首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The feasibility of simultaneous nitrification and denitrification in a bioreactor landfill with limited aeration was assessed. Three column reactors, simulating bioreactor landfill operations under anaerobic condition (as reference), intermittent forced aeration and enhanced natural aeration were hence established, where aerated columns passed through two phases, i.e., fresh landfill and well-decomposed landfill. The experimental results show that limited aeration decreased nitrogen loadings of leachate distinctly in the fresh landfill. In the well-decomposed landfill, the NH(4)(+)-N of the input leachate could be nitrified completely in the aerated landfill columns. The nitrifying loadings of the column cross section reached 7.9 g N/m(2)d and 16.9 g N/m(2)d in the simulated landfill columns of intermittent forced aeration and enhanced natural aeration, respectively. The denitrification was influenced by oxygen distribution in the landfill column. Intermittent existence of oxygen in the landfill with the intermittent forced aeration was favorable to denitrify the NO(2)(-)-N and NO(3)(-)-N, indicated by the high denitrification efficiency (>99%) under the condition of BOD(5)/TN of more than 5.4 in leachate; locally persistent existence of oxygen in the landfill with enhanced natural aeration could limit the denitrification, indicated by relatively low denitrification efficiency of about 75% even when the BOD(5)/TN in leachate had an average of 7.1.  相似文献   

2.
Results of investigations from many old landfills in Germany and Europe indicate that significant emissions occur under conventional landfill operating conditions (i.e., anaerobic conditions). Significant emissions via the gas phase are predicted to last at least three decades after landfill closure, while leachate emissions are predicted to continue for many decades, potentially even lasting for centuries. When considering the specific type and quality, and quite often lack of, protection barriers associated with old landfills, these leachate and gas emissions may result in a significant negative impact on the environment. However, complete sealing of the landfill only temporarily reduces emissions because dry-conservation of the biodegradable waste fraction results, thus not allowing any severe reduction in the emission and hazardous potential of the landfill to occur. If noticeable damage of the surface capping system occurred in these landfills, infiltrating water would restart the interrupted emission formation. In contrast, aerobic in situ stabilization by means of low pressure aeration attempts to stabilize and modify the inventory of organic matter inside the landfill, acting to reduce the emission potential in a more sustainable manner. By enabling faster and more extensive aerobic degradation processes in the landfill (compared with anaerobic processes), the organics (e.g., hydrocarbons) are degraded significantly faster, resulting in an increased carbon discharge via the gas phase, as well as reduced leachate concentrations. Because carbon dioxide (CO(2)) is the main compound in the extracted off-gas (instead of methane (CH(4)), which dominated under anaerobic landfill conditions), the negative impact of diffuse LFG emissions towards an increased global warming effect may be significantly lowered. With respect to leachate quality, a reduction of organic compounds as well as ammonia-nitrogen can be expected. In addition to these positive ecological effects, aerobic in situ stabilization is associated with significant cost savings potential due to both quantitative and qualitative reductions in the aftercare period. This paper describes the fundamental processes and implications of in situ landfill aeration. Additionally, possible criteria for defining an endpoint of the active aeration process are presented and discussed.  相似文献   

3.
The numerical computer models that simulate municipal solid waste (MSW) bioreactor landfills have mainly two components – a biodegradation process module and a multi-phase flow module. The biodegradation model describes the chemical and microbiological processes. The models available to date include predefined solid waste biodegradation reactions and participating species. Some of these models allow changing the basic composition of solid waste. In a bioreactor landfill several processes like anaerobic and aerobic solids biodegradation, nitrogen and sulfate related processes, precipitation and dissolution of metals, and adsorption and gasification of various anthropogenic organic compounds occur simultaneously. These processes may involve reactions of several species and the available biochemical models for solid waste biodegradation do not provide users with the flexibility to simulate these processes by choice. This paper presents the development of a generalized biochemical process model BIOKEMOD-3P which can accommodate a large number of species and process reactions. This model is able to simulate bioreactor landfill operation in a completely mixed condition, when coupled with a multi-phase model it will be able to simulate a full-scale bioreactor landfill. This generalized biochemical model can simulate laboratory and pilot-scale operations in order to determine biochemical parameters important for simulation of full-scale operations.  相似文献   

4.
This study is aimed at estimating organic compounds removal and sludge production in SBR during treatment of landfill leachate. Four series were performed. At each series, experiments were carried out at the hydraulic retention time (HRT) of 12, 6, 3 and 2d. The series varied in SBR filling strategies, duration of the mixing and aeration phases, and the sludge age. In series 1 and 2 (a short filling period, mixing and aeration phases in the operating cycle), the relationship between organics concentration (COD) in the leachate treated and HRT was pseudo-first-order kinetics. In series 3 (with mixing and aeration phases) and series 4 (only aeration phase) with leachate supplied by means of a peristaltic pump for 4h of the cycle (filling during reaction period) - this relationship was zero-order kinetics. Activated sludge production expressed as the observed coefficient of biomass production (Y(obs)) decreased correspondingly with increasing HRT. The smallest differences between reactors were observed in series 3 in which Y(obs) was almost stable (0.55-0.6 mg VSS/mg COD). The elimination of the mixing phase in the cycle (series 4) caused the Y(obs) to decrease significantly from 0.32 mg VSS/mg COD at HRT 2d to 0.04 mg VSS/mg COD at HRT 12d. The theoretical yield coefficient Y accounted for 0.534 mg VSS/mg COD (series 1) and 0.583 mg VSS/mg COD (series 2). In series 3 and 4, it was almost stable (0.628 mg VSS/mg COD and 0.616 mg VSS/mg COD, respectively). After the elimination of the mixing phase in the operating cycle, the specific biomass decay rate increased from 0.006 d(-1) (series 3) to 0.032 d(-1) (series 4). The operating conditions employing mixing/aeration or only aeration phases enable regulation of the sludge production. The SBRs operated under aerobic conditions are more favourable at a short hydraulic retention time. At long hydraulic retention time, it can lead to a decrease in biomass concentration in the SBR as a result of cell decay. On the contrary, in the activated sludge at long HRT, a short filling period and operating cycle of the reactor with the mixing and aeration phases seem the most favourable.  相似文献   

5.
The paper presents a 1D mathematical model for the simulation of the percolation fluxes throughout a landfill for municipal solid waste (MSW). Specifically, the model was based on mass balance equations, that enable simulation of the formation of perched leachate zones in a landfill for MSW. The model considers the landfill divided in several layers evaluating the inflow to and outflow from each layer as well as the continuous moisture distribution. The infiltration flow was evaluated by means of the Darcy’s law for an unsaturated porous medium, while the moisture distribution evaluation has been carried out on the basis of the theory of the vertically distributed unsaturated flow. The solution of the model has been obtained by means of the finite difference method. The model has been applied to a semi-idealized landfill located in Palermo landfill (Bellolampo). Specifically, field measurements were conducted to determine the relationship between waste density and applied vertical strain. This relationship was then used to relate vertical strain to waste porosity. The inflow rate to the system was simulated via a synthetic hyetograph whose characteristics have been identified in a previous hydrologic study.Three simulations, each with a different initial moisture content, were conducted. The model results showed a different response of the landfill in terms both of flow rates throughout the landfill and moisture profile. Indeed, the initial moisture content drastically influenced not only the formation of perched leachate zones but also their extension. The model can be a useful tool in predicting potential for the formation of perched leachate zones.  相似文献   

6.
To reliably predict field operation performance derived from lab-based tests, it is very important to observe and consider all the specific landfill-site properties. The purpose of this study was to suggest and discuss the availability of batch and lysimeter tests to estimate the oxygen amount and the aeration period. To achieve this purpose, a comparison between lab test (batch and lysimeter tests) and full-scale applications was conducted. This study showed that aerobic batch and lysimeter tests could be used to estimate the amount of oxygen (mg-O2/g-DM) required to bio-stabilize landfilled wastes within a short period of time. In addition, aeration periods necessary to reach the target value can be calculated by a first-order kinetic depending on moisture content. Therefore, this study suggests that when applying in situ aeration processes to field-scale landfills, the amount of aeration required to bio-stabilize landfilled wastes has to be determined by the aerobic batch test, and then the aeration period required to reach the target value can be calculated by a reliable monitoring of the oxygen concentration in a landfill site in combination with the first-order kinetic.  相似文献   

7.
The influences of aeration rate and biodegradability fractionation on biodegradation kinetics during composting were studied. The first step was the design of a suitable lab-reactor that enabled the simulation of composting. The second step comprised of composting trials of six blends of sludge (originating from a food processing effluent) with wood chips using aeration rates of 1.69, 3.62, 3.25, 8.48, 11.98 and 16.63 L/h/kg DM of mixture. Biodegradation was evaluated by respiration measurements and from the analysis of the substrate (dry matter, organic matter, total carbon and chemical oxygen demand removal). Continuous measurement of oxygen consumption was coupled with the analysis of initial substrate and composted product for chemical oxygen demand (in the soluble and non-soluble fractions), which enabled an evaluation of the organic matter biodegradability. Oxygen requirements to remove both the easily and slowly biodegradable fractions were determined. Dividing the substrate into different parts according to biodegradability allowed explanation of the influence of aeration rate on stabilization kinetics. Considering that the biodegradation kinetics were of the first-order, the kinetic constants of the easily and slowly biodegradable fractions were calculated as a function of temperature. The methodology presented here allows the comparison of organic wastes in terms of their content of easily and slowly biodegradable fractions and the respective biodegradation kinetics.  相似文献   

8.
Stable isotopic signatures of landfill leachates are influenced by processes within municipal solid waste (MSW) landfills mainly depending on the aerobic/anaerobic phase of the landfill. We investigated the isotopic signatures of δ13C, δ2H and δ18O of different leachates from lab-scale experiments, lysimeter experiments and a landfill under in situ aeration. In the laboratory, columns filled with MSW of different age and reactivity were percolated under aerobic and anaerobic conditions. In landfill simulation reactors, waste of a 25 year old landfill was kept under aerobic and anaerobic conditions. The lysimeter facility was filled with mechanically shredded fresh waste. After starting of the methane production the waste in the lysimeter containments was aerated in situ. Leachate and gas composition were monitored continuously. In addition the seepage water of an old landfill was collected and analysed periodically before and during an in situ aeration.We found significant differences in the δ13C-value of the dissolved inorganic carbon (δ13C-DIC) of the leachate between aerobic and anaerobic waste material. During aerobic degradation, the signature of δ13C-DIC was mainly dependent on the isotopic composition of the organic matter in the waste, resulting in a δ13C-DIC of ?20‰ to ?25‰. The production of methane under anaerobic conditions caused an increase in δ13C-DIC up to values of +10‰ and higher depending on the actual reactivity of the MSW. During aeration of a landfill the aerobic degradation of the remaining organic matter caused a decrease to a δ13C-DIC of about ?20‰. Therefore carbon isotope analysis in leachates and groundwater can be used for tracing the oxidation–reduction status of MSW landfills.Our results indicate that monitoring of stable isotopic signatures of landfill leachates over a longer time period (e.g. during in situ aeration) is a powerful and cost-effective tool for characterising the biodegradability and stability of the organic matter in landfilled municipal solid waste and can be used for monitoring the progress of in situ aeration.  相似文献   

9.
Modern landfill understanding points out controlled operation of landfills. Emissions from landfills are caused mainly by anaerobic biodegradation processes which continue for very long time periods after landfill closure. In situ landfill stabilization aims controlled reduction of emissions towards reduced expenditures as well as aftercare measures. Since April 2010, a new in situ stabilization technique is being applied at a pilot scale landfill (BAIV) within Landfill Konstanz Dorfweiher. This new method utilizes intermittent aeration and leachate recirculation for waste stabilization. In this study, influence of this technique on leachate quality is investigated. Among many other parameters, leachate analyses were conducted for COD, BOD5, NH4–N, NO2–N, NO3–N, TKN and chloride besides continuously on site recorded pH, electrical conductivity and oxidation–reduction potential (ORP). Results from leachate quality analyses showed that biological activity in the landfill was accelerated resulting in initial higher leachate strength and reduced emission potential of landfill. During full scale in situ aeration, ambient conditions differ from optimized laboratory scale conditions which mainly concern temperature increase and deficient aeration of some landfill parts (Ritzkowski and Stegmann, 2005). Thus, as a field application results of this study have major importance on further process optimization and application.  相似文献   

10.
It is known that aeration reduces rapidly the concentration of organic matter in leachate. However, the oxygen flow rate required to attain a certain reaction rate of organic matter should be carefully estimated. In this study, using the oxygen ratio (the ratio of oxygen flow rate by aeration to oxygen consumption rate of waste layer) as a parameter, the reaction rate of organic matter in leachate from landfilled incineration ash and incombustible waste upon aeration was evaluated. Total organic carbon (TOC) in the leachate was reduced rapidly when the oxygen ratio was high. The decomposition rate exceeded the elution rate of TOC in the leachate from the waste layer for several days when the oxygen ratio was above 102. The results indicate that the oxygen ratio can be used as a parameter for the aeration operation in actual landfill sites, to rapidly stabilize organic matter in leachate.  相似文献   

11.
Emissions from old landfills via leachate and the gas phase are influenced by state and stability of the organic matter in the solid waste and by environmental conditions within the landfill. Remediation of landfills by means of in-situ aeration is one possibility to reduce these emissions. By establishing aerobic conditions, biological processes in the landfill are accelerated. To investigate the effects of this remediation technology, lab-scale experiments with column tests have been carried out. The main goal of the present work is to characterize the changes of the carbon and nitrogen compounds in the aerated solid waste, the leachate and the gas phase under varying conditions. The results demonstrate a clear reduction of emissions and a stabilization of the organic matter. Furthermore, it is shown that both the intensity of aeration and the amount of water affect biological processes to a certain extent. Even when columns were operated under anaerobic conditions after a long running period of aeration, the emissions remained low.  相似文献   

12.
In situ aeration by means of the Airflow technology was proposed for landfill conditioning before landfill mining in the framework of a reclamation project in Northern Italy. A 1-year aeration project was carried out on part of the landfill with the objective of evaluating the effectiveness of the Airflow technology for landfill aerobization, the evolution of waste biological stability during aeration and the effects on leachate and biogas quality and emissions.The main outcomes of the 1-year aeration project are presented in the paper.The beneficial effect of the aeration on waste biological stability was clear (63% reduction of the respiration index); however, the effectiveness of aeration on the lower part of the landfill is questionable, due to the limited potential for air migration into the leachate saturated layers.During the 1-year in situ aeration project approx. 275 MgC were discharged from the landfill body with the extracted gas, corresponding to 4.6 gC/kgDM. However, due to the presence of anaerobic niches in the aerated landfill, approx. 46% of this amount was extracted as CH4, which is higher than reported in other aeration projects. The O2 conversion quota was lower than reported in other similar projects, mainly due to the higher air flow rates applied.The results obtained enabled valuable recommendations to be made for the subsequent application of the Airflow technology to the whole landfill.  相似文献   

13.
14.
Successful modeling of liquid and air flow and hence designing of liquid and air addition systems in the landfills are constrained by the lack of key parameters of unsaturated hydraulic properties of municipal solid waste (MSW), which are strongly dependent on the depth of burial and the degree of decomposition. In this study, water retention curves (WRC) of MSW are measured using pressure plate method on samples repacked according to the in situ unit weight measured during borehole sampling, representing the MSW in shallow, middle, and deep layers. The measured WRC of MSW is well-reproduced by the van Genuchten-Mualem model, and is used to predict the unsaturated hydraulic properties of MSW, including water retention characteristics and unsaturated hydraulic conductivity. The estimated model parameters are consistent with other studies, suggesting that the pressure plate method yields reproducible results. As the landfill depth and age increase, the overburden pressure, the highly decomposed organic matter and finer pore space increase, hence the capillary pressure increases, causing increases in air-entry values, field capacity and residual water content, and decreases in steepness of WRC and saturated water content. The unsaturated hydraulic properties of MSW undergo changes with landfill depth and age, showing more silt loam-like properties as the landfill age increases.  相似文献   

15.
Waste material in municipal landfills can be described as heterogeneous porous media, where flow and transport processes of gases and liquids are combined with local material degradation. This paper deals with the basic formulation of a multiphase flow and transport model applicable to the numerical analysis of coupled transport and reaction processes inside landfills. The transport model treats landfills within the framework of continuum mechanics, where flow and transport processes are described on a macroscopic level. The composition of organic and inorganic matter in the solid phase and its degradation are modelled on a microscopic scale. The degradation model captures the different reaction schemes of various microbial activities. Subsequently, transport and reaction processes have to be coupled, since emissions at the surface and from the drainage layer depend on the flow of leachate and gas, the transport of various substances and heat, and the biodegradation of organic matter. The theoretical considerations presented here are fundamental to the development of numerical models for the simulation of multiphase flow and transport processes inside landfills coupled with biochemical reactions and heat generation. The implicit modelling of leachate and gas flows including growth and decay of micro-organisms are innovative contributions to landfill modelling  相似文献   

16.
Sustainable landfilling has become a fundamental objective in many modern waste management concepts. In this context, the in situ aeration of landfills has been recognised for its potential to convert conventional anaerobic landfills into biological stabilised state, whereby both current and potential (long-term) emissions of the landfilled waste are mitigated. In recent years, different in situ aeration concepts have been successfully applied in Europe, North America and Asia, all pursuing different objectives and strategies.In Austria, the first full-scale application of in situ landfill aeration by means of low pressure air injection and simultaneous off-gas collection and treatment was implemented on an old, small municipal solid waste (MSW) landfill (2.6 ha) in autumn 2007. Complementary laboratory investigations were conducted with waste samples taken from the landfill site in order to provide more information on the transferability of the results from lab- to full-scale aeration measures. In addition, long-term emission development of the stabilised waste after aeration completion was assessed in an ongoing laboratory experiment. Although the initial waste material was described as mostly stable in terms of the biological parameters gas generation potential over 21 days (GP21) and respiration activity over 4 days (RA4), the lab-scale experiments indicated that aeration, which led to a significant improvement of leachate quality, was accompanied by further measurable changes in the solid waste material under optimised conditions. Even 75 weeks after aeration completion the leachate, as well as gaseous emissions from the stabilised waste material, remained low and stayed below the authorised Austrian discharge limits. However, the application of in situ aeration at the investigated landfill is a factor 10 behind the lab-based predictions after 3 years of operation, mainly due to technical limitations in the full-scale operation (e.g. high air flow resistivity due to high water content of waste and temporarily high water levels within the landfill; limited efficiency of the aeration wells). In addition, material preparation (e.g. sieving, sorting and homogenisation) prior to the emplacement in Landfill Simulation Reactors (LSRs) must be considered when transferring results from lab- to full-scale application.  相似文献   

17.
Leachability and metal-binding capacity in ageing landfill material   总被引:1,自引:0,他引:1  
In order to study the stability of landfilled heavy metals, landfill material from a combined household and industrial waste landfill was aerated for 14 months to simulate the natural ageing processes as air slowly begins to penetrate the landfill mass. During aeration, the pH of the landfill material decreased from around 8.6 to 8.1 and the carbon content also decreased. In order to investigate the possible fate of metals in ageing landfills, a four-stage sequential extraction technique was applied. The ability of the materials to bind metal ions by electrostatic attractions and to form stronger complexes was studied separately. The amount of exchangeable cations, the capacity to bind metal ions by electrostatic attraction and the capacity of the landfill material to complex copper ions were increased by the aeration process. However, results from the sequential analysis showed an increased solubility of sulphur and some metals (Cd, Co, Cu, Ni and Zn). Equilibrium speciation models (Medusa) indicated that the organic matter deposit had a significant capacity to bind metal ions provided that pH was sufficiently high. However, as carbonates are consumed over time, the risk for metal mobility increases. Therefore, the landfills can become an environmental risk, depending on variations in the solubility of metal ions due to changes in pH, redox status and the availability of organic material.  相似文献   

18.
The removal of nitrogen and organics from municipal landfill leachate in sequencing batch reactors (SBR) was investigated in the present study. The influence of hydraulic retention time (HRT), sludge age, manner of leachate dosage (short filling period of SBR and filling during the reaction period), and operational conditions with and without a mixing phase in the SBR cycle was explored. Four series were performed. In each series, the HRT used in the four SBRs was 12, 6, 3 and 2 days, respectively. Series 1 and 2 were characterized by a short leachate filling period, whereas series 3 and 4 were characterized by filling during the 4 h duration of the reaction in the SBR cycle. In series 1-3 SBR reactors worked with mixing and aeration phases, whereas in series 4 they worked only with an aeration phase. The effectiveness of the removal of organics increased with the extension of the HRT of leachate, particularly under operational conditions with the mixing and aeration phases in the SBR cycle. At 12 days HRT, the SBRs with the mixing and aeration phases in the cycle (series 1-3) showed better results than those with only an aeration phase (series 4). However, at 2 days HRT the operational conditions in SBR reactors with leachate filling over the reaction period (series 3 and 4) were more suitable. The highest efficiency of ammonium removal was obtained in series 1 with a short leachate filling period. In this series, at an HRT of 3-12 days, the ammonium concentration in the effluent did not exceed 1 mg NNH4 L(-1). Nitrogen removal proceeded mainly in the aeration phase as a result of ammonium losses and, to a lesser extent, dissimilative nitrate reduction over the mixing phase. The highest percentage of nitrogen removal as a result of ammonium losses was observed in series with a short filling period and long sludge age (series 1) and also in series without a mixing phase and filling over the aeration phase (series 4), whereas the highest nitrogen consumption for biomass production occurred in series 3 with filling during the reaction period and mixing phase of the cycle.  相似文献   

19.
This paper examines public preferences on siting landfills using a choice experiment. A choice experiment is a method that elicits public preferences directly through questionnaires. This paper focuses on possible negative effects of a hypothetical landfill siting on residents who are assumed to live around the landfill. The results of this analysis clearly show that the residents evaluate accepting waste originating from outside their community quite negatively, especially industrial waste originating from the Tokyo Metropolitan Area. Large external costs also are seen for siting landfills near areas that are sources of drinking water. In addition, the results show that the NIMBY syndrome of the residents weakens as the hypothetical landfill site is farther away. Considering three hypothetical siting plans, external costs based on public preferences are estimated. The social costs, which are the sum of the private costs and external costs, are then calculated. The results of the case study indicate that the option with the lowest private cost it is not always the option with the lowest social cost.  相似文献   

20.
Temporal variability of soil gas composition in landfill covers   总被引:1,自引:0,他引:1  
In order to assess the temporal variability of the conditions for the microbial oxidation of methane in landfill cover soils and their driving variables, gas composition at non-emissive and strongly emissive locations (hotspots) was monitored on a seasonal, daily and hourly time scale on an old, unlined landfill in northern Germany. Our study showed that the impact of the various environmental factors varied with the mode of gas transport and with the time scale considered. At non-emissive sites, governed by diffusive gas transport, soil gas composition was subject to a pronounced seasonal variation. A high extent of aeration, low methane concentrations and a high ratio of CO2 to CH4 were found across the entire depth of the soil cover during the warm and dry period, whereas in the cool and moist period aeration was less and landfill gas migrated further upward. Statistically, variation in soil gas composition was best explained by the variation in soil temperature. At locations dominated by advective gas transport and showing considerable emissions of methane, this pattern was far less pronounced with only little increase in the extent of aeration during drier periods. Here, the change of barometric pressure was found to impact soil gas composition. On a daily scale under constant conditions of temperature, gas transport at both types of locations was strongly impacted by the change in soil moisture. On an hourly scale, under constant conditions of temperature and moisture, gas migration was impacted most by the change in barometric pressure. It was shown that at diffusion-dominated sites complete methane oxidation was achieved even under adverse wintry conditions, whereas at hotspots, even under favorable dry and warm conditions, aerobic biological activity can be limited to the upper crust of the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号