首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A former chlorofluorocarbon manufacturing facility in northern New Jersey was purchased for redevelopment as a warehousing/distribution center as part of the New Jersey Department of Environmental Protection's Brownfields redevelopment initiative. Soil and groundwater at the site were impacted with dense nonaqueous‐phase liquids (chlorinated organic compounds) and light nonaqueous‐phase liquids (petroleum hydrocarbons). The initial remedial strategy (excavation and offsite disposal) developed by prior site owners would have been cost‐prohibitive to the new site owners and made redevelopment infeasible. Mixed remedial technologies were employed to reduce the cost of remediation while meeting regulatory contaminant levels that are protective of human health and the environment. The most heavily impacted soils (containing greater than 95 percent of the contaminant mass) were excavated and treated onsite by the addition of calcium oxide and lime kiln dust coupled with physical mixing. Treated soils were reused onsite as part of the redevelopment. Residual soil and groundwater contamination was treated via in situ injections of emulsified oil to enhance anaerobic biodegradation, and emulsified oil/zero‐valent iron to chemically reduce residual contaminants. Engineering (cap) and administrative (deed restriction) controls were used as part of the final remedy. The remedial strategy presented in this article resulted in a cost reduction of 50 percent of the initial remedial cost estimate. © 2008 Wiley Periodicals, Inc.  相似文献   

2.
Bioremediation is a proven alternative for remediating petroleum‐impacted soils at exploration and production (E&P) sites. Monitoring remediation performance can involve detection and quantification of biodegradation resistant compounds such as C3017α(H),21β(H)‐hopane, which requires the use of gas chromatography with mass spectrometry detection (GC/MS). Due to the remoteness of many E&P sites, this technology is not always available, and alternative methods are needed to provide reliable quantitative measurements of petroleum remediation efficiency. This study provides a detailed chemical characterization of lacustrine‐sourced crude oils and a technical basis for measuring the effectiveness of bioremediation efforts for soil impacted by those crudes. We show that the novel isoprenoid hydrocarbon botryococcane is relatively stable in lacustrine‐sourced crude oils compared with C3017α(H),21β(H)‐hopane under moderate biodegradation conditions generally observed in field samples. We have also demonstrated that, due to the stability and relatively elevated concentration of botryococcane in lacustrine oils, it can be reliably measured using the more cost‐effective and available GC/FID methodology, and thereby be used to monitor the progress of ongoing soil bioremediation activities at remote sites.  相似文献   

3.
As a result of former industrial activities, many properties across the United States contain various chemicals in their soils at concentrations above background levels. Polynuclear aromatic hydrocarbons (PAHs) are often encountered at sites of gas manufacture, wood treating, tar refining, coke making, and petroleum reflning. When the presence of PAHs in site soil is deemed to create a situation of unacceptable risk to public health or the environment, treatment or disposal is required to reduce concentrations to acceptable levels. The ideal remedial process for PAHs in soils would destroy them to an environmentally sound level at relatively low cost without producing adverse by-products. In many cases bioremediation can accomplish these goals. The degree to which bioremediation can destroy PAHs in a particular soil, however, is highly dependent on the characteristics of that soil, including the nature of the hydrocarbon that is the source of the PAHs. It is the objective of this article to describe efforts leading to this conclusion and to summarize how soil characteristics influence bioremediation of PAHs.  相似文献   

4.
EOS, or emulsified oil substrate, was used to stimulate anaerobic biodegradation of trichloroethene (TCE) and tetrachloroethene (PCE) at a former Army‐owned manufacturing facility located in the Piedmont area of North Carolina. Previous use of chlorinated solvents at the facility resulted in soil and groundwater impacts. Ten years of active remediation utilizing soil vacuum extraction and air sparging (SVE/AS) were largely ineffective in reducing the TCE/PCE plume. In 2002, the Army authorized preparation of an amended Remedial Action Plan (RAP) to evaluate in situ bioremediation methods to remediate TCE in groundwater. The RAP evaluated eight groundwater remediation technologies and recommended EOS as the preferred bioremediation alternative for the site. Eight wells were drilled within the 100 × 100 feet area believed to be the primary source area for the TCE plume. In a first injection phase, dilute EOS emulsion was injected into half of the wells. Distribution of the carbon substrate through the treatment zone was enhanced by pumping the four wells that were not injected and recirculating the extracted water through the injection wells. The process was repeated in a second phase that reversed the injection/extraction well pairs. Overall, 18,480 pounds of EOS were injected and 163,000 gallons of water were recirculated through the source area. Anaerobic groundwater conditions were observed shortly after injection with a corresponding decrease in both PCE and TCE concentrations. Dissolved oxygen, oxidation‐reduction potential, and sulfate concentrations also decreased after injection, while TCE‐degradation products, ferrous iron, and methane concentrations increased. The reduction in TCE allowed the Army to meet the groundwater remediation goals for the site. Approximately 18 months after injection, eight wells were innoculated with a commercially prepared dechlorinating culture (KB‐1) in an attempt to address lingering cis‐1,2‐dichloroethene (cis‐DCE) and vinyl chloride (VC) that continued to be observed in some wells. Dehalococcoides populations increased slightly post‐bioaugmentation. Both cis‐DCE and VC continue to slowly decrease. © 2007 Wiley Periodicals, Inc.  相似文献   

5.
This study investigates the potential for perchlorate biodegradation in the sediments of the Las Vegas Wash area in Henderson, Nevada. The continuous transport of perchlorate from a contaminated seepage to the Las Vegas Wash, Lake Mead, and the Colorado River has resulted in considerable deposition of perchlorate along the sediments of the Las Vegas Wash. The contaminated sediments act as a distributed source of perchlorate, making efforts to stop the flow of perchlorate to the Colorado River very challenging. In this study, perchlorate‐ reducing bacteria were enumerated and microcosm tests were performed to investigate the role of indigenous microorganisms and the limitations to natural perchlorate biodegradation in the contaminated sediments. The results of microcosm tests revealed that, despite the high number of perchloratereducing bacteria present, natural perchlorate in the area appears to be limited by (1) high salinity levels, the presence of nitrate, and the low perchlorate concentrations present in the sediments and (2) an insufficient carbon source. However, the potential for in situ bioremediation of the sediments along the Wash area is considered to be high due to the presence of significant numbers of perchlorate‐ reducing bacteria and to the ease in which an additional carbon source could be provided to sustain nitrate and perchlorate biodegradation. The economics of this process are expected to be very favorable; however, detailed cost estimates, pilot‐scale testing, and permit applications are required before this concept can be applied. © 2005 Wiley Periodicals, Inc.  相似文献   

6.
Using a comprehensive approach to decommission a 180,000-square-foot automotive parts manufacturing facility saves time and money while reducing environmental liability. Prior to starting the facility decommissioning, a detailed facility characterization was conducted to identify contaminated areas. Remediation activities were scheduled to coincide with facility demolition. Specialized subcontractors were used to perform tasks such as asbestos and lead-paint abatement, soil bioremediation, underground storage tank and clarifier removal, and facility destruction and recycling. The project timetable was reduced by using several crews simultaneously to conduct recycling, demolition, and remediation. Costs were offset by selling remaining equipment, scrap metals, overhead lights and fixtures, and a premanufactured steel building. A total of 415 tons of scrap metal was recycled, not including the aforementioned steel building. On-site recycling and remediation were used wherever possible to reduce cost and associated hauling liabilities. For example, concrete and asphalt debris were crushed and used as base for final site paving, saving disposal costs and base material purchase costs. On-site bioremediation of soil impacted by perchloroethene (PCE) saved over $1.5 million, with total project savings of $2.4 million. On-site remediation and recycling also reduced both long-term and short-term environmental liability.  相似文献   

7.
The Muggah Creek estuary in Sydney, Nova Scotia, received liquid and solid wastes from a steel mill and its associated coke ovens for approximately 100 years. This resulted in pollution of soils and sediments with polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), heavy metals, and other pollutants, including those in untreated domestic wastewaters. The Canadian federal and Nova Scotia provincial governments organized the Sydney Tar Ponds Agency (STPA) to develop a remediation approach for the Coke Ovens site soils and Sydney Tar Ponds sediments. The STPA developed a remediation approach for the Sydney Tar Ponds sediments, involving solidification/stabilization (S/S) through mixing cement and other materials into the sediments, and then capping them as a waste pile. High‐density polyethylene (HDPE) plastic sheeting vertical barriers are proposed to be used to divert groundwater and surface water from entering into the S/S‐treated sediments and to collect any water and associated pollutants released from the S/S‐treated sediments. The Coke Ovens site soils are proposed to be landfarmed to reduce some of the PAHs and other pollutants and then capped with a layer of soil. This remediation program is estimated to cost on the order of $400 million (CAN). This article presents a review of the significant potential problems with the STPA proposed remediation strategy of the Sydney Tar Ponds sediments and Coke Ovens site soils. © 2006 Wiley Periodicals, Inc.  相似文献   

8.
Enhanced bioremediation is quickly developing into an economical and viable technology for the remediation of contaminated soils. Until recently, chlorinated organic compounds have proven difficult to bioremediate. Environmentally recalcitrant compounds, such as polychlorinated biphenyls (PCBs) and persistent organic pesticides (POPs) such as dichlorodiphenyl trichloroethane (DDT) have shown to be especially arduous to bioremediate. Recent advances in field‐scale bioremedial applications have indicated that biodegradation of these compounds may be possible. Engineers and scientists at the Savannah River Site (SRS), a major DOE installation near Aiken, South Carolina, are using enhanced bioremediation to remediate soils contaminated with pesticides (DDT and its metabolites, heptachlor epoxide, dieldrin, and endrin) and PCBs. This article reviews the ongoing remediation occurring at the Chemicals, Metals, and Pesticides (CMP) Pits using windrow turners to facilitate microbial degradation of certain pesticides and PCBs. © 2003 Wiley Periodicals, Inc.  相似文献   

9.
Due to the nature of contamination typically found at former MGP (manufactured gas plant) sites, excavation and thermal desorption of MGP wastes has proven to be an effective method for the remediation of MGP‐contaminated soil. The use of on‐site thermal desorption enables MGP sites to be quickly remediated at a low cost. Tar pits, holders, and other underground storage structures typically contain coal tar residuals and waste from former operations, and the areas around these structures are often significantly contaminated. Thus, excavation techniques, odor and vapor management, and material preparation for the treatment method are important factors to consider when developing a site remediation strategy. This article reviews typical excavation and handling methods associated with the remediation of former MGP sites and discusses the treatment of MGP wastes using on‐site thermal desorption technology. © 2001 John Wiley & Sons, Inc.  相似文献   

10.
Heavy metal contamination of soil resulting from anthropogenic sources poses a significant challenge in many industrialized societies. The current technologies employed for removal of heavy metals often involve expensive ex-situ processes requiring sophisticated equipment and removal, transportation, and purification of the soil. Generally, in-situ remedial technologies are favored to ex-situ methods for detoxification, neutralization, degradation, or immobilization of contaminants. In-situ bioremediation is increasingly favored because of its effectiveness and low cost. A new type of bioremediation, known as vegetative remediation or “phytoremediation,” uses metal-tolerant hyperaccumulator plants to take up metal ions from soils and store them in their aboveground parts. To select the appropriate phytoremediation technology, one must understand the technical feasibility, cost effectiveness, and availability of the suitable plant species. Equally important is determining whether the site's soil conditions are optimal to enhance or restore the soil biological activity. Before phytoremediation can be exploited on a contaminated site, greenhouse-scale confirmatory testing is necessary to measure plant uptake and correlate shoot metal concentrations to available soil metals. These tests also validate that the harvesting and subsequent disposal of metal-containing plant tissues are environmentally safe and manageable.  相似文献   

11.
房彬  张建  李玉庆  刘范嘉  马劲 《化工环保》2016,36(4):375-380
综述了植物修复、微生物修复和生物联合修复等土壤氰化物污染生物修复技术的降解机理、降解途径及降解影响因素的研究进展,探讨了氰化物生物修复技术的发展趋势和应用前景。指出基于提高修复时效和针对土壤复合污染类型的多技术融合研究、基于提高微生物耐受性和降解效率的菌株固定化及菌根真菌-植物联合技术研究以及基于工程化应用为导向的现场试验研究是未来研究的重点领域,为土壤氰化物污染的综合治理和修复提出了新思路。  相似文献   

12.
李援  王亭  王岽  郦和生 《化工环保》2018,38(3):344-347
采用原位修复法处理石油烃污染土壤,考察了土壤中石油烃的自然降解情况,研究了土壤改良剂和生物营养剂对石油烃降解的促进作用。实验结果表明:将总石油烃含量约为5 g/kg的实验土样降解30 d,自然降解时总石油烃降解率为7.8%;当单独加入1.0%(w)的土壤改良剂时,总石油烃降解率达36.0%;当单独加入1.0 g/kg的生物营养剂时,总石油烃降解率为51.6%;最佳促进剂配方为土壤改良剂加入量1.0%(w),生物营养剂加入量1.0 g/kg,此条件下总石油烃降解率为80.1%。  相似文献   

13.
The Army National Guard initiated an Innovative Technology Evaluation (ITE) Program in March 2000 to study potential remedial technologies for the cleanup of explosives‐contaminated soil and groundwater at the Camp Edwards site on the Massachusetts Military Reservation. The soil technologies chosen for the ITE program were: soil washing, chemical oxidation, chemical reduction, thermal desorption/destruction (LTTD), bioslurry, composting, and solid phase bioremediation. The technologies were evaluated based on their ability to treat both washed and untreated soil. A major factor considered was the ability to degrade explosives, such as RDX, found in particulate form in the soils. The heterogeneous nature of explosives in soils dictates that the preferred technology must be able to treat explosives in all forms, including the particulate form. Groundwater remediation technologies considered include: in situ cometabolic reduction, two forms of in situ chemical oxidation, Fenton‐like oxidation and potassium permanganate. This article presents the results of each of the remedial technologies evaluated and discusses which technologies met the established ITE performance goals. © 2003 Wiley Periodicals, Inc.  相似文献   

14.
In-situ bioremediation is a process by which contaminants in subsurface environments are biologically eliminated or mineralized; however, it is often difficult to implement. Microbes sparsely distributed in deep soils are incapable of degrading a chemical rapidly; furthermore, fine-pore structures of soils tend to retard the penetration and propagation of these microbes and hinder oxygen transfer. The latter is particularly detrimental to the aerobic growth of microbes, which is often essential for bioremediation. Measures intended to promote bioremediation, such as the addition of surfactants for enhancing dissolution and the application of genetically engineered microbes for accelerating the biodegradation of contaminants, are almost impossible to adopt. This is attributable to the fact that various facets of the bioremediation process (e.g., the distribution of dissolved contaminants, nutrients, and oxygen, and the concentration of microbes) cannot be readily manipulated. This article proposes a novel technology, namely, bio-wall. This technology resorts to an in-situ constructed medium with porosity and organic content greater than those of the original soil for promoting the adsorption and retention of microbes and the biodegradation of contaminants. Moreover, oxygen and nutrients are supplied to the bio-wall to facilitate microbialgrowth. The results of conceptual design study and simulation have revealed that the technology is indeed feasible and, under certain environmental conditions, cost-effective. Particularly noteworthy is the fact that bio-wall can prevent contaminant migration through the enhancement of the biodegradation rate and reduction of the plume-distance, both by several orders of magnitude.  相似文献   

15.
Traditional bioremediation approaches have been used to treat petroleum source contamination in readily accessible soils and sludges. Contamination under existing structures is a greater challenge. Options to deal with this problem have usually been in the extreme (i.e., to dismantle the facility and excavate to an acceptable regulated residual, or to pump and treat for an inordinately long period of time). The excavated material must be further remediated and cleanfill must be added to close the excavation. If site assessments were too conservative or incomplete, new contamination adulterating fill soils may result in additional excavation at some later date. Innovative, cost-efficient technologies must be developed to remove preexisting wastes under structures and to reduce future remediation episodes. An innovative soil bioremediation treatment method was developed and evaluated in petroleum hydrocarbon contaminated (PHC) soils at compressor stations of a natural gas pipeline running through Louisiana. The in-situ protocol was developed for remediating significant acreage subjected to contamination by petroleum-based lubricants and other PHC products resulting from a chronic leakage of lubricating oil used to maintain the pipeline itself. Initial total petroleum hydrocarbon (TPH) measurements revealed values of up to 12,000 mg/kg soil dry weight. The aim of the remediation project was to reduce TPH concentration in the contaminated soils to a level of <200 mg/kg soil dry weight, a level negotiated to be acceptable to state and federal regulators. After monitoring the system for 122 days, all sites showed greater than 99-percent reduction in TPH concentration.  相似文献   

16.
石油污染土壤的微生物修复技术   总被引:1,自引:0,他引:1       下载免费PDF全文
李杨  李凡修 《化工环保》2017,37(6):605-610
介绍了石油污染土壤微生物修复技术的影响因素;概述了生物刺激、生物强化、固定化微生物、植物-微生物联合修复以及电动-微生物联合修复石油污染土壤的技术原理,分析了现阶段土壤修复过程中面临的难题,预测了微生物修复技术的研究方向。指出优化微生物的环境条件、培育新型高效的基因工程菌和开发经济高效的新型修复技术等将是未来微生物修复技术的发展趋势。  相似文献   

17.
Contamination of soil and sediment by pollutants represents a major environmental challenge. Remediation of soil during the original Superfund years consisted primarily of dig and haul, capping, or containment. The 1986 amendments to CERCLA—SARA—provided the incentive for treatment and permanent remedies during site remediation. Thermal treatment, which routinely achieves the low cleanup criteria required by RCRA land-ban regulations, became one of the major technologies used for cleanup under the concept of ARAR. As the remediation industry matured and recognized specific market niches in soil remediation, a number of new technologies emerged. Thermal desorption, bioremediation, soil vapor extraction, soil washing, and soil extraction are being used on sites at which the technology offers advantages over incineration. In addition, a continuing stream of emerging technologies is being presented that requires careful evaluation relative to existing cleanup methods. Each of these technologies offers a range of options for achieving appropriate cleanup criteria, application to different soil matrices, cost, time of remediation, and public acceptability. Balancing cleanup criteria defined by regulation or risk assessment with technology cost and capability affords the opportunity to solve these problems with appropriate balance of cost and protection of human health and the environment.  相似文献   

18.
Mulch biowalls are proving to be an effective means of generating reducing conditions for the in situ anaerobic reduction of contaminants in groundwater that are amenable to the reduction process. Mulch is an inexpensive and readily available substrate that provides a long‐lasting carbon and electron donor source for the stimulation of the anaerobic reduction process in groundwater. Examples of contaminants that are amenable to the biotic anaerobic reduction process include: chlorinated alkenes and alkanes, explosives, perchlorate, some metals, and petroleum hydrocarbons. The microbial degradation of cellulose fibers (mulch) is arguably the oldest reduction process known and is evident anywhere that plant material, soil, and water are present together. This article presents three case studies discussing three different uses of mulch biowalls to stimulate the anaerobic bioremediation of contaminants in shallow soils and groundwater. © 2009 Wiley Periodicals, Inc.  相似文献   

19.
Remediation of recalcitrant compounds at sites with high concentrations of volatile organic compounds (VOCs) or nonaqueous‐phase liquids (NAPLs) can present significant technical and financial (long‐term) risk for stakeholders. Until recently, however, sustainability has not been included as a significant factor to be considered in the feasibility and risk evaluation for remediation technologies. The authors present a framework for which sustainability can be incorporated into the remediation selection criteria focusing specifically on off‐gas treatment selection for soil vapor extraction (SVE) remediation technology. SVE is generally considered an old and standard approach to in situ remediation of soils at a contaminated site. The focus on off‐gas treatment technology selection in this article allows for more in‐depth analysis of the feasibility evaluation process and how sustainable practices might influence the process. SVE is more commonly employed for recovery of VOCs from soils than other technologies and generally employs granular activated carbon (GAC), catalytic, or thermal oxidation, or an emerging alternative technology known as cryogenic‐compression and condensation combined with regenerative adsorption (C3–Technology). Of particular challenge to the off‐gas treatment selection process is the potential variety of chemical constituents and concentrations changing over time. Guidance is available regarding selection of off‐gas treatment technology (Air Force Center for Environmental Excellence, 1996; U.S. Environmental Protection Agency, 2006). However, there are common shortcomings of off‐gas treatment technology guidance and applications; practitioners have rarely considered sustainability and environmental impact of off‐gas treatment technology selection. This evaluation includes consideration of environmental sustainability in the selection of off‐gas treatment technologies and a region‐specific (Los Angeles, California) cost per pound and time of remediation comparisons between GAC, thermal oxidation, and C3–Technology. © 2008 Wiley Periodicals, Inc.  相似文献   

20.
Remedial action was initiated and completed on an approximately 500-acre brownfield site in southern California within a period of five months during the summer of 1995. Remedial actions included design and construction of an approximately 14-acre cap, including a synthetic membrane; design, construction, and testing of an in-situ soil vapor extraction system; excavation, on-site treatment, and off-site disposal of approximately 7,000 cubic yards of residual waste and affected soil; and verification sampling, analysis, and health risk screening in 20 units of a former integrated steel mill. Completion of remedial action on this portion of the mill site within this time frame was required due to site redevelopment plans which included construction of an auto raceway with scheduled races in early 1997. Rapid remedial action was possible only through simultaneous completion of multiple remediation tasks. This could be done only with continuous communication and close coordination among the site owner, lead regulatory agency, and contractors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号