首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
硫酸盐还原菌厌氧颗粒污泥的形成条件   总被引:4,自引:1,他引:4  
硫酸盐还原菌是利用硫酸盐或其他氧化态硫化物作为电子受体来异化有机物的严格厌氧菌。介绍了硫酸盐还原菌的生物化学性质、代谢机理和生理学特征,综述了硫酸盐还原菌厌氧颗粒污泥的形成条件和影响因素,如进水SO4^2-含量,碳源、氮源和磷源,COD与SO4^2-质量浓度比,H2S,pH,温度,氧气及微量元素等。  相似文献   

2.
Indigenous microorganisms, enriched and isolated from refinery waste sludge, were observed to possess a broad range of metabolic activities for mixtures of several classes of substrates of petroleum hydrocarbons, such as monoaromatic and polycyclic aromatic hydrocarbons (PAHs) and n- and branched alkanes. Three of the best-growing bacterial isolates selectively enriched with these compounds were identified by 16S rDNA sequencing as belonging to the genera Enterobacter and Ochrobactrum. Two of them, Enterobacter sp. strain EK3.1 and Ochrobactrum sp. strain EK6 utilise a hydrocarbon mixture of the branched alkane 2,6,10,14-tetramethylpentadecane and the PAHs acenaphthylene and acenaphthene. Enterobacter sp. strain EK4 can grow with a mixture of 2,6,10,14-tetramethylpentadecane, toluene, acenaphthylene and acenaphthene as carbon sources. Nucleic acid fingerprint analysis, by terminal restriction fragment length polymorphism (T-RFLP) of the PCR-amplified 16S rRNA genes, of the autochthonous bacterial community in contaminated soil samples showed complex and different community structures under different treatments of refinery waste sludge in landfarm areas. The characteristic peaks of the T-RFLP profiles of the individual, isolated degrading bacteria Enterobacter spp. and Ochrobactrum sp. were detected in the T-RFLP fingerprint of the bacterial community of the four months old treated landfarm soil, suggesting the enrichment of bacteria belonging to the same operational taxonomic units, as well as their importance in degrading activity.  相似文献   

3.
The cycling of iron and sulfur in mine tailings depends on various chemical and microbial reactions. The present study was undertaken in order to assess the role played by populations of sulfate-reducing bacteria (SRB) on the fate of Fe and SO4 2- in Cu–Zn and Au tailings. Samples were taken along a 50-cm deep profile at all sites and analyzed for SRB populations, solid-phase mineralogy and porewater geochemistry. Results indicated that the Cu–Zn tailings were highly oxidized near the surface, as shown by the very low pH, high redox potential, large concentrations of soluble Cu, Zn and sulfate in the porewaters, and the depletion of pyrite. On the other hand, Au tailings were more pH neutral, slightly anoxic, and showed low concentrations of Fe and SO4 2- in the porewaters and very little pyrite oxidation. SRB populations in the Cu–Zn tailings increased with depth, just below the oxic/anoxic interface and were linked to a decline of sulfate and DOC concentrations around the same depths. However, large concentrations of dissolved Fe were also observed around the same depth intervals. Our results suggest that SRB could be involved in sulfate reduction in the Cu–Zn tailings, because the solubility of sulfate was not controlled by the precipitation of sulfate-rich minerals. However, the presence of soluble Fe in the reduced portion of the tailings was also indicative of the presence of iron reducing bacteria (IRB). These bacteria were not enumerated in the present study, but their co-occurrence with SRB has been reported in the past in similar mining environments. The decline of sulfate and the release of soluble iron into the porewaters were also paralleled by a pH increase and the generation of alkalinity. In the Au tailings, SRB populations were generally constant throughout the depth profile and could not be ascribed to sulfate reduction in the porewaters. The solubilities of sulfate and iron in these tailings were partially controlled by jarosite and Fe-oxide minerals. It is then clear that SRB populations could be recovered from various mining sites, but their activity cannot be ascertained based on microbial enumeration and geochemical data.  相似文献   

4.
微生物法处理含铬(Ⅵ)废水的研究   总被引:12,自引:0,他引:12  
采用硫酸盐还原菌处理含铬(Ⅵ)废水,研究了其去除铬(Ⅵ)的最适宜工艺条件。实验表明,该菌的适用范围广,处理含铬废水的能力强。在菌液与废液体积比为1.0:1、铬(Ⅵ)质量浓度为150mg/L条件下处理36h,铬(Ⅵ)去除率达99.9%。  相似文献   

5.
During and after mining activities acidic waters containing high amounts of heavy metals and sulfate often occur. In addition to precipitation processes, water purification is also possible with the help of sulfate-reducing bacteria (SRB). A mixed culture of SRB was adapted to methanol as a cheap carbon source. In order to receive high sulfate-reduction rates immobilization on porous materials proved to be advantageous. Continuous laboratory experiments based on immobilized SRB were carried out with original water from a lignite mining site reaching sulfate-reducing rates up to 132 mg SO4(2-)/(1 h). Based on these results a process for the treatment of such waters was designed. Heavy metals are removed by recycling sulfide containing effluent, excess sulfide can be oxidized to elemental sulfur by addition of hydrogen peroxide. The plant with a 3.9 m3 bioreactor with immobilized SRB was constructed at the mine site. This pilot plant was operated successfully for some months. The removal of heavy metals was close to 100%, the pH of the acidic water increased from 3.0 to 6.9. The sulfate-reducing rate again reached 134 mg SO4(2-)/(1 h). The production of sulfur from the excess sulfide is possible.  相似文献   

6.
A moorland soil site polluted with PCB showed a high diversity ofmetabolically active bacteria. Beside frequent types of 16S rRNAsequences similar to those of the species ofSphingomonasand the Acidobacterium phylum an unusual high number ofsequences from the genus Burkholderia were found. Burkholderia was also the main genus in isolates enriched onbiphenyl or various chlorobenzoates. In microcosm experimentssterilized surfaces exposed to PCB polluted soil always showed thepresence of clay aggregates formed by bacteria attached to thesubstratum. The bacteria use the PCB loaded clay colloids astransport medium for the water insoluble substrate to get accessto the carbon source. This is a novel mechanism of how bacteria dealwith hydrophobic substrates.  相似文献   

7.
The holomictic Traunsee is the deepest and second largest lakein Austria. The special characteristic of this ecosystem isthe fact that local salt and soda industries presumably alterthe lake by the discharge of waste materials. Since thebeginning of the 20th century salt and soda works areannually releasing up to 50,000 tons of solid wastes and up to150,000 tons of chloride into Traunsee. To assess potentialeffects of these anthropogenic impacts on the bacterioplanktonthree sampling sites, influenced as well as not influenced bythe industrial discharge, were chosen for comparison andsampled monthly from November 1997 to October 1998. Bacterialabundance ranged between 0.4 to 3.0 × 106 cells ml-1 with decreasing numbers along the depth profile. Theproportion of actively respiring bacteria, i.e. INT [2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyltetrazolium chloride]reducing cells, never exceeded 10% of DAPI (4',6'-diamidino-2-phenylindole) stained cells. Fluorescence in situ hybridization (FISH) was used to examine the seasonal and spatial distribution of dominant phylogenetic groups of thebacterioplankton. Up to 84% of bacteria detected with DAPIcould be detected via FISH applying the universal bacterialprobe EUB338. Percentages of alpha- and beta-Proteobacteriaand members of the Cytophaga-Flavobacterium cluster did notexceed 60% of DAPI-stained cells.Beta-Proteobacteriaappeared to be the most abundant group, not only in Traunsee butalso in two reference lakes, Attersee and Hallstättersee. No significant differences in any of the bacterial parameters couldbe detected between the three sampling sites and all measurementswere found in the range reported for oligotrophic lakes. The highdischarge of the Traun River, resulting in a lake water renewaltime of only one year, may diminish possible effects of industrial waste discharge in the pelagic zone.  相似文献   

8.
Three bacteria isolated for degradation of rubbers were compared for their growth characteristics derived from the Bradford protein assay and turbidity (optical density, OD) measurement. Both Alcaligenes xylosoxidans T2 and Pseudomonas aeruginosa GP10 were fast-growing bacteria while Nocardia corynebacterioides S3 was a slow grower utilizing rubber as the sole source of carbon and energy, but the extent of degradation was lower by the formers than the latter. A. xylosoxidans T2, P. aeruginosa GP10 and N. corynebacterioides S3 showed a typical sigmoidal growth pattern based on binding of Coomassie Brilliant Blue G250 to bacterial proteins and spectrophotometrical measurement at 600 nm. Both assays showed similar growth characteristics for all three bacteria in this study. Degradation of rubber was more pronounced by N. corynebacterioides S3 than either A. xylosoxidans T2 or P. aeruginosa GP10 during 70 days of incubation. Our results suggest that slow-growing bacteria may play a much greater role in degrading polymeric materials than was previously believed.  相似文献   

9.
PHB (poly-3-hydroxybutyric acid) is a thermoplastic polyester synthesized by Ralstonia eutropha and other bacteria as a form of intracellular carbon and energy storage and accumulated as inclusions in the cytoplasm of these bacteria. The degradation of PHB by fungi from samples collected from various environments was studied. PHB depolymerization was tested in vials containing a PHB-containing medium which were inoculated with isolates from the samples. The degradation activity was detected by the formation of a clear zone below and around the fungal colony. In total, 105 fungi were isolated from 15 natural habitats and 8 lichens, among which 41 strains showed PHB degradation. Most of these were deuteromycetes (fungi imperfecti) resembling species of Penicillium and Aspergillus and were isolated mostly from soils, compost, hay, and lichens. Soil-containing environments were the habitats from which the largest number of fungal PHB degraders were found. Other organisms involved in PHB degradation were observed. A total number of 31 bacterial strains out of 67 isolates showed clear zones on assay medium. Protozoa, possible PHB degraders, were also found in several samples such as pond, soil, hay, horse dung, and lichen. Lichen, a fungi and algae symbiosis, was an unexpected sample from which fungal and bacterial PHB degraders were isolated.  相似文献   

10.
Polyethylene glycol (PEG) 3400-degrading aerobic bacteria were isolated from tap water and wetland sediments and then characterized. Only one Sphingomonas strain was obtained in enrichment cultures from each inoculum source whereas a total of 15 bacterial strains were isolated on agar plates. Nine of the 15 isolates were confirmed as PEG 3400 degraders. Three of the 9 PEG 3400 degraders were Gram-negative bacteria belonging to the genus Pseudomonas and genus Sphingomonas. The remaining six isolates were Gram-positive bacteria belonging to genera Rhodococcus, Williamsia, Mycobacterium and Bacillus. PEG 3400 was quantified at 194 nm spectrophotometrically and, at the same time, the growth of two Gram-negative (isolates P1 and P7) and five Gram-positive (isolates P2, P3, P4, P5 and P6) PEG 3400-degrading bacteria were assayed in liquid media and on agar plates amended with PEG 3400, and also on Nutrient Agar plates and pure agar plates without PEG 3400 addition. No growth was observed on the pure agar plates for all the tested strains for a period of 31 days. All tested PEG 3400 degraders showed much lower viability in liquid culture than on the corresponding agar plates in the presence of PEG 3400. Two Gram-negative isolates P1 and P7 did not show significant growth advantage over the Gram-positive isolates both on the agar plates and in the liquid medium amended with PEG 3400. Our results suggest that diversity of PEG degrading bacteria is high in the environments and culturing techniques affect the successful isolation of the bacteria responsible for degradation.  相似文献   

11.
Poly[(R)-3-hydroxyalkanoates] (PHAs) are biopolymers stored by bacteria, which are currently receiving much attention because of their potential as renewable and biodegradable plastics. Most well-known representatives are poly[(R)-3-hydroxybutyrate] and its copolymers with 3-hydroxyvalerate, which have been commercialized under the trademark Biopol. In addition to these rigid materials, the elastomeric medium-chain length PHAs (mcl-PHAs) produced by fluorescent Pseudomonads are now emerging. The present review aims to survey the important developments concerning research and application prospects of mcl-PHAs.  相似文献   

12.
Water, Air, &; Soil Pollution: Focus - A biological method for the reduction Cr(VI), using sulphate-reducing bacteria (SRB), was tested in 2-L then 20-L fixed-bed reactors, with H2 as a low-cost...  相似文献   

13.
Chromium is a heavy metal used in various industrial sectors. Improper handling and storage of chromium-laden effluents or wastes can lead to the pollution of the environment. The most toxic form is the more mobile one: hexavalent chromium Cr(VI). The reduction of Cr(VI) results in the immobilisation of chromium into its less toxic trivalent form Cr(III). This phenomenon may prevent the contamination of groundwater when the soil in the vadose zone is contaminated. Many bacteria have been isolated from contaminated soils and described to reduce Cr(VI) into Cr(III). A new Cr(VI)-reducing strain, identified as a Streptomyces thermocarboxydus,has been isolated and studied in our laboratories for its ability to reduce Cr(VI). This aerobic bacterium, in contrast to other genera described which mediate reduction via enzymes, produces reducing agents into the culture supernatants. Cr(VI) reduction by these substances is accelerated by the presence of small concentration of cupric ions (Cu2+). The reducing agent(s) can be easily recovered from the bacterial cultures and used as cell-free solution to treat contaminated soils by an in situ or ex situ processes.  相似文献   

14.
A series of laboratory microcosm experiments and a field pilot test were performed to evaluate the potential for in situ chemical oxidation (ISCO) of aromatic hydrocarbons and methyl tertiary butyl ether (MTBE), a common oxygenate additive in gasoline, in saline, high temperature (more than 30 °C) groundwater. Groundwater samples from a site in Saudi Arabia were amended in the laboratory portion of the study with the chemical oxidants, sodium persulfate (Na2S2O8) and sodium percarbonate (Na2(CO3)2), to evaluate the changes in select hydrocarbon and MTBE concentrations with time. Almost complete degradation of the aromatic hydrocarbons, naphthalene and trimethylbenzenes (TMBs), was found in the groundwater sample amended with persulfate, whereas the percarbonate‐amended sample showed little to no degradation of the target hydrocarbon compounds in the laboratory. Isotopic analyses of the persulfate‐amended samples suggested that C‐isotope fractionation for xylenes occurred after approximately 30 percent reduction in concentration with a decline of about 1 percent in the δ13C values of xylenes. Based on the laboratory results, pilot‐scale testing at the Saudi Arabian field site was carried out to evaluate the effectiveness of chemical oxidation using nonactivated persulfate on a high temperature, saline petroleum hydrocarbon plume. Approximately 1,750 kg of Na2S2O8 was delivered to the subsurface using a series of injection wells over three injection events. Results obtained from the pilot test indicated that all the target compounds decreased with removal percentages varying between 86 percent for naphthalene and more than 99 percent for the MTBE and TMBs. The benzene, toluene, ethylbenzene, and xylene compounds decreased to 98 percent on average. Examination of the microbial population upgradient and downgradient of the ISCO reactive zone suggested that a bacteria population was present following the ISCO injections with sulfate‐reducing bacteria (SRB) being the dominant bacteria present. Measurements of inorganic parameters during injection and postinjection indicated that the pH of the groundwater remained neutral following injections, whereas the oxidation–reduction potential remained anaerobic throughout the injection zone with time. Nitrate concentrations decreased within the injection zone, suggesting that the nitrate may have been consumed by denitrification reactions, whereas sulfate concentrations increased as expected within the reactive zone, suggesting that the persulfate produced sulfate. Overall, the injection of the oxidant persulfate was shown to be an effective approach to treat dissolved aromatic and associated hydrocarbons within the groundwater. In addition, the generation of sulfate as a byproduct was an added benefit, as the sulfate could be utilized by SRBs present within the subsurface to further biodegrade any remaining hydrocarbons. ©2015 Wiley Periodicals, Inc.  相似文献   

15.
Grazing impact of Daphnia longispina on phytoplankton and bacteria in Lake Paione Superiore (Northern Italy) was evaluated using fluorescently labeled cells in short-term in situ experiments. Structure and size distribution of Daphnia were studied weekly from its appearance in July to its decline in September. Relative importance of algae and bacteria in the diet varied over time, as did consequently the relative impact of Daphnia on the phytoplankton and bacteria populations. Biomass of bacteria in the diet of Daphnia varied from 1 to 42%, and was highest at the beginning of population development when young individuals dominated. The percent biomass of algae in the diet increased with population development, ranging from 58 to 99%. Daphnia population consumed per hour 0.04–1.8% of bacteria and 0.3–17.6% of phytoplankton abundances.  相似文献   

16.
Bacteria capable of growing on poly(3-hydroxybutyrate), PHB, as the sole source of carbon and energy were isolated from various soils, lake water, activated sludge, and air. Although all bacteria utilized a wide variety of monomeric substrates for growth, most of the strains were restricted to degrade PHB and copolymers of 3-hydroxybutyrate and 3-hydroxyvalerate, P(3HB-co-3HV). Five strains were also able to decompose a homopolymer of 3-hydroxyvalerate, PHV. Poly(3-hydroxyoctanoate), PHO, was not degraded by any of the isolates. One strain, which was identified asComamonas sp., was selected, and the extracellular depolymerase of this strain was purified from the medium by ammonium sulfate precipitation and by chromatography on DEAE-Sephacel and Butyl-Sepharose 4B. The purified PHB depolymerase was not a glycoprotein. The relative molecular masses of the native enzyme and of the subunits were 45,000 or 44,000, respectively. The purified enzyme hydrolyzed PHB, P(3HB-co-3HV), and—at a very low rate—also PHV. Polyhydroxyalkanoates, PHA, with six or more carbon atoms per monomer or characteristic substrates for lipases were not hydrolyzed. In contrast to the PHB depolymerases ofPseudomonas lemoignei andAlcaligenes faecalis T1, which are sensitive toward phenylmethylsulfonyl fluoride (PMSF) and which hydrolyze PHB mainly to the dimeric and trimeric esters of 3-hydroxybutyrate, the depolymerase ofComamonas sp. was insensitive toward PMSF and hydrolyzed PHB to monomeric 3-hydroxybutyrate indicating a different mechanism of PHB hydrolysis. Furthermore, the pH optimum of the reaction catalyzed by the depolymerase ofComamonas sp. was in the alkaline range at 9.4.  相似文献   

17.
The research was focused on the slurry-phase biodegradation of naphthalene. The biodegradation process was optimised with preliminary experiments in slurry aerobic microcosms. From soil samples collected on a contaminated site, a Pseudomonas putida strain, called M8, capable to degrade naphthalene was selected. Microcosms were prepared with M8 strain by mixing non-contaminated soil and mineral M9 medium. Different experimental conditions were tested varying naphthalene concentration, soil:water ratio and inoculum density. The disappearance of hydrocarbon, the production of carbon dioxide, and the ratio of total heterotrophic and naphthalene-degrading bacteria were monitored at different incubation times. The kinetic equation that best fitted the disappearance of contaminant with time was determined. The results showed that the isolated strain enhanced the biodegradation rate with respect to the natural biodegradation.  相似文献   

18.
Soil pollution caused by polycyclic aromatic hydrocarbons (PAHs) is a consequence of various industrial processes which destabilizes the ecosystem. Bioremediation by bacteria is a cost‐effective and environmentally safe solution for reducing or eliminating pollutants in soils. In the present study, we artificially polluted agricultural soil with used automobile engine oil with a high PAH content and then isolated bacteria from the soil after 10 weeks. Pseudomonas sp. strain 10–1B was isolated from the bacterial community that endured this artificial pollution. We sequenced its genomic DNA on Illumina MiSeq sequencer and evaluated its ability to solubilize phosphate, fix atmospheric nitrogen, and produce indoleacetic acid, in vitro, to ascertain its potential for contribution to soil fertility. Its genome annotation predicted several dioxygenases, reductases, ferredoxin, and Rieske proteins important in the ring hydroxylation initiating PAH degradation. The strain was positive for the soil fertility attributes evaluated. Such combination of attributes is important for any potential bacterium partaking in sustainable bioremediation of PAH‐polluted soil.  相似文献   

19.
Cultivation conditions affecting poly(vinyl alcohol) (PVA) degradation by a mixed bacterial culture of Bacillus sp. and Curtobacterium sp. were investigated. Bacterial strains used in this study were isolated from the watercourse and the sewage sludge of vinylonfibre mill by enrichments on PVA as the sole carbon source. The results showed that PVA was greatly degraded under the following conditions: 0.5% PVA as a substrate at the initial medium pH of 8 with 0.15% glucose and urea at C/U ratio 1.5:1 and 1% bacterial inoculum, at a temperature of 35 °C and a shaking speed of 110 rpm. The analysis of FTIR and 1H NMR spectra before and after biodegradation indicate fission of the PVA molecular chain during the incubation.  相似文献   

20.
To determine the properties of enzymes from bacteria that degrade polypropiolactone (PPL), we isolated 13 PPL-degrading bacteria from pond water, river water, and soil. Nine of these strains were identified as Acidovorax sp., three as Variovorax paradoxus, and one as Sphingomonas paucimobilis. All the isolates also degraded poly(3-hydroxybutyrate) (PHB). A PPL-degrading enzyme was purified to electrophoretical homogeneity from one of these bacteria, designated Acidovorax sp. TP4. The purified enzyme also degraded PHB. The molecular weight of the enzyme was estimated as about 50,000. The enzyme activity was inhibited by diisopropylfluorophosphate, dithiothreitol, and Triton X-100. The structural gene of the depolymerase was cloned in Escherichia coli. The nucleotide sequence of the cloned DNA fragment contained an open reading frame (1476 bp) specifying a protein with a deduced molecular weight of 50,961 (491 amino acids). The deduced overall sequence was very similar to that of a PHB depolymerase of Comamonas acidovorans YM1609. From these results it was concluded that the isolated PPL-degrading enzyme belongs to the class of PHB depolymerases. A conserved amino acid sequence, Gly-X1-Ser-X2-Gly (lipase box), was found at the N-terminal side of the amino acid sequence. Site-directed mutagenesis of the TP4 enzyme confirmed that 20Ser in the lipase box was essential for the enzyme activity. This is the first report of the isolation a PHB depolymerase from Acidovorax.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号