首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以负载不同金属的硅胶为催化剂,采用催化臭氧氧化法处理抗生素废水生化出水,并对催化剂投加量、反应时间等反应条件进行了优化。实验结果表明:铁/硅胶催化剂效果最好;在铁/硅胶催化剂投加量为0.33 g/L、反应时间为1 h的条件下处理COD为954.7 mg/L、BOD5为66.8 mg/L、ρ(氨氮)为98 mg/L的抗生素废水生化出水,COD去除率为54.9%,氨氮去除率为44.4%,BOD5/COD由0.07提高至0.20。  相似文献   

2.
以γ-Al2O3作为载体,先后负载CeO2,MnC2O4,Fe(NO33,CrO3,Ni(NO32,NH4VO3等多种金属组分制备γ-Al2O3负载多金属复合催化剂,并用于模拟烟气的选择性催化还原脱硝。通过SEM和XRD技术对催化剂进行了表征。表征结果显示:Fe,Mn,Cr的添加能增加催化剂的低温催化活性、提高催化剂的N2选择性;γ-Al2O3对活性金属氧化物的负载效果良好。实验结果表明:各金属化合物的最佳加入量为 w(MnC2O4·2H2O)=20%,w(Fe(NO33·9H2O)=15%,w(CrO3)=10%,w(Ni(NO32·6H2O)=5%,w(NH4VO3)=10%,w(CeO2)=5%,w(γ-Al2O3)=35%;以在最佳正交实验条件下制得的γ-Al2O3负载多金属复合物为催化剂,在脱硝反应温度为205 ℃的条件下,NO转化率为96.7%;γ-Al2O3负载多金属复合催化剂经5次重复使用,NO转化率仍可稳定在94%左右。  相似文献   

3.
O3-H2O2氧化法处理印染废水   总被引:2,自引:0,他引:2  
彭人勇  邱晓 《化工环保》2013,33(4):308-311
采用O3-H2O2氧化法对印染废水进行氧化处理,比较了O3氧化法和O3-H2O2氧化法对印染废水的处理效果,考察了初始废水pH、H2O2加入量、O3流量和反应时间对废水的色度去除率和COD去除率的影响。实验结果表明:O3-H2O2氧化法对废水的COD和色度的去除效果比O3氧化法更好;在初始废水pH为11、H2O2加入量为13mmol/L、O3流量为6g/h、反应时间为60min的最佳工艺条件下,处理后废水COD为61.50mg/L,COD去除率为95.73%,废水色度为5倍,色度去除率为99.75%,TOC为37.84mg/L,TOC去除率为85.10%,BOD5为22.76mg/L,BOD5去除率为90.20%,BOD5/COD为0.37。  相似文献   

4.
罗倩仪  谢文玉  钟理 《化工环保》2014,34(6):535-538
采用两级移动床生物膜反应器(MBBR)预处理高挥发酚含量的石化厂汽提净化水,考察了HRT和DO对废水中挥发酚和COD去除效果的影响。实验结果表明:在两级MBBR总HRT为10 h、MBBR中部废水DO 为1~3 mg/L的条件下, 装置连续运行处理ρ(挥发酚)=110~201 mg/L、COD=644~1 827 mg/L、BOD5/COD=0.15~0.69的废水,两级MBBR处理后出水平均ρ(挥发酚)为17.6 mg/L,挥发酚去除率达87.9%;平均COD为745 mg/L,COD去除率为32.7%;出水BOD5/COD平均为0.68,表明经过两级MBBR处理后,废水的可生化性有所提高,有利于废水的后续生化处理。  相似文献   

5.
高会杰  孙丹凤 《化工环保》2014,34(4):336-339
采用氨化—硝化—反硝化三段联合生物工艺处理分子筛催化剂生产过程中产生的含有机胺废水。实验结果表明:在氨化过程中,当进水COD稳定为1 200~1 600 mg/L时,出水COD低于300 mg/L,COD去除率稳定在80%左右,当进水ρ(有机氮)为100~160 mg/L时,出水ρ(有机氮)均低于30 mg/L,有机氮去除率大于80%,在整个氨化过程中,出水ρ(氨氮)较进水ρ(氨氮)提高了35~200 mg/L;硝化过程中,当进水ρ(氨氮)小于等于300 mg/L时,出水ρ(氨氮)最终稳定在15 mg/L以内,氨氮去除率大于90%;在反硝化过程中,亚硝酸盐氮去除率基本稳定在98%以上,最终出水COD低于80 mg/L,出水ρ(总氮)低于25 mg/L。  相似文献   

6.
分别采用臭氧氧化、微电解—Fenton氧化和电化学降解的方法处理COD为6 000~8 000 mg/L、BOD5/ COD为 0.12~0.17的光引发剂生产废水,比较了3种方法对废水中COD的去除效果。实验结果表明:臭氧氧化反应2 h时废水COD去除率达35.9%,BOD5/COD 为0.20;微电解反应4 h再Fenton氧化4 h后,废水COD去除率为38.2%,BOD5/COD 为0.28;电化学降解2 h后废水COD去除率达83.9%,BOD5/COD 为0.46,降解反应遵循零级反应动力学,反应速率常数为2.6 kg/(m3·h)。3种方法对光引发剂生产废水的处理效果顺序为:电化学降解>微电解—Fenton氧化>臭氧氧化。  相似文献   

7.
采用臭氧-活性污泥法深度处理己内酰胺生产废水。实验结果表明,当臭氧加入量60 mg/L、HRT=24 h时,出水COD=54.7 mg/L、出水ρ(NH3-N)=2.0 mg/L,出水达到GB 8978—1996《污水综合排放标准》中的一级排放标准。比较了臭氧氧化法、臭氧-H2O2高级氧化法和臭氧-活性污泥法3种深度处理方法的运行成本,其中臭氧-活性污泥法运行成本最低,为1.650 元/t,且该方法运行稳定性高、操作简单,是3种深度处理方法中的最优方法。  相似文献   

8.
采用臭氧氧化—包埋菌流化床生物处理组合工艺对煤气化废水进行深度处理。实验结果表明:当臭氧的质量浓度20 mg/L、臭氧进气流量1.5 L/min、臭氧通气时间30 min、包埋菌流化床水力停留时间24 h时,臭氧氧化工序的COD去除率达到30.0%~40.0%,总酚去除率达到100.0%;包埋菌流化床工序的COD去除率达到60.0%以上,氨氮的去除率大于95.0%;经组合工艺处理后,出水COD<60 mg/L,ρ(氨氮)<1.0 mg/L,ρ(总酚)未检出,色度小于50倍,达到GB8978—1996《污水综合排放标准》中的一级排放标准。  相似文献   

9.
磁性膨润土的制备及类Fenton氧化法处理焦化废水   总被引:1,自引:0,他引:1       下载免费PDF全文
以Al-Fe柱撑膨润土为原料,通过原位氧化沉淀法负载纳米Fe3O4颗粒,制备磁性膨润土。采用XRD,SEM,EDS技术对磁性膨润土进行了表征,并将其作为类Fenton反应催化剂对焦化厂二沉池出水(COD为267.6 mg/L、色度为428度)进行了深度处理,探讨了各反应条件对处理效果的影响。实验结果表明:Fe3O4颗粒较为均匀地分布在膨润土表面,负载牢固;在H2O2加入量70 mmol/L、磁性膨润土加入量0.8 g/L、反应温度30 ℃、初始废水pH 5.0的条件下反应30 h,废水COD和色度的去除率分别达到78.5%和93.4%,COD和色度分别降至57.5 mg/L和28度,满足GB/T 19923—2005《城市污水再生利用 工业用水水质》的要求;磁性膨润土使用4次后,对废水的处理效果仍很稳定。  相似文献   

10.
采用两相厌氧+A/O工艺处理腈纶和丙烯酰胺混合废水。实验结果表明:在混合进水中V(腈纶废水)∶V(丙烯酰胺废水)=1、产酸反应器HRT为20 h、产甲烷反应器HRT为36 h、A/O池HRT为24 h、DO为4~5 mg/L、混凝池进水COD为(4 000±300) mg/L的条件下,总COD去除率为87%~89%,A/O池出水COD低于500 mg/L,出水达到GB 8978—1996《污水综合排放标准》中的三级标准;在混凝池进水BOD5/COD为0.20~0.30的条件下,产甲烷反应器出水BOD5/COD为0.55~0.65,说明两相厌氧可明显提高废水的可生化性。  相似文献   

11.
采用酸析—微电解—Fenton试剂氧化联合工艺预处理苯达松废水。考察了酸析pH、铸铁粉加入量、微电解时间、双氧水加入量、Fenton试剂氧化时间等因素对废水处理效果的影响。实验结果表明:最佳工艺条件为酸析pH 3.0,铸铁粉加入量1.0 g/L,微电解时间2 h,Fenton试剂氧化时间4 h,双氧水加入量25 mL/L;在最佳工艺条件下处理初始COD为22 500 mg/L、BOD5/COD为0.08、色度为2 500倍的苯达松废水,总COD去除率为96.2%,出水COD为858 mg/L,出水色度为150倍,BOD5/COD为0.38;采用微电解—Fenton试剂氧化联合工艺预处理酸析后的苯达松废水,处理效果远高于单独微电解和单独Fenton试剂氧化工艺。  相似文献   

12.
采用缺氧—好氧—催化臭氧氧化工艺处理某石化厂的含盐废水。实验结果表明:在进水COD为200~350 mg/L的条件下,经生化处理后的出水COD稳定在50~60 mg/L,COD去除率稳定在75%左右;在臭氧投加量为4.5 g/L、V(催化剂Ⅱ)∶V(废水)=1.5∶1的条件下,进行连续催化臭氧氧化后出水COD稳定在20 mg/L以下,COD去除率大于70%,满足DB 61/224—2011《黄河流域(陕西段)污水综合排放标准》。表征结果显示,催化剂表面含有铜元素,比表面积为250.815 m2/g,吸水率为60.9%,经过滤可去除废水中残留的催化剂。  相似文献   

13.
以硅藻土为载体,采用溶胶-凝胶法引入金属氧化物SnO2和Fe2O3,制备了二元氧化物复合型SO42-/SnO2-Fe2O3-硅藻土固体酸催化剂。利用该催化剂与H2O2构成非均相类Fenton试剂氧化体系,催化H2O2产生氧化能力极强的·OH,用于处理实际翠蓝废水和模拟亚甲基蓝废水。催化剂的最佳制备条件为:H2SO4溶液的浓度3 mol/L,浸渍时间2.0 h,焙烧温度550 ℃,焙烧时间3.5 h,焙烧方式为随炉升降温。实验结果表明:采用在最佳工艺条件下制得的催化剂,处理实际翠蓝废水COD去除率可达79.5%、脱色率达99.6%;处理模拟亚甲基蓝废水COD去除率可达83.1%、脱色率达99.6%。  相似文献   

14.
陈东  曾玉彬  李源  汪勉  李嘉晨 《化工环保》2015,35(5):481-486
以纳米γ-Fe2O3为磁性介质制备了磁性纳米γ-Fe2O3/SiO2,并将其用于水中亚甲基蓝的吸附。表征结果显示:制备的γ-Fe2O3/SiO2呈不规则核壳结构,平均粒径为38 nm,比表面积为74.35 m2/g,比饱和磁化强度为55 A·m2/kg。实验结果表明:γ-Fe2O3/SiO2对亚甲基蓝的吸附适宜在中碱性条件下进行,4 h即可达吸附平衡;在初始亚甲基蓝质量浓度为180 mg/L、γ-Fe2O3/SiO2加入量为2 g/L、初始溶液pH为7.0、吸附温度为298 K的条件下,吸附量最高为25.4 mg/g;共存金属离子会降低吸附效率,而少量的腐殖酸则会促进吸附;吸附过程符合准二级动力学方程,颗粒内扩散不是唯一的控速步骤;等温吸附满足Langmuir模型,该吸附是一个物理吸附过程;用乙醇洗涤的γ-Fe2O3/SiO2重复使用4次时仍能保持约80%的原吸附量。  相似文献   

15.
采用臭氧氧化—A/O工艺处理聚乙烯醇(PVA)废水,研究了臭氧氧化时间、臭氧流量以及废水pH等因素对臭氧氧化效果的影响。实验结果表明:当气体臭氧质量浓度为30 mg/L、臭氧氧化时间为45 min、臭氧流量为4 L/min、废水pH为8时,PVA质量浓度从进水的93.2 mg/L降至4.5 mg/L;PVA溶液的BOD5/COD从0.014增加至0.310,可生化性明显改善;臭氧氧化—A/O工艺处理后出水COD降至50 mg/L左右,达到GB 8978—1996《污水综合排放标准》中的一级排放标准;出水PVA质量浓度为1.6 mg/L,明显优于A/O工艺(33.1 mg/L)。  相似文献   

16.
用絮凝#x02014;微波辐射#x02014;Fenton试剂氧化法深度处理焦化废水,研究了微波辐射时间、微波功率、FeSO4加入量、H2O2加入量和废水pH对废水处理效果的影响。实验结果表明:在聚合氯化铝加入量为350mg/L、聚丙烯酰胺加入量为12mg/L、废水pH=5、FeSO4加入量为250mg/L、H2O2总加入量为1400mg/L、H2O2分3次投加、微波功率为400W、微波辐射时间为60min的条件下,处理后出水的浊度、色度和COD去除率分别为98.59%,97.62%,86.21%。处理后出水澄清透明,COD为50.34mg/L,满足GB50050#x02014;2007《工业循环冷却水处理设计规范》的要求。  相似文献   

17.
李梦澜  李海青  李刚 《化工环保》2014,34(5):484-487
采用水热法制备了纳米α-MnO2催化剂,并通过XRD和SEM技术对催化剂的成分和形貌进行了表征。采用纳米α-MnO2催化剂催化臭氧氧化降解水中的双酚A(BPA),考察了初始溶液pH、催化剂加入量和反应温度对BPA去除率的影响。实验结果表明,纳米α-MnO2催化剂催化臭氧氧化降解BPA的最佳工艺条件为:催化剂加入量100 mg/L,初始溶液pH 8.5,反应温度18 ℃。在此最佳条件下处理质量浓度为10 μg/mL的BPA溶液120 min,BPA去除率为96.4%。回收洗涤后第二次使用的催化剂的BPA去除率为80.5%,第三次使用的催化剂的BPA去除率为74.1%,催化剂的活性随重复使用次数的增加而缓慢降低,活性较稳定。  相似文献   

18.
常佳伟  樊金梦  王伟  赵磊  邵磊 《化工环保》2012,40(2):131-136
以旋转填充床(RPB)为反应器,采用臭氧氧化工艺处理实际兰炭废水一级生化池出水。考察了臭氧浓度、RPB转速、气液比、初始废水pH、废水温度和RPB处理级数对废水处理效果和臭氧利用率的影响。实验得到的适宜工艺条件为:保持进气流量90 L/h不变,不调节废水pH和温度,控制臭氧质量浓度50 mg/L、气液比5∶1、RPB转速1 500 r/min,进行二级处理。在上述工艺条件下,处理COD为340.0 mg/L、BOD5/COD为0.18、pH为7.77、温度为24.7 ℃的废水,处理后出水COD去除率为19.7%,BOD5/COD为0.34,可生化性大幅提高,可满足后续生化处理要求。  相似文献   

19.
以Ti板为阴极、Ti/IrO2-Ta2O5电极为阳极,采用三维电极法处理六硝基茋生产废水。通过单因素实验和正交实验确定的最佳工艺条件为:电解电压8 V,电解时间4 h,极板间距5 mm,初始废水COD=3 120 mg/L,m(玻璃珠)∶m(活性炭)=1∶3(选定活性炭的质量为5.0 g),ρ(硫酸钠)=500 mg/L。在此最佳工艺条件下,废水COD去除率为36.5%。  相似文献   

20.
李莉  胡玉  曹俊 《化工环保》2019,39(2):142-147
采用移动床生物膜反应器(MBBR)—厌氧移动床生物膜反应器(AMBBR)—MBBR组合工艺处理高氨氮化工废水。反应器采用几何构型优化、比表面积大的新型YD-25生物载体和DNF-203硝化细菌,实现了同步硝化和反硝化,强化了脱氮能力。采用投加菌种和排泥的方式,经27 d的驯化培养即完成了反应器的挂膜启动。试验结果表明:最佳操作条件为HRT 8 d、MBBR中DO 3 mg/L、进水pH 8.0;在进水COD 2 840~7 437 mg/L、ρ(氨氮)92~179 mg/L、TN 148~258 mg/L、pH 6~8的条件下,出水指标均值为COD 352 mg/L、ρ(氨氮)21.2 mg/L、TN 36 mg/L、pH 7.4,满足排放要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号