首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Solid-fuel conversion or gasification study of sewage sludge and energy recovery has become increasingly important because energy recovery and climate change are emerging issues. Various types of catalysts, such as dolomite, steel slag and calcium oxide, were tested for tar reduction during the sewage sludge gasification process. For the experiments on sewage sludge gasification reactions and tar reduction using the catalysts, a fixed bed of laboratory-scale experimental apparatus was set up. The reactor was made of quartz glass using an electric muffle furnace. The sewage sludge samples used had moisture contents less than 6%. The experimental conditions were as follows: sample weight was 20 g and reaction time was 10 min, gasification reaction temperature was from 600 to 800°C, and the equivalence ratio was 0.2. The quantity of catalysts was 2–6 g, and temperatures of catalyst layers were 500–700°C. As the reaction temperature increased up to 800°C, the yields of gaseous products and liquid products increased, whereas char and tar products decreased, showing effects on gas product compositions. These results were considered to be due to the increase of the water-gas reaction and Boudouard reaction. In the case of experiments with catalysts, dolomite (4 g), steel slag (6 g) and calcium oxide (6 g) were used. When the temperature of catalysts increased, the weight of the tar produced decreased with different cracking performances by different catalysts. Reforming reactions were considered to occur on the surface of dolomite, steel slag and calcium oxide, causing cracking of the hydrocarbon structure, which eventually showed reduced tar generation.  相似文献   

2.
The work deals with catalytic gasification, pyrolysis and non-catalytic gasification of tar from an industrial dumping site. All experiments were carried out in a vertical stainless steel gasification reactor at 800 °C. Crushed calcined dolomite was used as the gasification catalyst. Parameters such as addition of water and air, and the influence of the catalyst in regard to the composition of the process gas were investigated. The catalytic gasification experiment in the steady state produced process gas with the composition: 56 % of H2, 9 % of CO, 11 % of CH4 and 12 % of CO2 (mol.%). Concentration of the C2 fraction was lower than 1 mol.%. Volume flow of air was later changed from 120 to 230 ml min?1 reducing the amount of hydrogen to 51 mol.% and that of methane to 10 mol.%. Process gas created in a non-catalytic gasification process contained 26–30 mol.% of methane, 13–15 mol.% of carbon monoxide and 15–17 mol.% of the C2 fraction and lower amounts of hydrogen (20 mol.%) and carbon dioxide (2–3 mol.%). The highest apparent conversion of tar was reached in the catalytic gasification processes. A higher rate of catalyst deactivation can be observed when water or air is not added.  相似文献   

3.
Gasification is considered to be an effective process for energy conversion from various sources such as coal, biomass, and waste. Cleanup of the hot syngas produced by such a process may improve the thermal efficiency of the overall gasification system. Therefore, the cleanup of hot syngas from biomass gasification using molten carbonate is investigated in bench-scale tests. Molten carbonate acts as an absorbent during desulfurization and dechlorination and as a thermal catalyst for tar cracking. In this study, the performance of molten carbonate for removing H2S was evaluated. The temperature of the molten carbonate was set within the range from 800 to 1000 °C. It is found that the removal of H2S is significantly affected by the concentration of CO2 in the syngas. When only a small percentage of CO2 is present, desulfurization using molten carbonate is inadequate. However, when carbon elements, such as char and tar, are continuously supplied, H2S removal can be maintained at a high level.To confirm the performance of the molten carbonate gas-cleaning system, purified biogas was used as a fuel in power generation tests with a molten carbonate fuel cell (MCFC). The fuel cell is a high-performance sensor for detecting gaseous impurities. When purified gas from a gas-cleaning reactor was continuously supplied to the fuel cell, the cell voltage remained stable. Thus, the molten carbonate gas-cleaning reactor was found to afford good gas-cleaning performance.  相似文献   

4.
Steam gasification of epoxy circuit board in the presence of carbonates   总被引:1,自引:1,他引:0  
To recover useful metals from end-of-life electronic devices and to convert plastic components from these devices into clean fuel gas, steam gasification of epoxy board samples was carried out at 600–700?°C and 0.1?MPa pressure in the presence of a ternary eutectic carbonate (lithium carbonate, sodium carbonate, and potassium carbonate). Hydrogen and carbon dioxide were the main products, and methane and carbon monoxide were detected as minor products. The gasification proceeded in two steps: an initial rapid pyrolysis followed by secondary steam gasification of char produced from the pyrolysis. The ternary eutectic carbonate accelerated not only the latter steam gasification but also the initial rapid pyrolysis. The activation energy for the steam gasification of epoxy board samples in the presence of the carbonate was 122?kJ/mol.  相似文献   

5.
Pyrolysis and steam gasification of woody biomass chip (WBC) obtained from construction and demolition wastes, refuse-derived fuel (RDF), and refuse paper and plastic fuel (RPF) were performed at various temperatures using a lab-scale instrument. The gas, liquid, and solid products were examined to determine their generation amounts, properties, and the carbon balance between raw material and products.The amount of product gas and its hydrogen concentration showed a considerable difference depending on pyrolysis and steam gasification at higher temperature. The reaction of steam and solid product, char, contributed to an increase in gas amount and hydrogen concentration. The amount of liquid products generated greatly depended on temperature rather than pyrolysis or steam gasification. The compositions of liquid product varied relying on raw materials used at 500 °C but the polycyclic aromatic hydrocarbons became the major compounds at 900 °C irrespective of the raw materials used. Almost fixed carbon (FC) of raw materials remained as solid products under pyrolysis condition whereas FC started to decompose at 700 °C under steam gasification condition.For WBC, both char utilization by pyrolysis at low temperature (500 °C) and syngas recovery by steam gasification at higher temperature (900 °C) might be practical options. From the results of carbon balance of RDF and RPF, it was confirmed that the carbon conversion to liquid products conspicuously increased as the amount of plastic increased in the raw material. To recover feedstock from RPF, pyrolysis for oil recovery at low temperature (500 °C) might be one of viable options. Steam gasification at 900 °C could be an option but the method of tar reforming (e.g. catalyst utilization) should be considered.  相似文献   

6.
A pilot scale gasification unit with novel co-current, updraft arrangement in the first stage and counter-current downdraft in the second stage was developed and exploited for studying effects of two stage gasification in comparison with one stage gasification of biomass (wood pellets) on fuel gas composition and attainable gas purity. Significant producer gas parameters (gas composition, heating value, content of tar compounds, content of inorganic gas impurities) were compared for the two stage and the one stage method of the gasification arrangement with only the upward moving bed (co-current updraft). The main novel features of the gasifier conception include grate-less reactor, upward moving bed of biomass particles (e.g. pellets) by means of a screw elevator with changeable rotational speed and gradual expanding diameter of the cylindrical reactor in the part above the upper end of the screw. The gasifier concept and arrangement are considered convenient for thermal power range 100-350 kWth. The second stage of the gasifier served mainly for tar compounds destruction/reforming by increased temperature (around 950 °C) and for gasification reaction of the fuel gas with char. The second stage used additional combustion of the fuel gas by preheated secondary air for attaining higher temperature and faster gasification of the remaining char from the first stage. The measurements of gas composition and tar compound contents confirmed superiority of the two stage gasification system, drastic decrease of aromatic compounds with two and higher number of benzene rings by 1-2 orders. On the other hand the two stage gasification (with overall ER = 0.71) led to substantial reduction of gas heating value (LHV = 3.15 MJ/Nm3), elevation of gas volume and increase of nitrogen content in fuel gas. The increased temperature (>950 °C) at the entrance to the char bed caused also substantial decrease of ammonia content in fuel gas. The char with higher content of ash leaving the second stage presented only few mass% of the inlet biomass stream.  相似文献   

7.
Pyrolysis of aseptic packages (tetrapak cartons) in a laboratory apparatus using a flow screw type reactor and a secondary catalytic reactor for tar cracking was studied. The pyrolysis experiments were realized at temperatures ranging from 650 °C to 850 °C aimed at maximizing of the amount of the gas product and reducing its tar content. Distribution of tetrapak into the product yields at different conditions was obtained. The presence of H2, CO, CH4, CO2 and light hydrocarbons, HCx, in the gas product was observed. The Aluminum foil was easily separated from the solid product. The rest part of char was characterized by proximate and elemental analysis and calorimetric measurements. The total organic carbon in the tar product was estimated by elemental analysis of tars. Two types of catalysts (dolomite and red clay marked AFRC) were used for catalytic thermal tar decomposition. Three series of experiments (without catalyst in a secondary cracking reactor, with dolomite and with AFRC) at temperatures of 650, 700, 750, 800 and 850 °C were carried out. Both types of catalysts have significantly affected the content of tars and other components in pyrolytic gases. The effect of catalyst on the tetrapack distribution into the product yield on the composition of gas and on the total organic carbon in the tar product is presented in this work.  相似文献   

8.
Plastic wastes have an especially high potential for use as alternative fuels, considering their high heating value and their large and stable availability. They could be used in electricity production based on gasification technologies, wherein electricity is produced in engines by means of the conversion of plastic wastes into a valuable gas. However, there are still some technical barriers to overcome before this technology can access the commercial stage, and further scientific research is needed to gain deeper understanding of the process and to be able to control and optimize it. This research presents the design and first experimental results of a bubbling fluidized bed gasifier conceived for the gasification of actual plastic residues. The experimental tests revealed that the selection and design of the reactor were adequate and proved some of the advantages of using plastic as a fuel, related in part to the absence of ashes and char. A valuable syngas over 5 MJ/m3 was generated, which contained a considerable fraction of methane as well as hydrogen and carbon monoxide as main combustible gases. The highest efficiency was achieved when the equivalence ratio was increased to 0.35, reaching 61 % in terms of cold gas efficiency and 66 % carbon conversion.  相似文献   

9.
徐军科  童志权 《化工环保》2006,26(3):194-197
对活性炭及瓷拉西环两种填料用自来水进行脱硫对比实验,证明无论是等宏观表面积还是等填料层高度,活性炭填料的脱硫率均高于瓷拉西环。在活性炭填料塔中进行了FeSO4液相催化氧化脱硫实验,考察了液气比、空塔气速、吸收温度及SO2进口浓度对脱硫率的影响。综合实验结果表明,连续运行500min时,脱硫率及吸收液pH分别稳定在93.5%以上及4.6左右,且两者的变化趋势基本一致。  相似文献   

10.
In order to explore the beneficial utilization of heavy oil fly ash (HOFA) generated in the power plants, the present study is intended to optimize the chromium(VI) [Cr(VI)] adsorption on activated carbon produced from HOFA. The raw HOFA obtained from a power plant was washed by nitric/hydrochloric acid and activated at 800 °C with a holding time of 60 min to produce fly ash activated carbon (FAC). Phosphoric acid was used as a chemical agent to improve the surface characteristics of the HOFA during the activation process. Batch adsorption experiments were employed to evaluate the effects of different parameters such as initial Cr(VI) concentration, pH, and FAC dose on the removal of Cr(VI) from aqueous solution. A total of 17 adsorption experimental runs were carried out employing the detailed conditions followed the response surface methodology based on the Box–Behnken design. The results indicate that developed FAC has the potential for removing Cr(VI) from wastewater. Under the test conditions, a maximum of 91.51 % Cr(VI) removal efficiency was achieved.  相似文献   

11.
Steam gasification in the presence of carbonate compounds is an effective method to recover useful materials from electronic waste streams by converting plastics into gaseous products that can be used for energy production and avoiding the expensive manual disassembly process. We investigated steam gasification of activated carbon in the presence of various mixtures of lithium carbonate, sodium carbonate, and potassium carbonate. The activated carbon was almost completely converted into hydrogen and carbon dioxide at 700°C under 0.1 MPa pressure in the presence of carbonate mixtures. Carbon dioxide was also derived from partial decomposition of lithium carbonate. Steam gasification was accelerated in the presence of various carbonate mixtures and at increasing steam partial pressures. These experimental results show that fluidity of carbonates, the potassium content of the carbonate, and the steam partial pressure are important factors in accelerating steam gasification.  相似文献   

12.
To obtain the distribution of fuel components to gas, tar and char in a pressurized fluidized bed waste pyrolyzer, experiments were conducted with a laboratory scale fluidized bed reactor. Waste samples were fed batchwise from the top of the reactor into the fluidized bed of silica sand and pyrolyzed by nitrogen/nitrogen-O2 gas and the effects of pressure, particle size, heating rate and oxygen addition were investigated. In the case of rubber, the char yield tended to increase a little and the tar yield decrease over the pressure of 304-709 kPa. In comparison with the thermogravimetry data it was clearly demonstrated that the char yield from fluidized bed pyrolysis is much lower. A small amount of oxygen addition decreased both tar and char yields but its further increase did not affect them very much.  相似文献   

13.
Two different coal fly ashes coming from the burning of two coals of different rank have been used as a precursor for the preparation of steam activated carbons. The performance of these activated carbons in the SO2 removal was evaluated at flue gas conditions (100 °C, 1000 ppmv SO2, 5% O2, 6% H2O). Different techniques were used to determine the physical and chemical characteristics of the samples in order to explain the differences found in their behaviour. A superior SO2 removal capacity was shown by the activated carbon obtained using the fly ash coming from a subbituminous–lignite blend. Experimental results indicated that the presence of higher amount of certain metallic oxides (Ca, Fe) in the carbon-rich fraction of this fly ash probably has promoted a deeper gasification in the activation with steam. A more suitable surface chemistry and textural properties have been obtained in this case which explains the higher efficiency shown by this sample in the SO2 removal.  相似文献   

14.
To recycle polyurethane foam waste generated from electric appliance recycling centers for use as fuel in a gasification process, polyurethane solid refuse fuel fabricated as pellets was analyzed for the characteristics of elemental composition, proximate analysis, heating value, and thermo-gravimetric testing. It has a high heating value of 29.06 MJ/kg with a high content of combustibles, which could be feasibly used in any thermal process. However, the nitrogen content, of up to 7 %, was comparably higher than for other fuels such as coal, biomass, and refuse-derived fuel, and may result in the emission of nitrogenous pollutant gases of HCN and NH3. By conducting gasification experiments on polyurethane solid refuse fuel in a fixed-bed reactor, a syngas with a heating value of 9.76 kJ/m3 and high content of both H2 and CO were produced with good gasification efficiency; carbon conversion 54 %, and cold gas efficiency 60 %. The nitrogenous pollutant gases in syngas were measured at the concentrations of 160 ppm hydrogen cyanide and 40 ppm ammonia, which may have to be reduced using proper cleaning technologies prior to the commercialization of gasification technology for polyurethane waste.  相似文献   

15.
This article describes the gasification of polyethylene–wood mixtures to form syngas (H2 and CO) with the aim of feedstock recycling via direct fermentation of syngas to ethanol. The aim was to determine the effects of four process parameters on process properties that give insight into the efficiency of gasification in general, and particularly into the optimum gasification conditions for the production of ethanol by fermentation of producer gas. Gasification experiments (fluidized bed, 800°–950°C) were done under different conditions to optimize the composition of syngas suitable for fermentation purposes. The data obtained were used for statistical analysis and modeling. In this way, the effect of each parameter on the process properties was determined and the model was used to predict the optimum gasification conditions. The parameters varied during the experiment were gasification temperature, equivalence ratio, the ratio of plastic to wood in the feed, and the amount of steam added to the process. The response models obtained proved to be statistically significant in the experimental domain. The optimum gasification conditions for maximization of carbon monoxide and hydrogen production were identified. The conditions are: temperature 900°C, equivalence ratio 0.15, amount of plastic in the feed 0.11 g/g feed, and amount of steam added 0.42 g/g feed. These optimum conditions are at the edge of the present experimental domain. The maximum combined CO and H2 efficiency was 42%, and for the maximum yield of CO and H2 it is necessary to minimize the polyethylene content, minimize the added steam and the equivalence ratio, and maximize temperature.  相似文献   

16.
In Japan, incineration ash is subjected to a melting process to reduce waste volume and to stabilize hazardous heavy metals. In previous articles, we reported that large quantities of volatile metals are emitted under ash-melting conditions at temperatures higher than 1200°C and that such emissions are considerably increased under reducing conditions. However, the emission behavior in the presence of large amounts of char particles was unclear, and we suspected that emissions under these conditions might differ from emissions under the previous conditions. Therefore, we investigated heavy metal emissions and the melting characteristics of ash in the presence of carbon particles. In this experiment, a small crucible with ash and carbon was rapidly heated using a high-frequency induction-heating furnace to simulate the melting ash gasification with carbon. As a result, it was found that additive carbon can promote emissions of heavy metals such as zinc and lead and control the melt of the ash.  相似文献   

17.
In this study we performed a non-isothermal thermogravimetric analysis on three thermoplastics—ABS, PC and PE. The Coats and Redfern method (Nature 201:68–69, 1964) was then used to approximate the kinetic parameters of each material. In addition, we performed a series of pyrolysis experiments in a batch reactor, for each plastic. The experiments were performed over the temperature range of 600–1000 °C at a constant residence time. The liquid and solid products of the pyrolysis, were collected, separated and weighted. Those products were categorized as soot, tar and char (PC only), and their relative weight to initial sample weight (DAF) was plotted against the temperature. The tar measured was exclusively medium to high molecular weight (>80 g/mol). Results revealed that relative tar and soot production, for all three materials, first increases and then decreases with temperature increase. The maximum achieved tar yields for ABS, PC and PE were at 700, 650 and 800 °C, respectively; and the maximum soot yields were at 1000, 1000, 950 °C, respectively.  相似文献   

18.
The influence of different variables on the removal of ammonia nitrogen and COD from landfill leachate was investigated in a three-dimensional electrochemical reactor. Box–Behnken statistical experiment design and the response surface methodology were used to investigate operating condition effects, such as current density, activated carbon to water ratio and the reaction time, on ammonia nitrogen removal efficiency and COD removal efficiency. The positive and negative effects of variables and the interaction between variables on ammonia nitrogen removal and COD removal were determined. The response surface methodology models were derived based on the results and the response surface plots were developed accordingly.  相似文献   

19.
闫茜  王立章  李鹏  田娟  芦兆青 《化工环保》2013,33(6):545-548
以瞬时电流效率和电耗为衡量标准,对填充活性炭、涂膜活性炭和石英砂3种填料的废水处理三维电极体系进行了研究。实验结果表明:活性炭的瞬时电流效率最高、电耗最低;3种填料对苯酚的选择性氧化系数依次为0.63,0.57,0.46,表明3种填料对苯酚的降解能力依次降低;在初始苯酚质量浓度为600mg/L、Na2SO4质量分数为3%、电流为1A、进水流量为0.60L/h的条件下,以活性炭作为填料,苯酚废水的COD去除率可达80.52%。  相似文献   

20.
This study conducted gasification and catalytic reforming experiments with the expectation of obtaining new advantages on energy recovery and aimed for the development of an effective catalyst. Initially, the use of thermal gasification technology for waste treatment in line with waste-to-energy strategies was reviewed. Technological systems which have gasification were classified and their current status was discussed. Then, the results of gasification and reforming experiments showed that product gas with 50 % H2 or more was obtained using a Ni catalyst on a mesoporous silica–based SBA-15 support (NiO/SBA-15), which we newly developed. Experiments using wood feedstock revealed that H2 production by the catalyst was better when the NiO content was 20 % (W/W) or more than when another catalyst or the Ni catalyst with a lower Ni loading was used. Tar formation as a by-product was also well controlled by the catalyst, and use of a catalyst with 40 % NiO reduced the tar concentration to less than 0.2 g/\( {\text{m}}^{3}_{\text{N}} \). Experiments using a mixed feedstock of wood and RPF resulted in an increase in hydrocarbon concentration because of insufficient reforming. This finding suggests that future work is required to find a better solution to wood and RPF co-gasification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号