首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 614 毫秒
1.
Synthetic wastes have been widely employed to help elucidate the complex interactions between real wastes and hydraulic binders during solidification. In this work, a laboratory produced metal waste mixed with Portland cement and immediately carbonated it using an accelerated method. The microstructures of carbonated and non-carbonated control samples were distinct despite both being dominated by unusually large phenograins derived from the waste. In the carbonated sample waste phenograins remained unaltered, whereas cement grains were largely decalcified. As a consequence of decalcification, observable porosity was significantly reduced by the formation of precipitated carbonates.  相似文献   

2.
Two equilibrium-based characterization protocols were applied to ground samples of a cement-based material containing metal oxide powders in both noncarbonated and carbonated states. The effects of carbonation were shown through comparison of (i) material buffering capacity, (ii) constituent equilibrium as a function of leachate pH, and (iii) constituent solubility and release as a function of liquid-to-solid (LS) ratio. As expected, the material alkalinity was significantly neutralized during carbonation. In addition, carbonation of the cement material led to the formation of calcium carbonate and a corresponding increase in arsenic release across the entire pH range. The solubility as a function of pH for lead and copper was lower in the alkaline pH range (pH>9) for carbonated samples compared with the parent material. When solubility and release as a function of LS ratio was compared, carbonation was observed to decrease calcium solubility, sodium and potassium release, and ionic strength. In response to carbonate solid formation, chloride and sulfate release as a function of LS ratio was observed to increase. Trends in constituent concentration as a function of LS ratio were extrapolated to estimate pore water composition at a 0.06 mL/g LS ratio. Significant differences were observed upon comparison of estimated pore water composition to leachate concentrations extracted at LS ratio of 5 mL/g. These differences show that practical laboratory extractions cannot be assumed directly representative of pore water concentrations.  相似文献   

3.
The use of coarse recycled concrete aggregates (CRCA) in conjunction with fine recycled concrete aggregates (FRCA) as sub-base materials has been widely studied. Although research results indicate that it is feasible to employ both CRCA and FRCA as granular sub-base, the influence of the unhydrated cement in the adhered mortar of the RCA on the properties of the sub-base materials has not been thoroughly studied. Generally, it is known that the strength of the sub-base materials prepared with RCA increases over time. However, this mechanism, known as the self-cementing properties, is not well understood and is believed to be governed by the properties of the fine portion of the RCA (<5mm). This paper presents an investigation on the cause of the self-cementing properties by measuring X-ray diffraction patterns, pH values, compressive strength and permeability of various size fractions of the FRCA obtained from a commercially operated construction and demolition waste recycling plant. Their influence on the overall sub-base materials was determined. The results indicate that the size fractions of <0.15 and 0.3-0.6mm (active fractions) were most likely to be the principal cause of the self-cementing properties of the FRCA. However, the effects on the properties of the overall RCA sub-base materials were minimal if the total quantity of the active fractions was limited to a threshold by weight of the total fine aggregate.  相似文献   

4.
Temporary stabilization of air pollution control residues using carbonation   总被引:1,自引:0,他引:1  
Carbonation presents a good prospect for stabilizing alkaline waste materials. The risk of metal leaching from carbonated waste was investigated in the present study; in particular, the effect of the carbonation process and leachate pH on the leaching toxicity of the alkaline air pollution control (APC) residues from municipal solid waste incinerator was evaluated. The pH varying test was conducted to characterize the leaching characteristics of the raw and carbonated residue over a broad range of pH. Partial least square modeling and thermodynamic modeling using Visual MINTEQ were applied to highlight the significant process parameters that controlled metal leaching from the carbonated residue. By lowering the pH to 8-11, the carbonation process reduced markedly the leaching toxicity of the alkaline APC residue; however, the treated APC residue showed similar potential risk of heavy metal release as the raw ash when subjected to an acid shock. The carbonated waste could, thereby, not be disposed of safely. Nonetheless, carbonation could be applied as a temporary stabilization process for heavy metals in APC residues in order to reduce the leaching risk during its transportation and storage before final disposal.  相似文献   

5.
Demolition wastes may be used in different civil engineering applications as road constructions, concrete, and embankments or landfill. Regardless its application, leaching tests of the waste should be carried out to assess concentrations of pollutants. Concrete, brick and mixture of concrete, bricks, tiles and ceramics wastes were subject to percolation test—CEN/TS 14405, and batch test—SR EN 12457. The leachates were analyzed with respect to concentration of inorganic elements—arsenic, barium, cadmium, chromium, copper, mercury, molybdenum, nickel, lead, selenium, zinc, fluoride, chloride and sulfate, and organic compounds (phenol index). The concentrations of elements in leachates were compared with the limit values of European regulation for the acceptance of inert wastes at landfills. Generally, the releases of inorganic species in leachates were below limits values. Some waste leachates obtained by percolation and batch test had high values for phenol index.  相似文献   

6.
The construction industry is now putting greater emphasis than ever before on increasing recycling and promoting more sustainable waste management practices. In keeping with this approach, many sectors of the industry have actively sought to encourage the use of recycled concrete aggregate (RCA) as an alternative to primary aggregates in concrete production. The results of a laboratory experimental programme aimed at establishing chemical and mineralogical characteristics of coarse RCA and its likely influence on concrete performance are reported in this paper. Commercially produced coarse RCA and natural aggregates (16-4 mm size fraction) were tested. Results of X-ray fluorescence (XRF) analyses showed that original source of RCA had a negligible effect on the major elements and a comparable chemical composition between recycled and natural aggregates. X-ray diffraction (XRD) analyses results indicated the presence of calcite, portlandite and minor peaks of muscovite/illite in recycled aggregates, although they were directly proportioned to their original composition. The influence of 30%, 50%, and 100% coarse RCA on the chemical composition of equal design strength concrete has been established, and its suitability for use in a concrete application has been assessed. In this work, coarse RCA was used as a direct replacement for natural gravel in concrete production. Test results indicated that up to 30% coarse RCA had no effect on the main three oxides (SiO2, Al2O3 and CaO) of concrete, but thereafter there was a marginal decrease in SiO2 and increase in Al2O3 and CaO contents with increase in RCA content in the mix, reflecting the original constituent's composition.  相似文献   

7.
Characterisation of the leaching behaviour of waste-containing materials is a crucial step in the environmental assessment for reuse scenarios. In our research we applied the multi-step European methodology ENV 12-920 to the leaching assessment of road materials containing metallurgical slag. A Zn slag from an imperial smelting furnace (ISF) and a Pb slag from a lead blast furnace (LBF) are investigated. The two slags contain up to 11.2 wt% of lead and 3.5 wt% of zinc and were introduced as a partial substitute for sand in two road materials, namely sand-cement and sand-bitumen. At the laboratory scale, a leaching assessment was performed first through batch equilibrium leaching tests. Second, the release rate of the contaminants was evaluated using saturated leaching tests on monolithic material. Third, laboratory tests were conducted on monolithic samples under intermittent wetting conditions. Pilot-scale tests were conducted for field testing of intermittent wetting conditions. The results show that the release of Pb and Zn from the materials in a saturated scenario was controlled by the pH of the leachates. For the intermittent wetting conditions, an additional factor, blocking of the pores by precipitation during the drying phase is proposed. Pilot-scale leaching behaviour only partially matched with the laboratory-scale test results: new mass transfer mechanisms and adapted laboratory leaching tests are discussed.  相似文献   

8.
This work presents the results of a study on accelerated carbonation of incinerator air pollution control residues, with a particular focus on the modifications in the leaching behaviour of the ash. Aqueous carbonation experiments were carried out using 100% CO2 at different temperatures, pressures and liquid-to-solid ratios, in order to assess their influence on process kinetics, CO2 uptake and the leaching behaviour of major and trace elements. The ash showed a particularly high reactivity towards CO2, owing to the abundance of calcium hydroxides phases, with a maximum CO2 uptake of ~250 g/kg. The main effects of carbonation on trace metal leaching involved a significant decrease in mobility for Pb, Zn and Cu at high pH values, a slight change or mobilization for Cr and Sb, and no major effects on the release of As and soluble salts. Geochemical modelling of leachates indicated solubility control by different minerals after carbonation. In particular, in the stability pH range of carbonates, solubility control by a number of metal carbonates was clearly suggested by modelling results. These findings indicate that accelerated carbonation of incinerator ashes has the potential to convert trace contaminants into sparingly soluble carbonate forms, with an overall positive effect on their leaching behaviour.  相似文献   

9.
Construction and demolition waste has been dramatically increased in the last decade, and social and environmental concerns on the recycling have consequently been increased. Recent technology has greatly improved the recycling process for waste concrete. This study investigates the fundamental characteristics of concrete using recycled concrete aggregate (RCA) for its application to structural concrete members. The specimens used 100% coarse RCA, various replacement levels of natural aggregate with fine RCA, and several levels of fly ash addition. Compressive strength of mortar and concrete which used RCA gradually decreased as the amount of the recycled materials increased. Regardless of curing conditions and fly ash addition, the 28 days strength of the recycled aggregate concrete was greater than the design strength, 40 MPa, with a complete replacement of coarse aggregate and a replacement level of natural fine aggregate by fine RCA up to 60%. The recycled aggregate concrete achieved sufficient resistance to the chloride ion penetration. The measured carbonation depth did not indicate a clear relationship to the fine RCA replacement ratio but the recycled aggregate concrete could also attain adequate carbonation resistance. Based on the results from the experimental investigations, it is believed that the recycled aggregate concrete can be successfully applied to structural concrete members.  相似文献   

10.
Deposit formation in leachate collection systems can be problematic for landfill operations. Deposits from municipal solid waste (MSW) derived leachates are impacted by microbial activity and biofilm development, whereas leachates generated from co-disposal of MSW with combustion residues (CR) from waste-to-energy (WTE) facilities and other mineral-rich waste materials are more prone to forming dense mineral deposits dominated by calcium carbonate. In this study, leachates from laboratory lysimeters containing either WTE-CR or shredded MSW were mixed at different volumetric ratios. The mixed leachates were incubated for 5 weeks in batch tests to evaluate the potential for formation of precipitates. Although mineral precipitates have been reported to form in landfills with no co-disposal practices, in this study mineral precipitates did not form in either the WTE-CR derived leachate or the MSW derived leachate, but formed in all leachate mixtures. Mineral precipitates consisted of calcium carbonate particles, with the highest yield from a 1:1 combination of the WTE-CR derived leachate mixed with the MSW derived leachate. The introduction of gaseous carbon dioxide or air into WTE-CR derived leachate resulted in the production of particles of similar chemical composition but different morphology. Operation of landfills to prevent co-mingling of mineral-rich leachates with microbially active leachates and/or to control leachate exposure to sources of carbon dioxide may help to prevent this type of precipitate formation in leachate collection systems.  相似文献   

11.
The reuse of waste materials requires the development of assessment methods for the long-term release of pollutants (source term) from wastes (or materials containing wastes) in contact with water. These methods depend on the scenario conditions: characteristics of the materials (especially physical structure and composition), contact with water. The scenario studied here is a water storage reservoir for fire fighting. The reservoir construction is made of a mixture of hydraulic binders and air pollution control (APC) residues from a municipal solid waste incinerator (MSWI). The modelling of the source term is performed in 5 steps ranging from the physico-chemical characterisation of the material to the validation of the proposed model by means of field simulation devices. This article presents the first steps of the methodology: physico-chemical characterisation of the source term, identification of the main transfer mechanisms and laboratory scale modelling of the source term. During the physico-chemical characterisation, it has been shown that the solidified waste shows a high basic capacity and that a relative decrease in pH during leaching favours retention of the main pollutants. During the first leaching sequences, the dynamic leaching tests show that the release of pollutants such as cadmium, arsenic, zinc and lead is extremely low but that the release of alkaline species (sodium and potassium) and chloride is very high from the beginning, whereas the release of calcium remains very high even after 3600 h of leaching. Identification of the main transfer mechanisms concludes that the release of soluble pollutants is the combined result of diffusional transfer of pollutants in the solution and the physico-chemical specificity of the species. The modelling based on these features enables a good simulation of the release but reveals a deviation from the experimental results after 500 h for alkaline species and 1000 h for Ca and Cl leaching. However, this deviation only appears after release of the major part of these elements.  相似文献   

12.
Steel slag can be applied as substitute for natural aggregates in construction applications. The material imposes a high pH (typically 12.5) and low redox potential (Eh), which may lead to environmental problems in specific application scenarios. The aim of this study is to investigate the potential of accelerated steel slag carbonation, at relatively low pCO2 pressure (0.2 bar), to improve the environmental pH and the leaching properties of steel slag, with specific focus on the leaching of vanadium. Carbonation experiments are performed in laboratory columns with steel slag under water-saturated and -unsaturated conditions and temperatures between 5 and 90 °C. Two types of steel slag are tested; free lime containing (K3) slag and K1 slag with a very low free lime content. The fresh and carbonated slag samples are investigated using a combination of leaching experiments, geochemical modelling of leaching mechanisms and microscopic/mineralogical analysis, in order to identify the major processes that control the slag pH and resulting V leaching. The major changes in the amount of sequestered CO2 and the resulting pH reduction occurred within 24 h, the free lime containing slag (K3-slag) being more prone to carbonation than the slag with lower free lime content (K1-slag). While carbonation at these conditions was found to occur predominantly at the surface of the slag grains, the formation of cracks was observed in carbonated K3 slag, suggesting that free lime in the interior of slag grains had also reacted. The pH of the K3 slag (originally pH ± 12.5) was reduced by about 1.5 units, while the K1 slag showed a smaller decrease in pH from about 11.7 to 11.1. However, the pH reduction after carbonation of the K3 slag was observed to lead to an increased V-leaching. Vanadium leaching from the K1 slag resulted in levels above the limit values of the Dutch Soil Quality Decree, for both the untreated and carbonated slag. V-leaching from the carbonated K3 slag remained below these limit values at the relatively high pH that remained after carbonation. The V-bearing di-Ca silicate (C2S) phase has been identified as the major source of the V-leaching. It is shown that the dissolution of this mineral is limited in fresh steel slag, but strongly enhanced by carbonation, which causes the observed enhanced release of V from the K3 slag. The obtained insights in the mineral transformation reactions and their effect on pH and V-leaching provide guidance for further improvement of an accelerated carbonation technology.  相似文献   

13.
Characteristics and formation of leachates from waste gasification and grate firing bottom ash were studied using continuous field measurements from 112 m3 lysimeters embedded into landfill body for three years. In addition, the total element concentrations of the fresh ash were analysed and laboratory batch tests were performed to study leachate composition. The three-year continuous flow measurement showed that about one fifth of the leachates were formed, when the flow rate was >200 l/d, covering <3.5% of the study time. After three years, the liquid/solid-ratio for the quenched grate ash was 1 (l/kg (d.m.)) and for the initially dry gasification ash 0.4 (l/kg (d.m.)). The low initial water and residual carbon content of the gasification ash kept the leachate pH at a high level (>13) major part of the study. In the grate ash leachate pH was lower (<8) due to the presence of organic carbon and biodegradation indicated by biological oxygen demand and redox potential measurements. In the gasification ash the high pH probably delayed leaching of major elements such as Ca, therefore, raising the need for a longer after-care period. The high pH also explains the higher leaching of As from the gasification ash compared to the grate ash both in the batch test and under landfill conditions.  相似文献   

14.
The potential colloids release from a large panel of 25 solid industrial and municipal waste leachates, contaminated soil, contaminated sediments and landfill leachates was studied. Standardized leaching, cascade filtrations and measurement of element concentrations in the microfiltrate (MF) and ultrafiltrate (UF) fraction were used to easily detect colloids potentially released by waste. Precautions against CO2 capture by alkaline leachates, or bacterial re-growth in leachates from wastes containing organic matter should be taken. Most of the colloidal particles were visible by transmission electron microscopy with energy dispersion spectrometry (TEM–EDS) if their elemental MF concentration is greater than 200 μg l?1. If the samples are dried during the preparation for microscopy, neoformation of particles can occur from the soluble part of the element. Size distribution analysis measured by photon correlation spectroscopy (PCS) were frequently unvalid, particularly due to polydispersity and/or too low concentrations in the leachates. A low sensitivity device is required, and further improvement is desirable in that field. For some waste leachates, particles had a zeta potential strong enough to remain in suspension. Mn, As, Co, Pb, Sn, Zn had always a colloidal form (MF concentration/UF concentration > 1.5) and total organic carbon (TOC), Fe, P, Ba, Cr, Cu, Ni are partly colloidal for more than half of the samples). Nearly all the micro-pollutants (As, Ba, Co, Cr, Cu, Mo, Ni, Pb, Sb, Sn, V and Zn) were found at least once in colloidal form greater than 100 μg l?1. In particular, the colloidal forms of Zn were always by far more concentrated than its dissolved form. The TEM–EDS method showed various particles, including manufactured nanoparticles (organic polymer, TiO2, particles with Sr, La, Ce, Nd). All the waste had at least one element detected as colloidal. The solid waste leachates contained significant amount of colloids different in elemental composition from natural ones. The majority of the elements were in colloidal form for wastes of packaging (3), a steel slag, a sludge from hydrometallurgy, composts (2), a dredged sediment (#18), an As contaminated soil and two active landfill leachates.These results showed that cascade filtration and ICP elemental analysis seems valid methods in this field, and that electronic microscopy with elemental detection allows to identify particles. Particles can be formed from dissolved elements during TEM sample preparation and cross-checking with MF and UF composition by ICP is useful. The colloidal fraction of leachate of waste seems to be a significant source term, and should be taken into account in studies of emission and transfer of contaminants in the environment. Standardized cross-filtration method could be amended for the presence of colloids in waste leachates.  相似文献   

15.
When selecting a landfill leachate treatment method the contaminant composition of the leachate should be considered in order to obtain the most cost-effective treatment option. In this study the filter material pine bark was evaluated as a treatment for five landfill leachates originating from different cells of the same landfill in Sweden. The objective of the study was to determine the uptake, or release, of metals and dissolved organic carbon (DOC) during a leaching test using the pine bark filter material with the five different landfill leachates. Furthermore the change of toxicity after treatment was studied using a battery of aquatic bioassays assessing luminescent bacteria (Vibrio fischeri) acute toxicity (30-min Microtox®), immobility of the crustacean Daphnia magna, growth inhibition of the algae Pseudokirchneriella subcapitata and the aquatic plant Lemna minor; and genotoxicity with the bacterial Umu-C assay. The results from the toxicity tests and the chemical analysis were analyzed in a Principal Component Analysis and the toxicity of the samples before and after treatment was evaluated in a toxicity classification. The pine bark filter material reduced the concentrations of metal contaminants from the landfill leachates in the study, with some exceptions for Cu and Cd. The Zn uptake of the filter was high for heavily contaminated leachates (≥73%), although some desorption of zinc occurred in less contaminated waters. Some of the leachates may require further treatment due to discharge into a natural recipient in order to reduce the risk of possible biological effects. The difference in pH changes between the different leachates was probably due to variations in buffering capacity, affected by physicochemical properties of the leachate. The greatest desorption of phenol during filtration occurred in leachates with high conductivity or elevated levels of metals or salts. Generally, the toxicity classification of the leachates implies that although filter treatment with pine bark removes metal contaminants from the leachates effectively, it does not alter leachate toxicity noticeably. The leachates with the highest conductivity, pH and metal concentrations are most strongly correlated with an increased toxic response in the score plots of both untreated and treated leachates. This is in line with the toxicity classification of the leachate samples. The results from this study highlight the importance of evaluating treatment efficiency from the perspective of potential recipient effects, rather than in terms of residual concentrations of individual contaminants when treating waters with a complex contamination matrix, such as landfill leachates.  相似文献   

16.
Leaching of heavy metals in acid mine drainage.   总被引:1,自引:0,他引:1  
Acid mine drainage is one of the most serious environmental problems that the coal and metal mining industry is currently facing. The generation of low pH drainage enhances the dissolution of heavy metals in water. The samples used in this research originated from three pits at mine dumps. In a study reported in this paper, three types of tests; namely static test, kinetic test and column test were conducted to estimate acid generation and acid neutralization reaction rates, and to predict the solubility of metals and their release rates. Static test showed that all samples had a pH of net acid generation (NAG pH) <4, a net acid producing potential (NAPP) >10 kg H2SO4tonne(-1), and a S-content >3%, which can be classified as a high acid-forming capacity. Simulated runoff in the column tests was equivalent to 5-year average rainfall in Indonesia, the resultant leachates showed acidic behaviour (pH < 3.5). Based on the results, it was found that high mobilization of heavy metals (Cr, Cu, Zn, Cd and Pb) takes place under strong acidic conditions (pH approximately equal 2).  相似文献   

17.
Each year, millions of tonnes of waste are generated worldwide, partially through the construction and demolition of buildings. Recycling the resulting waste could reduce the amount of materials that need to be manufactured. Accordingly, the present work has analysed the potential reuse of construction waste in concrete manufacturing by replacing the natural aggregate with recycled concrete coarse aggregate.However, incorporating alternative materials in concrete manufacturing may increase the pollutant potential of the product, presenting an environmental risk via ground water contamination.The present work has tested two types of concrete batches that were manufactured with different replacement percentages. The experimental procedure analyses not only the effect of the portion of recycled aggregate on the physical properties of concrete but also on the leaching behaviour as indicative of the contamination degree. Thus, parameters such as slump, density, porosity and absorption of hardened concrete, were studied. Leaching behaviour was evaluated based on the availability test performed to three aggregates (raw materials of the concrete batches) and on the diffusion test performed to all concrete.From an environmental point of view, the question of whether the cumulative amount of heavy metals that are released by diffusion reaches the availability threshold was answered. The analysis of concentration levels allowed the establishment of different groups of metals according to the observed behaviour, the analysis of the role of pH and the identification of the main release mechanisms. Finally, through a statistical analysis, physical parameters and diffusion data were interrelated. It allowed estimating the relevance of porosity, density and absorption of hardened concrete on diffusion release of the metals in study.  相似文献   

18.
Assessment of long-term leaching from MSWI air-pollution-control (APC) residues is discussed with respect to use in environmental impact assessment, such as life-cycle assessment (LCA). A method was proposed for estimating leaching as a function of the liquid-to-solid (L/S) ratio in a long-term perspective (L/S 5000l/kg). Data for changes in residue pH as a function of L/S was used in combination with pH dependent leaching data to predict leachate concentrations of Al, Ca, Cd, Ba, Mg, Ni, Pb, S, Pb, V and Zn as a function of L/S. Mass balance calculations were used to determine the element fractions leached with respect to L/S. The estimated long-term leaching from a semi-dry residue and a fly ash was compared with short-term leaching determined by batch tests at L/S 10l/kg, both carbonated and non-carbonated versions of the residues were investigated. Generally, very high L/S ratios above 2000l/kg were required to leach 20-30% of the solid contents. However, Ca and S were depleted at L/S 200-900l/kg. The long-term leachate concentrations were found to either remain at the same level as the initial leaching determined by the L/S 10 batch test, or to significantly decrease compared with the initial leaching. Only Al and Zn were found to show higher leachate concentrations at L/S ratios above 3000-5000l/kg. Carbonation generally prolonged the time needed for depletion from the solid residues; however, Ca and S were depleted faster than in the case of non-carbonated residues. This study shows that uncritical use of batch leaching data for assessing the potential leaching is highly problematic, and evaluations of residue disposal should include scenario specific quantification of the long-term leaching.  相似文献   

19.
The release of inorganic and organic contaminants from municipal solid waste incinerator (MSWI) bottom ash is controlled to a large extent by the release of dissolved organic carbon (DOC), and in particular by the reactive humic (HA) and fulvic acids (FA) subfractions of DOC. The properties of organic matter contributing to the release of DOC, HA and FA are, therefore, important for environmental risk assessment. In this study we have quantitatively measured the carbon speciation, and its relation with the leaching of Cu, in three fresh and carbonated MSWI bottom ash samples. Results show that up to only 25% of loss on ignition (LOI) consists of organic carbon (OC), while about 17% of OC in the three samples consists of HA and FA. Up to 50% of DOC in MSWI bottom ash leachates was identified as fulvic acid (FA). This value is substantially higher than previously estimated for these MSWI bottom ash samples and is consistent with the higher recovery of the new method that was applied. The results of this study imply that methods focusing on specific carbon fractions are more appropriate for assessment of environmentally relevant organic carbon species than the measurement of LOI.  相似文献   

20.
Ordinary Portland cement blended with blast furnace slag and pulverised fuel ash was used to solidify two industrial wastes containing large amounts of metals. The solidified mixes were carbonated using an accelerated regime previously established and compared for strength development, leaching characteristics and phase development against their non-carbonated analogues. A significant difference in the immobilisation of metals such as Zn, Ni and As was recorded for samples in which carbonation was optimised. The work has shown that by controlling mix parameters it is possible to improve the immobilisation of specific metals. Electron microanalysis showed that this is partly due to the precipitation of calcite in the solidified waste pore structure. Carbonation was also found to accelerate C3S hydration in all carbonated samples and to modify the morphology of residual cement grains through the formation of a calcite coating over de-calcified hydration rims. Some metals appear to be incorporated in both of these zones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号