduction of the catalyst content by mechanical reverse washing was investigated, and the state of the catalyst supported in the fabric filter was also observed using a scanning electron microscope. The catalyst supported by the fabric filter showed a removal efficiency above 75% when the filter temperature was 200°C, the gas flow rate was 1 m/min, and the catalyst content of the fabric filter was above 300 g/m2. The catalyst was supported uniformly on the fibers of the fabric filter, and fine catalyst particles remained on the fibers after mechanical reverse washing. Received: October 15, 1997 / Accepted: March 19, 1999  相似文献   

4.
Atmospherically deposited lead in the upper layer of the heavily eroded peatlands of the Peak District, southern Pennines, UK, reaches concentrations in excess of 1,000 mg kg−1. Erosion of the upper peat layer in this region is releasing lead, associated with eroded peat particles, into the fluvial system. Understanding the process mechanisms that control dissolved lead concentrations in contaminated peatland streams is vital for understanding lead cycling and transport in peatland streams. Many headwater streams of the southern Pennines recharge drinking water reservoirs. Measurements in the Upper North Grain (UNG) study catchment show that mean sediment-associated and dissolved lead concentrations are 102 ± 39.4 mg kg−1 and 5.73 ± 2.16 μg l−1, respectively. Experimental evidence demonstrates that lead can desorb from suspended sediments, composed of contaminated peat, into stream waters. In-stream processing could therefore account for the elevated dissolved lead concentrations in the fluvial system of UNG.  相似文献   

5.
The amounts of harmful gas emissions from the process of composting swine waste were determined using an experimental composting apparatus. Forced aeration (19.2–96.1 l/m3/min) was carried out continuously, and exhaust gases were collected and analyzed periodically. With weekly turning and the addition of a bulking agent in order to decrease the moisture content and increase air permeability, the temperature of most of the contents rose to 70°C and composting was complete within 3–5 weeks. NH3, CH4, and N2O emissions were high in the early stage of composting. About 10%–25% of the nitrogen in the raw material was lost as NH3 gas during composting. The emission rate of NH3 mainly depended on the aeration rate, so that as the aeration rate rose, the level of NH3 emissions increased. The CH4 and N2O emissions could be kept lower with adequate treatment at more than 40 l/m3/min aeration. N2O may be mainly the result of the denitrification of NO x -N in the additional matured compost used as a composting accelerator. Received: September 11, 1998 / Accepted: November 8, 1999  相似文献   

6.
Emission inventory of deca-brominated diphenyl ether (DBDE) in Japan   总被引:1,自引:0,他引:1  
Atmospheric emissions of deca-brominated diphenyl ether (DBDE) in Japan were estimated based on the material flow of DBDE products and their emission factors. In 2002, the demand for DBDE in Japan was 2200 ton/year and the stock level was about 60 000 ton. The DBDE flow into the waste stream was estimated to be about 6000 ton/year and the flow out through second-hand product exports was more than 700 ton/year. Home appliance recycling facilities dismantle and crush domestic wastes containing about 600 ton of DBDE annually. Material recycling of crushed plastics is not commonly practiced as yet. Emission factors from plastics processing (2 × 10−9–1 × 10−7), textile processing (9 × 10−7), home appliance recycling (8 × 10−9–5 × 10−6), and waste incineration (1 × 10−7–2 × 10−6) were estimated using field measurement data. The DBDE emission rate through house dust during the service life of final products (2 × 10−7–9 × 10−7 per year) was estimated using the DBDE concentration in dust and the amount of dust in used televisions. Emission factors from previous studies were also used. The estimated total DBDE emission was 170–1800 kg/year. These results suggest the necessity of characterizing emissions during the service life of products, which is essential information for formulating an appropriate e-waste recycling strategy.  相似文献   

7.
This paper gives the results of partial oxidation experiments of polyethylene (PE) in supercritical water (SCW). The experiments were carried out at a reaction temperature of 693K and a reaction time of 30 min using 6 cm3 of a batch-type reactor. The loaded sample weight was 0.3 g and there was 2.52 g water (0.42 g/cm3). The ratio of oxygen atoms to carbon atoms was 0.3. The results show a significant CO formation in O2–SCW, and the 1-alkene/n-alkane ratio in partial oxidation was higher than that in SCW pyrolysis. These results suggest the possibility of the hydrogenation of hydrocarbon through partial oxidation followed by a water–gas shift reaction. Received: July 19, 2000 / Accepted: September 28, 2000  相似文献   

8.
This work presents the first results of a study concerning on-road and in-vehicle exposure to particulate matter in the area of Athens. PM10 concentration measurements were conducted by TSI DustTrak, while driving along routes with different characteristics of traffic density, during September 2003–March 2004. Concurrent measurements of the ultrafine particles (UFPs) number concentration were also conducted, by condensation particle counter during part of the days. Pedestrian exposure to PM10 and UFPs was also studied through stationary measurements on the kerbside of selected roads on November 2003 and February 2004. A major avenue, a heavy-trafficked road across a children hospital and two central roads, one in a residential and one in a commercial area were selected for measurement. The results indicate that every day commuters are exposed to significant concentration levels. Higher exposures were observed in heavy-trafficked areas and during rush hours. Mean PM10 in-vehicle and on-road concentrations ranged from 30–320 μg/m3 and 70–285 μg/m3, respectively. The ultrafine particles number concentrations were in the range of 5.0 × 104–17.3 × 104 particles/cm3 in-vehicle and 3.1 × 104–7.3 × 104 particles/cm3 on the kerbside of a central residential road. Both PM10 and UFPs concentrations presented repeated short-term peak exposures. The results clearly point out the importance of the road microenvironment (in-vehicle and on kerbside) for population exposure in urban areas.  相似文献   

9.
Polylactic acid (PLA) is a hydrolytically degradable aliphatic polyester, and water vapor permeability may have a significant influence on the rate of degradation. A method is devised to use bags prepared from PLA films and filled with molecular sieves to determine the water vapor permeability in the polymer, its copolymers with caprolactone, and blends with polyethylene glycol. The “solution-diffusion” model is used to determine the permeability parameters. These include the solubility coefficient,S, a measure of the equilibrium water concentration available for hydrolysis and the diffusion coefficient,D, which characterizes the rate of water vapor diffusion into the film under specific conditions. Values ofS andD at 50‡C and 90% relative humidity ranged from 400 × 10-6 to 1000 × 10-6 cm3 (STP)/(cm3 Pa) and 0.20 × 10-6 to 1.0 × 10-6 cm2/s, respectively. TheS andD coefficients were also measured at 20 and 40‡C and compared to those of other polymers. The degree of crystallinity was found to have little influence on the measured permeability parameters. The heat of sorption, δHS, and the activation energy of diffusion, ED, were used to show that the permeability process is best described by the “water cluster” model for hydrophobic polymers. Finally, the diffusion coefficient is used to compare the rate of water diffusion to the rate of water consumption by ester hydrolysis. Results indicate that hydrolytic degradation of PLA is reaction-controlled.  相似文献   

10.
The formation and decomposition of tetrafluoroborate ions (BF4) in H3BO3-Al3+-F solutions were investigated via experiments and thermodynamic calculations. The concentration of the formed BF4 increased with decreasing pH, raising the total fluoride concentration and lowering the total aluminum ion concentration. Once formed, BF4 was stable under neutral and alkaline conditions. Fluoride in the form of BF4 was converted to fluoroaluminate ions by adding an aluminum compound under acidic conditions. A method for removing fluoride in the form of BF4 is proposed whereby fluoroaluminate ions formed by the reaction of BF4 with aluminum are decomposed with calcium ions. This process was applied to the treatment of wastewater from flue gas desulfurization plants, and resulted in a satisfying level of reduction in the range of the fluoride emission limit of 8 mg/l.  相似文献   

11.
Liming and/or application of specific nutrients have been proposed as countermeasures to the acidification of forest soils in southern Sweden. In this study the stem growth of Picea abies (L.) Karst. growing on acidic mineral soils in SW Sweden was investigated 10 years after additions of lime (Ca; 3000 kg lime ha−1), lime plus P (25 kg ha−1) and K (80 kg ha−1), or N in low doses (2 × 10 kg ha−1 yr−1) (treatments: CaPK, Ca, N, CaPKN, and 2Ca2P2K, respectively). Compared with the control, stem growth was increased following all treatments involving lime additions, including liming alone. The PK addition did not seem to affect growth. The most plausible cause of the observed growth increases was that the lime additions indirectly increased the supply of plant-available N. The annual low-dose N addition did not significantly affect growth. This suggests that air-borne deposition of N, which supplies very small doses of N throughout the year, has a minor or even negligible influence on P. abies growth.  相似文献   

12.
Airborne particulate matter (PM) concentrations were measured in Iksan, a suburban area in South Korea during April, 2003. PM2.5 (particles with an aerodynamic diameter less than 2.5 μm) and PM10 (particles with an aerodynamic diameter less than 10 μm) samples were collected, and the chemical characteristics of particles were examined for diurnal patterns, yellow dust/rainfall influences, and scavenging effects. Average concentrations of PM2.5 and PM10 mass measured were 37.3 ± 16.2 μg m−3 and 60.8 ± 29.5 μg m−3, respectively. The sum of ionic chemical species concentrations for PM2.5 and PM10 was 16.9 ± 7.3 and 23.1 ± 10.1 μg/m3, respectively. A significant reduction in PM mass concentrations during rainfall days was observed for coarse mode (PM2.5 − 10) particles, but less reduction was found for fine (PM2.5) mass concentration. SO4 2−, NH4 +, and K+ predominated in fine particulate mode, NO3 and Cl predominated in fine particle mode and coarse particle mode, but Na+, Mg2+, and Ca2+ mostly existed in coarse mode. The high concentration of ammonium due to local emissions and long-range transport neutralized sulfate and nitrate to ammonium sulfate and ammonium nitrate, which were major forms of airborne PM in Iksan. Average mass concentrations of PM10 in daytime and at night were 57.6 and 70.0 μg m−3, and those of PM2.5 were 35.4 and 42.5 μg m−3, respectively. NO3 and Cl in both PM2.5 and PM10 were about double at night than in the daytime, while the rest of the chemical species were equal or a little higher at night than in the daytime. The results suggest the formation of ammonium nitrate and chloride when high ammonia concentration and low air temperature are allowed. Backward air trajectory analyses showed that air masses arriving at the site during yellow dust period were transported from arid Chinese regions, which resulted in high concentrations of airborne PM mass concentrations. In the meantime, air mass trajectories during a rainfall period were mostly from the Pacific Ocean or the East China Sea, along with a relatively low PM concentration.  相似文献   

13.
Waste plastics recycling by an entrained-flow gasifier   总被引:1,自引:0,他引:1  
We studied an entrained-flow gasification process which efficiently converts waste plastics to energy at a high energy recovery rate. Waste plastics, after being shredded to <8 mm or <14 mm, were fed into an entrained-flow gasifier with air and oxygen. In the gasifier, organic substances were pyrolyzed, partially combusted, and then converted into synthetic gas (CO, H2) at a high temperature (over 1600 K). The clarified gasification characteristics were that the lower heat value (LHV) of the product gas was over 4.2 MJ/Nm3 and the cold gas efficiency was approximately 60%. Other inert substances in the wastes such as ashes and metals were melted into slag and condensed on bag filters. The bag filters and a water scrubber removed impurities such as dusts, heavy metals, and hydrogen halides from the product gases. Solid hydrocarbons, which include char and soot, were removed at a hot cyclone and on the bag filters. Received: July 19, 2000 / Accepted: October 3, 2000  相似文献   

14.
In Japan, melting-furnace fly ash (MFA) generated from ash melting and gasification/melting plants is considered an “urban mine” due to its high metal content. This study aimed to develop a novel approach to pretreating MFA for metal recovery. Water extraction with CO2 bubbling was investigated because MFA mainly consists of water-soluble salts containing elements such as Cl, Ca, Na, and K. Instead of acid addition, CO2 bubbling was applied to maintain the optimal pH for minimizing the release of target metal elements and maximizing the removal of undesirable elements during water extraction. The results revealed that CO2 bubbling effectively decreased the release of Pb, Zn, and Cd into the treatment water. This was mainly due to coprecipitation with CaCO3, which was primarily formed by the reaction of Ca2+ from the MFA with CO3 2− from the CO2 gas. The bubbling process also helped accelerate the removal of Cl from MFA. Furthermore, the study showed that it is possible to lower the water-to-solid ratio to 5 with only a slight reduction in water extraction effect. Finally, approximately four times the concentration of target metals (rare metals and Cu, Pb, and Zn) was achieved by removing 90% of Cl, 70%–90% of Na and K, and 30%–40% of Ca through water extraction with CO2 bubbling, resulting in a concentration of target metals that was nearly equal to that of ore.  相似文献   

15.
In the present work the photo-degradation of polychloroprene (PCP) in toluene solution catalyzed by FeCl3·6H2O and polychromatic light was investigated based on FTIR and 13C NMR spectroscopies, on conductivity measurements and DSC technique. The band in the 1700–1790 cm−1 range in the FTIR spectrum characterized the presence of carbonyl products due to the degradation of the PCP on the solution exposed to polychromatic light. The formation of carbonyl on degraded PCP was confirmed by the presence of signal on 13C NMR at δ 203.5. Products of PCP degradation, such as acid chlorides, generated in the toluene solution migrate to the aqueous phase (in contact with toluene phase) and the conductivity of aqueous phase increased as the time is elapsed. The area related to the PCP melting-peak on the DSC (film casted after the PCP-FeCl3·6H2O toluene solution has been exposed to polychromatic light) significantly decreased in comparison to that in the DSC of the raw PCP cast film.  相似文献   

16.
 This article reports the potential of denitrifying activated sludge to degrade highly chlorinated dioxins, especially from a (landfill) leacheate treatment plant in Japan, and the isolation from this denitrifying activated sludge of a microorganism able to degrade highly chlorinated dioxins. Using a 700-ml bioreactor, denitrifying activated sludge was cultivated under denitrifying conditions by adding 2.0 ng of a mixture of 4- to 8-chlorinated dioxins from fly ash. The dioxin contents of the sample, effluent, and medium before and after cultivation were measured by gas chromatography–mass spectrometry (GC–MS). After 7 days cultivation, about 90% of added dioxins were lost (average percentage of isomer depletion). A dioxin-degrading microorganism was isolated from the activated sludge. Lignin was added to the medium as a color indicator of aromatic compound degradation, and the lignin-decolorizing microorganisms in the denitrifying activated sludge were screened. Some strains were isolated, and one major isolated fungus, strain 622, decolorized lignin effectively. Strain 622 was identified as an Acremonium sp. from its morphological characteristics. It could decolorize lignin by 24% under paraffin-sealed anaerobic conditions. After the cultivation of strain 622 with a 2 ng/ml mixture of 4- to 8-chlorinated dioxins for 1 day, 82% (average for individual isomers) of the added 4- to 8-chlorinated dioxins had been degraded. Added octachlorodibenzo-p-dioxin (OCDD, 100 ng) was degraded under aerobic conditions after 8 h of incubation. During this process, heptachlorodibenzo-p-dioxin was produced and appeared to be a degradation product of OCDD. 1- or 2-hydroxydibenzo-p-dioxin from OCDD was also identified as the degradation product by GC–MS. These results indicated that OCDD was degraded to the nonchlorinated dibenzo-p-dioxins through dechlorination by Acremonium sp. strain 622. Received: October 12, 2001 / Accepted: March 11, 2002  相似文献   

17.
In this study, we propose an analytical method to determine the fourteen of azaarenes present in flue gas samples collected according to Japanese Industrial Standard K 0311, which designates the method for the determination of dioxins in flue gas. Azaarenes can be analyzed using the acidic water phase after shaking extraction with dichloromethane, which is unnecessary for dioxin analysis. Flue gas samples were obtained from 24 waste incinerators in Japan, and azaarenes were detected in all the flue gas samples (0.21–3800 μg/m3 N). The most abundant of the detected compounds were quinoline and isoquinoline. The concentration of azaarenes had a tendency to increase with that of polychlorinated dibenzo-p-dioxins and dibenzofurans. The isomer distribution of heptachloro-dibenzofurans (HpCDFs) was calculated using the computed Gibbs energy of formation (ΔG f ) obtained by the semiempirical molecular orbital method at various temperatures. The calculated isomer distribution was fitted to the measured value of HpCDFs. It seems that the temperature obtained from the fitting calculations is an indicator of the cooling capacity of the combustion gas in an incinerator. The computed ΔG f also explained the measured isomer distributions of azaarenes. It is suggested that the isomer distribution of azaarenes in the combustion process is thermodynamically controlled. This work was presented in part at the International Conference on Combustion, Incineration/Pyrolysis, and Emission Control, 2006, Kyoto  相似文献   

18.
For an effective decomposition and removal of organic halogenated compounds, a packed-bed non-thermal plasma reactor with in situ absorption of the resulting halogenated products by alkaline sorbent incorporated was proposed. In the plasma reactor, α-Al2O3 particles of 1 and 3 mm (mean particle diameter) were packed as solid dielectric medium to enhance the plasma power density in the reactor. Further, alkaline sorbent of Ca(OH)2 was doped onto the surface of α-Al2O3 particles, in order to remove halogenated products by in situ absorption with Ca(OH)2. A high-voltage and high-frequency pulsed power of −15 to 15 kV and 1 kHz was applied to the wire electrode of the plasma reactor by means of a DC power source. In the present study, as the sample of an organic halogenated compound that is most popularly used, we selected dichloromethane (CH2Cl2), and 500 ppm of the initial concentration of CH2Cl2 was fed into the reactor accompanied by air at a fixed flow rate of 500 × 10−6 m3 min−1 at room temperature. As a result, it was recognized that the amount of CH2Cl2 decomposed by non-thermal plasma in an α-Al2O3 particle bed increased with an increase in plasma input power. The ratio of decomposition of CH2Cl2 was almost 100% at 13 kV of electric power and 1 kHz frequency, and CO2, CH3Cl, COCl2, HCl, and Cl2 were observed as the major reaction products. On the other hand, when CH2Cl2 was introduced into the plasma reactor where α-Al2O3 particles doped with Ca(OH)2 were packed, the ratio of decomposition of CH2Cl2 became higher, compared to the case that α-Al2O3 particles were not doped with Ca(OH)2. Moreover, there were no halogenated by-product gases detected in the outlet gas from the reactor. As the solid reaction products, CaClOH and Ca(ClO)2·4H2O were detected on Ca(OH)2 by X-ray diffraction. From these findings, it was recognized that CH2Cl2 was decomposed more effectively without producing unwanted harmful halogenated by-products in the proposed non-thermal plasma reactor where α-Al2O3 particles doped with Ca(OH)2 sorbent were packed.  相似文献   

19.
Chemical recycling of polyamide waste in water was studied using 0.5 L high pressure autoclave at temperatures of 150, 200, 210, 220,230 and 240 °C and at various pressures of 100, 200, 300, 400, 500, 600 and 700 psi (pound per square inch). Viscosity average molecular weight of the polyamide waste sample was determined by Ostwald method and recorded as 1.928 × 103. The reaction was found to be first order with velocity constant in order of 10−2 min−1. The velocity constant and percent conversion of depolymerization reaction at 240 °C and 700 psi pressure were recorded as 2.936 × 10−2 min−1 and 99.99% respectively. The velocity constant was obtained on the basis of measurement of amine value. Kinetic and thermodynamic parameters such as energy of activation, frequency factor, enthalpy of activation were found to be 10.6 kJ mole−1, 0.3719 min−1 and 6.3 kJ mole−1 respectively, at the optimum conditions for maximum depolymerization of polyamide waste.  相似文献   

20.
We studied the effects of liming on fish and crustaceans in a watershed which is in a region known to have one of the highest diversity of aquatic biota in Norway. This watershed, Enningdal, is shared between Norway (1/3) and Sweden (2/3) and includes 61 lakes  >  1.0 ha in Norway. Liming started on a large scale in the 1980s. Currently, a total of 26 of lakes (43%) are limed, covering 93% of the total lake area. The mean value ± S.D. of pH and the concentration of inorganic labile Al in these lakes is 6.62 ± 0.35 and 3 ± 4 μg l−1, respectively. Historical data of fish communities have been obtained from surveys, while test-fishing and sampling of crustaceans were conducted in 24 lakes in recent years (2002–2004). The present study shows that crustaceans to a greater extent than fish has responded to improved water quality after more than 20 years of liming. Of a total of 120 fish populations, 42 (35%) have gone extinct. Only five of the lost fish populations (12%) have been re-established, all due to human re-introductions. Physical barriers are considered to be the main factor preventing fish from invading limed lakes. In contrast, crustaceans have been re-established in most limed lakes. This may be mainly due to their good spreading capacity. However, they might also have survived in refuges within the watershed, or as resting-eggs in the sediment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号