首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Worldwide, the amount of end-of-life vehicles (ELVs) reaches 50 million units per year. Once the ELV has been processed, it may then be shredded and sorted to recover valuable metals that are recycled in iron and steelmaking processes. The residual fraction, called automotive shredder residue (ASR), represents 25% of the ELV and is usually landfilled. In order to deal with the leachable fraction of ASR that poses a potential threat to the environment, a washing treatment before landfilling was applied. To assess the potential for full-scale application of washing treatment, tests were carried out in different conditions (L/S = 3 and 5 L/kgTS; t = 3 and 6 h). Moreover, to understand whether the grain size of waste could affect the washing efficiency, the treatment was applied to ground (<4 mm) and not-ground samples. The findings obtained revealed that, on average, washing treatment achieved removal rates of more than 60% for dissolved organic carbon (DOC), chemical oxygen demand (COD) and total Kjeldahl nitrogen (TKN). With regard to metals and chlorides, sulphates and fluoride leachable fraction, a removal efficiency of approximately 60% was obtained, as confirmed also by EC values. The comparison between the results for ground and not-ground samples did not highlight significant differences.  相似文献   

2.
At the moment Automobile Shredder Residue (ASR) is usually landfilled worldwide, but European draft Directive 2000/53/CE forces the development of alternative solutions, stating the 95%-wt recovery of an End of Life Vehicle (ELV) weight to be fulfilled by 2015. This work describes two industrial tests, each involving 250-300 t of ELVs, in which different pre-shredding operations were performed. The produced ASR materials underwent an extended characterization and some post-shredding processes, consisting of dimensional, magnetic, electrostatic and densimetric separation phases, were tested on laboratory scale, having as main purpose the enhancement of ASR recovery/recycling and the minimization of the landfilled fraction. The gathered results show that accurate depollution and dismantling operations are mandatory to obtain a high quality ASR material which may be recycled/recovered and partially landfilled according to the actual European Union regulations, with particular concern for Lower Heating Value (LHV), heavy metals content and Dissolved Organic Carbon (DOC) as critical parameters. Moreover post-shredding technical solutions foreseeing minimum economic and engineering efforts, therefore realizable in common European ELVs shredding plants, may lead to multi-purposed (material recovery and thermal valorization) opportunities for ASR reuse/recovery.  相似文献   

3.
Each European Member State must comply with Directive 2000/53/EC recycling and recovery targets by 2015, set to 85% and 95%, respectively. This paper reports a shredder campaign trial developed and performed in Italy at the beginning of 2008. It turns out to be the first assessment about the critical aspects belonging to the Italian End-of-Life Vehicles (ELVs) reverse supply chain involving 18 dismantling plants, a shredder plant and 630 ELV representatives of different categories of vehicles treated in Italy during 2006. This trial aims at improving the experimental knowledge related to ELVs added waste, pre-treatment, part reuse, recycling and final metal separation and car fluff disposal. Finally, the study also focuses on the calculation of the effective Italian ELV recycling rate, which results equal to 80.8%, and auto shredder residue (ASR) characterization. According to the results obtained in this work, ASR still contains up to 8% of metals and 40% of polymers that could be recovered. Moreover, physical-chemical analysis showed a Lower Heat Value of almost 20,000 kJ/kg and revealed the presence of pollutants such as heavy metals, mineral oils, PCBs and hydrocarbons.  相似文献   

4.
Automotive Shredder Residue (ASR) is a special waste that can be classified as either hazardous or non hazardous depending on the amount of hazardous substances and on the features of leachate gathered from EN12457/2 test. However both the strict regulation concerning landfills and the EU targets related to End-of-Life Vehicles (ELVs) recovery and recycling rate to achieve by 2015 (Directive 2000/53/EC), will limit current landfilling practice and will impose an increased efficiency of ELVs valorization. The present paper considers ELVs context in Italy, taking into account ASRs physical–chemical features and current processing practice, focusing on the enhancement of secondary materials recovery. The application in waste-to-energy plants, cement kilns or metallurgical processes is also analyzed, with a particular attention to the possible connected environmental impacts. Pyrolysis and gasification are considered as emerging technologies although the only use of ASR is debatable; its mixing with other waste streams is gradually being applied in commercial processes. The environmental impacts of the processes are acceptable, but more supporting data are needed and the advantage over (co-)incineration remains to be proven.  相似文献   

5.
Fuel consumption and collection costs of solid waste were evaluated by the aid of a simulation model for a given collection area of a medium-sized Italian city. Using the model it is possible to calculate time, collected waste and fuel consumption for a given waste collection route. Starting from the data for the current waste collection scenario with a Source Segregated (SS) intensity of 25%, all the main model error evaluated was ?1.2. SS intensity scenarios of 25%, 30%, 35% and 52% were simulated. Results showed an increase in the average fuel consumed by the collection vehicles that went from about 3.3 L/tonne for 25% SS intensity to about 3.8 L/tonne for a SS intensity of 52%. Direct collection costs, including crews and vehicle purchase, ranged from about 40 €/tonne to about 70 €/tonne, respectively, for 25% and 52% SS intensity. The increase in fuel consumption and collection costs depends on the density of the waste collected, on the collection vehicle compaction ratio and on the waste collection vehicle utilization factor (WCVUF). In particular a reduction of about 50% of the WCVUF can lead to an average increase of about 80% in fuel consumption and 100% in collection costs.  相似文献   

6.
Greenhouse gas (GHG) emission factors are used with increased frequency for the accounting and reporting of GHG from waste management. However, these factors have been calculated for developed countries of the Northern Hemisphere and are lacking for developing countries. This paper shows how such factors have been developed for the collection, transport and landfilling of municipal waste in South Africa. As such it presents a model on how international results and methodology can be adapted and used to calculate country-specific GHG emission factors from waste. For the collection and transport of municipal waste in South Africa, the average diesel consumption is around 5 dm3 (litres) per tonne of wet waste and the associated GHG emissions are about 15 kg CO2 equivalents (CO2 e). Depending on the type of landfill, the GHG emissions from the landfilling of waste have been calculated to range from ?145 to 1016 kg CO2 e per tonne of wet waste, when taking into account carbon storage, and from 441 to 2532 kg CO2 e per tonne of wet waste, when carbon storage is left out. The highest emission factor per unit of wet waste is for landfill sites without landfill gas collection and these are the dominant waste disposal facilities in South Africa. However, cash strapped municipalities in Africa and the developing world will not be able to significantly upgrade these sites and reduce their GHG burdens if there is no equivalent replacement of the Clean Development Mechanism (CDM) resulting from the Kyoto agreement. Other low cost avenues need to be investigated to suit local conditions, in particular landfill covers which enhance methane oxidation.  相似文献   

7.
The global gaseous emissions produced by landfilling the Mechanically Sorted Organic Fraction (MSOF) with different weeks of Mechanical Biological Treatment (MBT) was evaluated for an existing waste management system. One MBT facility and a landfill with internal combustion engines fuelled by the landfill gas for electrical energy production operate in the waste management system considered. An experimental apparatus was used to simulate 0, 4, 8 and 16 weeks of aerobic stabilization and the consequent biogas potential (Nl/kg) of a large sample of MSOF withdrawn from the full-scale MBT. Stabilization achieved by the waste was evaluated by dynamic oxygen uptake and fermentation tests. Good correlation coefficients (R2), ranging from 0.7668 to 0.9772, were found between oxygen uptake, fermentation and anaerobic test values. On the basis of the results of several anaerobic tests, the methane production rate k (year?1) was evaluated. k ranged from 0.436 to 0.308 year?1 and the bio-methane potential from 37 to 12 N m3/tonne, respectively, for the MSOF with 0 and 16 weeks of treatment. Energy recovery from landfill gas ranged from about 11 to 90 kW h per tonne of disposed MSOF depending on the different scenario investigated. Life cycle analysis showed that the scenario with 0 weeks of pre-treatment has the highest weighted global impact even if opposite results were obtained with respect to the single impact criteria. MSOF pre-treatment periods longer than 4 weeks showed rather negligible variation in the global impact of system emissions.  相似文献   

8.
Long term methane emissions from landfill sites are often predicted by first-order decay (FOD) models, in which the default coefficients of the methane generation potential and the methane generation rate given by the Intergovernmental Panel on Climate Change (IPCC) are usually used. However, previous studies have demonstrated the large uncertainty in these coefficients because they are derived from a calibration procedure under ideal steady-state conditions, not actual landfill site conditions. In this study, the coefficients in the FOD model were estimated by a new approach to predict more precise long term methane generation by considering region-specific conditions. In the new approach, age-defined waste samples, which had been under the actual landfill site conditions, were collected in Hokkaido, Japan (in cold region), and the time series data on the age-defined waste sample’s methane generation potential was used to estimate the coefficients in the FOD model. The degradation coefficients were 0.050 1/y and 0.062 1/y for paper and food waste, and the methane generation potentials were 214.4 mL/g-wet waste and 126.7 mL/g-wet waste for paper and food waste, respectively. These coefficients were compared with the default coefficients given by the IPCC. Although the degradation coefficient for food waste was smaller than the default value, the other coefficients were within the range of the default coefficients. With these new coefficients to calculate methane generation, the long term methane emissions from the landfill site was estimated at 1.35 × 104 m3-CH4, which corresponds to approximately 2.53% of the total carbon dioxide emissions in the city (5.34 × 105 t-CO2/y).  相似文献   

9.
Gaseous emissions are an important problem in municipal solid waste (MSW) treatment plants. The sources points of emissions considered in the present work are: fresh compost, mature compost, landfill leaks and leachate ponds. Hydrogen sulphide, ammonia and volatile organic compounds (VOCs) were analysed in the emissions from these sources. Hydrogen sulphide and ammonia were important contributors to the total emission volume. Landfill leaks are significant source points of emissions of H2S; the average concentration of H2S in biogas from the landfill leaks is around 1700 ppmv. The fresh composting site was also an important contributor of H2S to the total emission volume; its concentration varied between 3.2 and 1.7 ppmv and a decrease with time was observed. The mature composting site showed a reduction of H2S concentration (<0.1 ppmv). Leachate pond showed a low concentration of H2S (in order of ppbv). Regarding NH3, composting sites and landfill leaks are notable source points of emissions (composting sites varied around 30–600 ppmv; biogas from landfill leaks varied from 160 to 640 ppmv).Regarding VOCs, the main compounds were: limonene, p-cymene, pinene, cyclohexane, reaching concentrations around 0.2–4.3 ppmv.H2S/NH3, limonene/p-cymene, limonene/cyclohexane ratios can be useful for analysing and identifying the emission sources.  相似文献   

10.
The biochemical methane potential (BMP) is an essential parameter when using first order decay (FOD) landfill gas (LFG) generation models to estimate methane (CH4) generation from landfills. Different categories of waste (mixed, shredder and sludge waste) with a low-organic content and temporarily stored combustible waste were sampled from four Danish landfills. The waste was characterized in terms of physical characteristics (TS, VS, TC and TOC) and the BMP was analyzed in batch tests. The experiment was set up in triplicate, including blank and control tests. Waste samples were incubated at 55 °C for more than 60 days, with continuous monitoring of the cumulative CH4 generation. Results showed that samples of mixed waste and shredder waste had similar BMP results, which was in the range of 5.4–9.1 kg CH4/ton waste (wet weight) on average. As a calculated consequence, their degradable organic carbon content (DOCC) was in the range of 0.44–0.70% of total weight (wet waste). Numeric values of both parameters were much lower than values of traditional municipal solid waste (MSW), as well as default numeric values in current FOD models. The sludge waste and temporarily stored combustible waste showed BMP values of 51.8–69.6 and 106.6–117.3 kg CH4/ton waste on average, respectively, and DOCC values of 3.84–5.12% and 7.96–8.74% of total weight. The same category of waste from different Danish landfills did not show significant variation. This research studied the BMP of Danish low-organic waste for the first time, which is important and valuable for using current FOD LFG generation models to estimate realistic CH4 emissions from modern landfills receiving low-organic waste.  相似文献   

11.
Construction and demolition (C&D) waste dumped alongside roads and in open areas is a major source of soil and underground water pollution. Since 2006, Israeli ministry for environmental protection enacted a policy of vehicle impoundment (VI) according to which track drivers caught while dumping C&D waste illegally have their vehicles impounded. The present study attempted to determine whether the VI policy was effective in increasing the waste hauling to authorized landfill sites, thus limiting the number of illegal unloads of C&D waste at unauthorized landfill sites and in open areas. During the study, changes in the ratio between the monthly amount of C&D waste brought to authorized landfills sites and the estimated total amount of C&D waste generated in different administrative districts of Israel were examined, before and after the enactment of the 2006 VI policy. Short questionnaires were also distributed among local track drivers in order to determine the degree of awareness about the policy in question and estimate its deterrence effects. According to the study’s results, in the district of Haifa, in which the VI policy was stringently enacted, the ratio between C&D waste, dumped in authorized landfill sites, and the total amount of generated C&D waste, increased, on the average, from 20% in January 2004 to 35% in October 2009, with the effect attributed to the number of vehicle impoundments being highly statistically significant (t = 2.324; p < 0.05). By contrast, in the Jerusalem and Southern districts, in which the VI policy was less stringently enforced, the effect of VI on the above ratio was found to be insignificant (p > 0.1). The analysis of the questionnaires, distributed among the local truck drivers further indicated that the changes observed in the district of Haifa are not coincident and appeared to be linked to the VI policy’s enactment. In particular, 62% of the truck drivers, participated in the survey, were aware of the policy and 47% of them personally knew a driver whose vehicle was impounded. Furthermore, the drivers estimated the relative risk of being caught for unloading C&D waste in unauthorized sites, on the average, as high as 67%, which is likely to become a deterrent on its own. Our conclusion is that the VI policy appears to have a deterring effect on truck drivers, by encouraging them to haul C&D waste to authorized landfill sites. As we suggest, the research methodology implemented in the study and its results may help policy makers in other regions and countries, which experience similar environment enforcement problem, to analyze policy responses.  相似文献   

12.
The purpose of this study was to observe the economic sustainability of three different biogas full scale plants, fed with different organic matrices: energy crops (EC), manure, agro-industrial (Plants B and C) and organic fraction of municipal solid waste (OFMSW) (Plant A). The plants were observed for one year and total annual biomass feeding, biomass composition and biomass cost (€ Mg?1), initial investment cost and plant electric power production were registered. The unit costs of biogas and electric energy (€ Sm?3biogas, € kW h?1EE) were differently distributed, depending on the type of feed and plant. Plant A showed high management/maintenance cost for OFMSW treatment (0.155  Sm?3biogas, 45% of total cost), Plant B suffered high cost for EC supply (0.130 € Sm?3biogas, 49% of total cost) and Plant C showed higher impact on the total costs because of the depreciation charge (0.146  Sm?3biogas, 41% of total costs). The breakeven point for the tariff of electric energy, calculated for the different cases, resulted in the range 120–170  MW h?1EE, depending on fed materials and plant scale. EC had great impact on biomass supply costs and should be reduced, in favor of organic waste and residues; plant scale still heavily influences the production costs. The EU States should drive incentives in dependence of these factors, to further develop this still promising sector.  相似文献   

13.
Hydrogen sulphide (H2S) gas is a major odorant at municipal landfills. The gas can be generated from different waste fractions, for example demolition waste containing gypsum based plaster board. The removal of H2S from landfill gas was investigated by filtering it through mineral wool waste products. The flow of gas varied from 0.3 l/min to 3.0 l/min. The gas was typical for landfill gas with a mean H2S concentration of ca. 4500 ppm. The results show that the sulphide gas can effectively be removed by mineral wool waste products. The ratios of the estimated potential for sulphide precipitation were 19:1 for rod mill waste (RMW) and mineral wool waste (MWW). A filter consisting of a mixture of MWW and RMW, with a vertical perforated gas tube through the center of filter material and with a downward gas flow, removed 98% of the sulfide gas over a period of 80 days. A downward gas flow was more efficient in contacting the filter materials. Mineral wool waste products are effective in removing hydrogen sulphide from landfill gas given an adequate contact time and water content in the filter material. Based on the estimated sulphide removal potential of mineral wool and rod mill waste of 14 g/kg and 261 g/kg, and assuming an average sulphide gas concentration of 4500 ppm, the removal capacity in the filter materials has been estimated to last between 11 and 308 days. At the studied location the experimental gas flow was 100 times less than the actual gas flow. We believe that the system described here can be upscaled in order to treat this gas flow.  相似文献   

14.
Mechanical–biological treatment (MBT) processes are increasingly being adopted as a means of diverting biodegradable municipal waste (BMW) from landfill, for example to comply with the EU Landfill Directive. However, there is considerable uncertainty concerning the residual pollution potential of such wastes. This paper presents the results of laboratory experiments on two different MBT waste residues, carried out to investigate the remaining potential for the generation of greenhouse gases and the flushing of contaminants from these materials when landfilled. The potential for gas generation was found to be between 8% and 20% of that for raw MSW. Pretreatment of the waste reduced the potential for the release of organic carbon, ammoniacal nitrogen, and heavy metal contents into the leachate; and reduced the residual carbon remaining in the waste after final degradation from ~320 g/kg dry matter for raw MSW to between 183 and 195 g/kg dry matter for the MBT wastes.  相似文献   

15.
Modern waste legislation aims at resource efficiency and landfill reduction. This paper analyses more than 20 years of landfill reduction in the Netherlands. The combination of landfill regulations, landfill tax and landfill bans resulted in the desired landfill reduction, but also had negative effects. A fierce competition developed over the remaining waste to be landfilled. In 2013 the Dutch landfill industry generated €40 million of annual revenue, had €58 million annual costs and therefore incurred an annual loss of €18 million. It is not an attractive option to prematurely end business. There is a risk that Dutch landfill operators will not be able to fulfil the financial obligations for closure and aftercare. Contrary to the polluter pays principle the burden may end up with society. EU regulations prohibiting export of waste for disposal are in place. Strong differentials in landfill tax rate between nations have nevertheless resulted in transboundary shipment of waste and in non-compliance with the self-sufficiency and proximity principles. During the transformation from a disposal society to a recycling society, it is important to carefully plan required capacity and to guide the reorganisation of the landfill sector. At some point, it is no longer profitable to provide landfill services. It may be necessary for public organisations or the state to take responsibility for the continued operation of a ‘safety net’ in waste management. Regulations have created a financial incentive to pass on the burden of monitoring and controlling the impact of waste to future generations. To prevent this, it is necessary to revise regulations on aftercare and create incentives to actively stabilise landfills.  相似文献   

16.
The landfill model LDAT simulates the transport and bio-chemical behaviour of the solid, liquid and gas phases of waste contained in a landfill. LDAT was applied to the LMC1 and LMC2 landfill modelling challenges held in 2009 and 2011. These were blind modelling challenges with the model acting in a predictive mode based on limited early time sections of full datasets. The LMC1 challenge dataset was from a 0.34 m deep 0.48 m diameter laboratory test cell, and the LMC2 dataset was from a 55 m × 80 m 8 m deep landfill test cell which formed part of the Dutch sustainable landfill research programme at Landgraaf in the Netherlands. The paper describes developments in LDAT arising directly from the experience of responding to the two challenges, and discusses the model input and output data obtained from a calibration using the full datasets.The developments include the modularisation of the model into a set of linked sub-models, the strategy for converting conventional waste characteristics into model input parameters, the identification of flexible degradation pathways to control the CO2:CH4 ratio, and the application of a chemical equilibrium model that includes a stage in which the solid waste components dissolve into the leachate.  相似文献   

17.
Due to the prohibition of food waste landfilling in Korea from 2005 and the subsequent ban on the marine disposal of organic sludge, including leachate generated from food waste recycling facilities from 2012, it is urgent to develop an innovative and sustainable disposal strategy that is eco-friendly, yet economically beneficial. In this study, methane production from food waste leachate (FWL) in landfill sites with landfill gas recovery facilities was evaluated in simulated landfill reactors (lysimeters) for a period of 90 d with four different inoculum–substrate ratios (ISRs) on volatile solid (VS) basis. Simultaneous biochemical methane potential batch experiments were also conducted at the same ISRs for 30 d to compare CH4 yield obtained from lysimeter studies. Under the experimental conditions, a maximum CH4 yield of 0.272 and 0.294 L/g VS was obtained in the batch and lysimeter studies, respectively, at ISR of 1:1. The biodegradability of FWL in batch and lysimeter experiments at ISR of 1:1 was 64% and 69%, respectively. The calculated data using the modified Gompertz equation for the cumulative CH4 production showed good agreement with the experimental result obtained from lysimeter study. Based on the results obtained from this study, field-scale pilot test is required to re-evaluate the existing sanitary landfills with efficient leachate collection and gas recovery facilities as engineered bioreactors to treat non-hazardous liquid organic wastes for energy recovery with optimum utilization of facilities.  相似文献   

18.
This study presents a detailed characterization of Shredder residues (SR) generated and deposited in Denmark from 1990 to 2010. It represents approximately 85% of total Danish SR. A comprehensive sampling, size fractionation and chemical analysis was carried out on entire samples as well as on each individual size fraction. All significant elemental contents except oxygen were analyzed. The unexplained “balance” was subsequently explained by oxygen content in metal oxides, carbonates, sulphates and in organics, mainly cellulose. Using mass and calorific balance approaches, it was possible to balance the composition and, thereby, estimate the degree of oxidation of elements including metals. This revealed that larger fractions (>10 mm, 10–4 mm, 4–1 mm) contain significant amount of valuable free metals for recovery. The fractionation revealed that the >10 mm coarse fraction was the largest amount of SR being 35–40% (w/w) with a metal content constituting about 4–9% of the total SR by weight and the <1 mm fine fraction constituted 27–37% (w/w) of the total weight. The lower heat value (LHV) of SR samples over different time periods (1990–2010) was between 7 and 17 MJ/kg, declining with decreasing particle size. The SR composition is greatly dependent on the applied shredding and post shredding processes at the shredding plants causing some variations. There are uncertainties related to sampling and preparation of samples for analyses due to its heterogeneous nature and uncertainties in the chemical analyses results (≈15–25%). This exhaustive characterization is believed to constitute hitherto the best data platform for assessing potential value and feasibility of further resource recovery from SR.  相似文献   

19.
The degradation of organic compounds found in municipal solid waste (MSW) under the anaerobic landfill conditions produces gas and liquid emissions that can protract well into the landfill after-care period. The European Landfill Directives regulate the amount and nature of the organic compounds disposed into landfills. In South Africa and other developing countries, MSW is still landfilled without any kind of pre-treatment. This paper presents a pilot project of mechanical biological waste treatment (MBWT) in South Africa implemented at municipal level in the city of Durban using passively aerated open windrows. Based on case studies from Austria, England and South Africa, a waste minimisation model which can facilitate full-scale implementation of MBWT in developing countries is presented. MSW was treated in open windrows for 8 weeks. Composting temperature reached a maximum of 65 °C in less than 10 days. The results of eluate tests on waste samples from the windrows at the end of composting show a reduction of BOD5 and BOD5/COD ratios equal to 35.7% and 16.7%, respectively. The percent waste composition of the treated MSW was 28.3% putrescibles, 17.4% garden refuse, 13.3% plastic, 12.4% fabrics, 12% paper and other elements. The waste composition shows that more than 40% of un-treated organic material and also more than 40% non-biodegradable and recyclable materials are still landfilled without any form of biological treatment or resource recovery. A simple wet and dry waste collection model can promote recycling, treatment of biological waste before landfilling, resource recovery, labour intensive jobs and hence sustainable landfilling in the South African scenario as well as in similar developing countries.  相似文献   

20.
Landfills are an anaerobic ecosystem and represent the major disposal alternative for municipal solid waste (MSW) in the U.S. While some fraction of the biogenic carbon, primarily cellulose (Cel) and hemicellulose (H), is converted to carbon dioxide and methane, lignin (L) is essentially recalcitrant. The biogenic carbon that is not mineralized is stored within the landfill. This carbon storage represents a significant component of a landfill carbon balance. The fraction of biogenic carbon that is not reactive in the landfill environment and therefore stored was derived for samples of excavated waste by measurement of the total organic carbon, its biogenic fraction, and the remaining methane potential. The average biogenic carbon content of the excavated samples was 64.6 ± 18.0% (average ± standard deviation), while the average carbon storage factor was 0.09 ± 0.06 g biogenic-C stored per g dry sample or 0.66 ± 0.16 g biogenic-C stored per g biogenic C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号