首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The use of willows (Salix amygdalina L) to manage landfill leachate disposal is an effective and cost-effective method due to the high transpiration ability of the willow plants. A 2-year lysimetric experiment was performed to determine an optimum leachate hydraulic loading rate to achieve high evapotranspiration but exert no harmful influence on the plants. The evapotranspiration rate of a soil-plant system planted with the willow was 1.28-5.12-fold higher than the rate measured on a soil surface lacking vegetation, suggesting that soil-willow systems with high volatilization rates are a viable landfill leachate treatment method. Of the soil-willow systems, the one with willow growing on sand amended with sewage sludge soil at an hydraulic loading rate of 1 mm day(-1) performed best, with evapotranspiration ranging from 2.25 to 3.02 mm day(-1) and a biomass yield of 8.0-9.85 Mg dry matter ha(-1). The organic fraction of the soil increased as much as 2.5% of dry matter, due to the sewage sludge input, which exerted a positive effect on the biomass yield as well as on transpiration and evaporation. It was observed that the plants in the sand-and-sewage sludge soil systems displayed higher resistance to toxic effects from the applied landfill leachate relative to plants in the sand-soil systems.  相似文献   

2.
Bangkok (Thailand) covers more than 1500 km2 and has 10 million inhabitants. The disposal of wastewater is creating huge problems of pollution. The estimated amount of sewage sludge was estimated to be around 108 tonnes dry matter (DM) per day in 2005. In order to find a lasting way of disposal for this sewage sludge, the suitability of the sludge produced from three waste-water treatment plants for use as fertilizing material was investigated. Monthly samplings and analysis of sewage sludge from each plant showed that the composition of sludge varied according to the area of collection and period of sampling, and there was no link to rainfall cycle. Plant nutrient content was high (i.e. total N from 19 to 38 g kg(-1) DM) whereas organic matter content was low. The concentrations of heavy metals varied between sludge samples, and were sometimes higher than the E.U. or U.S. regulations for sewage sludge use in agriculture. Faecal coliforms were present in the sludge from one of the plants, indicating a possible contamination by night soil. In order to decrease this potentially pathogenic population the sewage sludge should be heated by composting. As the C/N ratio of sewage sludge was low (around 6) some organic by-products with high carbon content could be added as structural material to enhance the composting.  相似文献   

3.
The leachability of zinc (Zn) and nickel (Ni) was investigated in various soil types amended with sewage sludge and sewage sludge treated with hydroxyapatite. Sandy, clay and peat soils were investigated. For leachability tests, plastic columns (diameter 9 cm, height 50 cm) were filled with moist samples up to a height of 25 cm. Sewage sludge (1 kg) was mixed with 4.6 kg of clay and sandy soils and with 6.7 kg of peat soil. For sewage sludge mixtures treated with hydroxyapatite, 0.5 kg of the hydroxyapatite was added to 1 kg of the sewage sludge. Neutral (pH 7) and acid precipitation (pH 3.5) were applied. Acid precipitation was prepared from concentrated HNO(3), H(2)SO(4) and fresh doubly distilled water. The amount of precipitation corresponded to the average annual precipitation for the city of Ljubljana, Slovenia. It was divided into eight equal portions and applied sequentially on the top of the columns. The results indicated that the leachabilities of Zn in sewage sludge amended peat and clay soils were low (below 0.3% of total Zn content) and of Ni in sewage sludge amended sandy, clay and peat soil below 1.9% of total Ni content. In sewage sludge amended sandy soil, the leachability of Zn was higher (11% of Zn content). The pH of precipitation had no influence on the leachability of either metal. Treatment of sewage sludge with hydroxyapatite efficiently reduced the leachability of Zn in sewage sludge amended sandy soil (from 11% to 0.2% of total Zn content). In clay and peat sewage sludge amended soils, soil characteristics rather than hydroxyapatite treatment dominate Zn mobility.  相似文献   

4.
A greenhouse experiment was set up to study the distribution of Cd, Cu and Pb in three typical soils of the Pampas Region amended with sewage sludge. A sequential extraction procedure was used to obtain four operationally defined geochemical species: exchangeable, bound to organic matter, bound to carbonates, and residual. Two kinds of sewage sludge were used: pure sewage sludge and sewage sludge containing 30% DM of its own incinerated ash, at rates equivalent to a field application of 150 t DM ha(-1). Pots were maintained at 80% of field capacity through daily irrigation with distilled water. Soil samples were obtained on days 1, 60, 270 and 360, and then air-dried and passed through a 2 mm sieve for analysis. Results showed that sludge application increased the less available forms of Cd, Cu and Pb. The inorganic forms became the most prevalent forms for Cu and Pb, whereas Cd was only found in the residual fraction. The concentrations of OM-Cu and INOR-Cu in the amended soil samples were closely correlated with soil pH, whereas the chemical behavior of Cd and Pb did not depend on soil physico-chemical characteristics.  相似文献   

5.
The investigation was carried out in a 2 year experiment to evaluate the benefits and hazards of the use of composted sewage sludge as a restoration agent for the soil of the nursery forest intended for growing Pinus sylvestris seedlings. The grey forest soil (Haplic Greyzem) was amended with compost at the 25, 50, 75, 100, 150 and 175 t ha(-1) application rates on a dry matter basis. The organic matter content increased with the increase in sludge amendment as well as the metal content. However, the concentrations of individual metals were below the current limits established for Russia and European countries. Sludge amendments enhanced the germination and decreased the mortality of the seedlings. The effects were more obvious for the soil with the highest sludge treatment. The beneficial effects on the biomass of seedlings and the height of the shoots as well as on the length of the roots of the pine seedlings were greater in plots with the highest rates of composted sludge. The application of composted sludge to soil was followed by an increase in microbial biomass and to a lesser extent in basal respiration. In the absence of any detrimental effect on microorganisms, this study lends support to using composted sewage sludge as the organo-mineral fertilizer for the soil of nursery forest.  相似文献   

6.
The present study evaluated the possibility of using the dewatered municipal sludge for non-agricultural purposes. The sludge was amended with soil and was applied at 0, 165, 330, 495 and 660 t/ha to promote the growth of Canna. The results showed that the Canna growth pattern exhibited a pronounced positive growth response in the range of 165–495 t/ha, and the Canna could not survive at an amendment rate of 660 t/ha. The analysis of chlorophyll fluorescence parameters showed that sludge did no harm to Canna, while under the conditions of barren soil alone, the plants were put into nutrients stress conditions. Due to the application of sludge, the concentration of heavy metals (Cu, Zn, Cr, Cd, Pb and Ni) in soil increased. However, by planting of Canna, contents of Cd, Ni and Zn showed trends of decline; Cd and Ni have shown a significant decline in concentration, while Zn had only limit response. As a result, dewatered sludge might be used to amend the barren soil and Canna could be used for phytoremediation of sludge.  相似文献   

7.
Oyster shell, a byproduct of shellfish-farming in Korea and containing a high amount of CaCO(3), has a high potential to be used as a liming material in agriculture. However, the agricultural utilization of oyster shell is limited due to its high concentration NaCl. The oyster-shell meal collected had a low concentration of water soluble NaCl (mean 2.7 g kg(-1)), which might be a result of stacking the material for 6 months in the open field. It has a very similar liming potential with calcium carbonate, with 3.4 and 3.8 Mg ha(-1) for silt loam (SiL, pH 6.2) and sandy loam (SL, pH 5.8) to bring the soil pH to 6.5, respectively. To determine the effect of crushed oyster-shell meal on improving soil chemical and biological properties and crop plant productivity, oyster-shell meal was applied at rates of 0, 4, 8, 12, and 16 Mg ha(-1) before transplanting Chinese cabbage (Brassica campestris L.) in the two soils mentioned above. Soil pH was significantly increased to 6.9 and 7.4 by 16 Mg ha(-1) shell meal application (4 times higher level than the recommendation) in SiL and SL, respectively, at harvesting stage. The effect of liming was found higher in SL compared to SiL soil, probably due to the different buffering capacity of the two soils. The concentration of NaCl and EC value of soils were found slightly increased with shell meal applications, but no salt damage was observed. Oyster-shell meal application increased soil organic matter, available P, and exchangeable cations concentrations. The improved soil pH and nutrient status significantly increased the microbial biomass C and N concentrations and stimulated soil enzyme activities. With the exception of acid phosphomonoesterase (PMEase) activity, which decreased with increasing soil pH in SL but slightly increased in SiL, the activities of urease and alkali PMEase increased markedly with increasing soil pH by shell meal application. The improved soil chemical and biological properties resulted in increased crop productivity. The highest yield in Chinese cabbage was achieved following the application of 8 Mg ha(-1) oyster-shell meal. Conclusively, crushed oyster shell could be used as an alternative liming material to restore the soil chemical and microbial properties in upland soil and to increase crop productivity.  相似文献   

8.
The introduction of ecological sanitation (ECOSAN) toilets in South Africa has created opportunities for safer sanitation and recycling of human excreta, as fertilizers, in rural and peri-urban areas. A study was carried out to evaluate the fertilizer value of human urine (0 to 400 kg N ha(-1)) for maize and tomato, compared to urea, in a tunnel house. Dry matter yield of both maize and tomato, harvested at 9 and 10 weeks after planting, respectively, increased with increasing N rate (both as urine or urea) up to 200 kg N ha(-1). Urea reduced soil electrical conductivity (EC) whereas urine increased it. Leaf tissue Na, in both crops, also increased with urine application. A follow-up study was carried out with two crops with contrasting sensitivity to salinity and using a wider range of N application (0 to 800 kg N ha(-1)). The results indicated increased root and leaf dry-matter yield of beetroot (tolerant to salinity) with increased urine rates up to the highest rate of 800 kg N ha(-1), whereas the leaf and root dry-matter yield of carrot, which is sensitive to salinity, peaked at the low urine application rate of 50 kg N ha(-1). Soil EC increased with urine application up to 4.64 and 13.35 mS cm(-1), under beetroot and carrot, respectively. Generally the results showed that human urine compared well with urea as a source of N for crops but optimum rates depend on the sensitivity of the crops to soil salinity, which should be monitored where human urine is regularly used for fertilizing crops.  相似文献   

9.
The content of heavy metals is the major limitation to the application of sewage sludge in soil. However, assessment of the pollution by total metal determination does not reveal the true environmental impact. It is necessary to apply sequential extraction techniques to obtain suitable information about their bioavailability or toxicity. In this paper, sequential extraction of metals from sludge before and after aerobic digestion was applied to sludge from five WWTPs in southern Spain to obtain information about the influence of the digestion treatment in the concentration of the metals. The percentage of each metal as residual, oxidizable, reducible and exchangeable form was calculated. For this purpose, sludge samples were collected from two different points of the plants, namely, sludge from the mixture (primary and secondary sludge) tank (mixed sludge, MS) and the digested-dewatered sludge (final sludge, FS). Heavy metals, Al, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Ti and Zn, were extracted following the sequential extraction scheme proposed by the Standards, Measurements and Testing Programme of the European Commission and determined by inductively-coupled plasma atomic emission spectrometry. The total concentration of heavy metals in the measured sludge samples did not exceed the limits set out by European legislation and were mainly associated with the two less-available fractions (27-28% as oxidizable metal and 44-50% as residual metal). However, metals as Co (64% in MS and 52% in FS samples), Mn (82% in MS and 79% in FS), Ni (32% in MS and 26% in FS) and Zn (79% in MS and 62% in FS) were present at important percentages as available forms. In addition, results showed a clear increase of the concentration of metals after sludge treatment in the proportion of two less-available fractions (oxidizable and residual metal).  相似文献   

10.
Environmental problems associated with sewage sludge disposal have prompted strict legislative actions over the past few years. At the same time, the upgrading and expansion of wastewater treatment plants have greatly increased the volume of sludge generated. The major limitation of land application of sewage sludge compost is the potential for high heavy metal content in relation to the metal content of the original sludge. Composting of sewage sludge with natural zeolite (clinoptilolite) can enhance its quality and suitability for agricultural use. However, the dewatered anaerobically stabilized primary sewage sludge (DASPSS) contained a low concentration of humic substances (almost 2%), and the addition of the waste paper was necessary in order to produce a good soil conditioner with high concentrations of humics. The final results showed that the compost produced from DASPSS and 40-50% w/w of waste paper was a good soil fertilizer. Finally, in order to estimate the metal leachability of the final compost product, the generalized acid neutralization Capacity (GANC) procedure was used, and it was found that by increasing the leachate pH, the heavy metal concentration decreased. The application of the sequential chemical extraction indicated that metals were bound to the residual fraction characterized as a stabilize fractions.  相似文献   

11.
Potential benefits and risks of land application of sewage sludge   总被引:5,自引:0,他引:5  
Sewage sludge, also referred as biosolids, is a byproduct of sewage treatment processes. Land application of sewage sludge is one of the important disposal alternatives. Characteristics of sewage sludge depend upon the quality of sewage and type of treatment processes followed. Being rich in organic and inorganic plant nutrients, sewage sludge may substitute for fertilizer, but availability of potential toxic metals often restricts its uses. Sludge amendment to the soil modifies its physico-chemical and biological properties. Crop yield in adequately sludge-amended soil is generally more than that of well-fertilized controls. Bioavailability of metals increases in sludge amended soil at excessive rates of application for many years. Plants differ in their abilities to absorb sludge-derived metals from the soil. The purpose of this paper is to review the available information on various aspects of sewage sludge application on soil fertility and consequent effects on plant production to explore the possibility of exploiting this byproduct for agronomy and horticulture.  相似文献   

12.
Spain is one of the main municipal sewage sludge producers of Europe. This paper aims to agronomically characterise different types of sewage sludge stabilised by different methods (anaerobically digested, composted, and pelletised) and deliver policy recommendations from the results of this characterisation. Anaerobic sewage sludge quality is found to be better in plants with a lower volume of water processing. Composted sludge shows the best quality from a heavy metal point of view, but its low available nitrogen content increases the input of heavy metals when spread, as compared to digested or pelletised sludge. Pelletised sludge has higher heavy metal content than anaerobically digested sludge. Despite the good quality of the sludges, future regulations, especially with regard to Cd levels, will limit the use of this waste in agriculture.  相似文献   

13.
The effect of land application of biosolids on an agricultural soil was studied in a 2-month incubation experiment. The soil microbial biomass and the availability of heavy metals in the soil was monitored after the application of four different composting mixtures of sewage sludge and cotton waste, at different stages of composting. Land application caused an increase of both size and activity of soil microbial biomass that was related to the stabilization degree of the composting mixture. Sewage sludge stabilization through composting reduced the perturbance of the soil microbial biomass. At the end of the experiment, the size and the activity of the soil microbial biomass following the addition of untreated sewage sludge were twice those developed with mature compost. For the mature compost, the soil microbial biomass recovered its original equilibrium status (defined as the specific respiration activity, qCO2) after 18 days of incubation, whereas the soil amended with less stabilized materials did not recover equilibrium even after the two-month incubation period. The stabilization degree of the added materials did not affect the availability of Zn, Ni, Pb, Cu, Cr and Cd in the soil in the low heavy metal content of the sewage sludge studied. Stabilization of organic wastes before soil application is advisable for the lower perturbation of soil equilibria status and the more efficient C mineralization.  相似文献   

14.
Co-combustion of dried sewage sludge and coal in a pulverized coal boiler   总被引:1,自引:0,他引:1  
More than 1.1 million tons of municipal and industrial sewage sludge is produced annually in Poland. Most of this sewage sludge is landfilled or used for recultivation and fertilization of soil. After accession of Poland to the EU, large investments are planned for wastewater treatment, so it is expected that the amount of sewage sludge produced in Poland will grow in the near future. It is well known that the combustion of sewage sludge is becoming a more and more popular utilization method of such waste. Unfortunately, the current situation in Poland makes it impossible to incinerate the sewage sludge because of a lack of incinerators. One possible solution for Poland is the co-firing of dried sewage sludge in existing coal-fired utility boilers. This article presents results of initial Polish industrial trials of dried municipal sewage sludge and hard coal co-combustion in an OP-230 pulverized coal boiler. Such a solution was shown to be technically viable and not to require changes to the existing technological system. Cocombustion of sewage sludge with coal in power plants seems to be the best solution for sludge utilization in the near future in Poland.  相似文献   

15.
Fixation of heavy metals in the slag produced during incineration of sewage sludge will reduce emission of the metals to the atmosphere and make the incineration process more environmentally friendly. The effects of incineration conditions (incineration temperature 500-1100°C, furnace residence time 0-60min, mass fraction of water in the sludge 0-75%) on the fixation rates and species partitioning of Cd, Pb, Cr, Cu, Zn, Mn and Ni in slag were investigated. When the incineration temperature was increased from 500 to 1100°C, the fixation rate of Cd decreased from 87% to 49%, while the fixation rates of Cu and Mn were stable. The maximum fixation rates for Pb and Zn and for Ni and Cr were reached at 900 and 1100°C, respectively. The fixation rates of Cu, Ni, Cd, Cr and Zn decreased as the residence time increased. With a 20min residence time, the fixation rates of Pb and Mn were low. The maximum fixation rates of Ni, Mn, Zn, Cu and Cr were achieved when the mass fraction of water in the sludge was 55%. The fixation rate of Cd decreased as the water mass fraction increased, while the fixation rate of Pb increased. Partitioning analysis of the metals contained in the slag showed that increasing the incineration temperature and residence time promoted complete oxidation of the metals. This reduced the non-residual fractions of the metals, which would lower the bioavailability of the metals. The mass fraction of water in the sludge had little effect on the partitioning of the metals. Correlation analysis indicated that the fixation rates of heavy metals in the sludge and the forms of heavy metals in the incinerator slag could be controlled by optimization of the incineration conditions. These results show how the bioavailability of the metals can be reduced for environmentally friendly disposal of the incinerator slag.  相似文献   

16.
The aim of this study is to monitor the effect of the application of three increasing amounts of composted sewage sludge (3, 6 and 9 kg compost m(-2)) on the physico-chemical properties of a horticultural calcareous soil where sweet pepper plants (Capsicum annuum var. annuum) cv. California were grown. A comparative study of two different exploitation regimes was carried out; the first was an open-air field-grown plot and the second plot was kept under controlled conditions in a greenhouse. Changes in physical and chemical properties measured in soil and sweet pepper crop were recorded during crop growth in order to measure the evolution of these properties as a consequence of increasing compost applications. Organic matter, total nitrogen Kjeldahl and available phosphorus contents increased in soil after composted sewage sludge applications. The 9 kg compost m(-2) application promoted the appearance of deleterious effects on the properties of soil, such as salt accumulation, a significant increase in the electrical conductivity and an input of heavy metals (Pb>Cr>Cd). The 6 kg compost m(-2) application provided a supply of nutrients necessary to grow peppers plants under both exploitation regimes. Pepper fruit biomass production under greenhouse was almost 60% higher compared to that of the open-air plot. Lower contents of Ca and increased levels of Cu in fruit under greenhouse growing conditions compared to those of open-air grown peppers seemed to promote the occurrence of blossom-end rot, affecting more than 10% of the harvested fruits.  相似文献   

17.
Limitations relating to permissible standards of undesirable substances in sewage sludges make it necessary to optimize sludge properties. One of the methods to achieve the above goal is the use of a composting process. The aim of this study was to determine the toxicity of composts obtained from sewage sludges composted for 76 days. Dewatered sewage sludges were collected from the four wastewater treatment plants located in the south-eastern part of Poland (Kraśnik, Lublin, Biłgoraj and Zamość). The sludges were mixed with standard OECD soil at doses of 6% and 24%. Phytotoxkit (with Lepidium sativum) and ostracodtoxkit (with Heterocypris incongruens) tests were used to evaluate toxicity. The results obtained showed different toxicity of sewage sludge depending on the sludge dose and bioassay used. H. incongruens mortality ranged from 0% to 90% and depended on the sewage sludge. The greatest inhibition of test organism growth was noted at a level of 55%. In the case of the Phytotoxkit test, a clearly negative influence of the sewage sludges on seed germination was observed at a dose of 24%. Root growth inhibition was noted in the case of most sewage sludges and was at a level of 20–100%. The influence of the composting on the toxicity of biosolids also showed various trends depending on the sludge type. Sludge composting often resulted in a toxicity increase in relation to H. incongruens. In the case of plants (Phytotoxkit test) and most sewage sludges, however, the composting process influenced both the seed germination and root growth in a positive way.  相似文献   

18.
More and more sewage sludge is being produced in China. Safe and economical methods for sewage sludge disposal should be found considering the increase in sewage treatment. In order to verify the feasibility of sludge disposal on newly built highway embankments, five treatments (0, 15, 30, 60 and 120 tons ha−1) of sewage sludge compost (SSC) were added to a silty-clay embankment soil on the Xi-Huang highway. The results showed that amendment with SSC increased soil available N, available P, organic matter, cation exchange capacity, and water content, and decreased soil bulk density. Application of SSC enhanced ryegrass growth and reduced runoff and soil erosion. Heavy metal losses from sediments in runoff remained constant or decreased relative to the control until a rate of 60 tons ha−1 was exceeded, when heavy metal losses appeared to increase.  相似文献   

19.
In order to separate and reuse heavy and alkali metals from flue gas during sewage sludge incineration, experiments were carried out in a pilot incinerator. The experimental results show that most of the heavy and alkali metals form condensed phase at temperature above 600 degrees C. With the addition of 5% calcium chloride into sewage sludge, the gas/solid transformation temperature of part of the metals (As, Cu, Mg and Na) is evidently decreased due to the formation of chloride, while calcium chloride seems to have no significant influence on Zn and P. Moreover, the mass fractions of some heavy and alkali metals in the collected fly ash are relatively high. For example, the mass fractions for Pb and Cu in the fly ash collected by the filter are 1.19% and 19.7%, respectively, which are well above those in lead and copper ores. In the case of adding 5% calcium chloride, the heavy and alkali metals can be divided into three groups based on their conversion temperature: Group A that includes Na, Zn, K, Mg and P, which are converted into condensed phase above 600 degrees C; Group B that includes Pb and Cu which solidify when the temperature is above 400 degrees C; and Group C that includes As, whose condensation temperature is as low as 300 degrees C.  相似文献   

20.
A 4-year field trial was established in eastern Sweden to evaluate the effects of organic waste on soil chemical and microbiological variables. A simple crop rotation with barley and oats was treated with either compost from household waste, biogas residue from household waste, anaerobically treated sewage sludge, pig manure, cow manure or mineral fertilizer. All fertilizers were amended in rates corresponding to 100kgNha(-1)year(-1). The effects of the different types of organic waste were evaluated by subjecting soil samples, taken each autumn 4 weeks after harvest, to an extensive set of soil chemical (pH, Org-C, Tot-N, Tot-P, Tot-S, P-AL, P-Olsen, K-AL, and some metals) and microbiological (B-resp, SIR, microSIR active and dormant microorganisms, PDA, microPDA, PAO, Alk-P and N-min) analyses. Results show that compost increased pH, and that compost as well as sewage sludge increased plant available phosphorus; however, the chemical analysis showed few clear trends over the 4 years and few clear relations to plant yield or soil quality. Biogas residues increased substrate induced respiration (SIR) and, compared to the untreated control amendment of biogas residues as well as compost, led to a higher proportion of active microorganisms. In addition, biogas residues increased potential ammonia oxidation rate (PAO), nitrogen mineralization capacity (N-min) as well as the specific growth rate constant of denitrifiers (microPDA). Despite rather large concentrations of heavy metals in some of the waste products, no negative effects could be seen on either chemical or microbiological soil properties. Changes in soil microbial properties appeared to occur more rapidly than most chemical properties. This suggests that soil microbial processes can function as more sensitive indicators of short-term changes in soil properties due to amendment of organic wastes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号