首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 586 毫秒
1.
Increased energy consumption due to industrial growth has increased the levels of carbon dioxide (CO2) emission being released into the atmosphere. CO2 emission is a type of greenhouse gas which is a major cause of global warming. Since the issue of CO2 emissions has drawn much attention in recent years, the development of CO2 capture technology has become a necessity. Although CO2 adsorbents are still at the early development stage, it has been suggested that CO2 adsorbents are the most effective technology in controlling CO2 emissions. Solid adsorbents have great potential as an alternative method to conventional adsorbents in adsorbing CO2. In this paper, low cost adsorbents including activated carbon, zeolites, mesoporous silica and clays are discussed in terms of adsorbent preparation methods and CO2 adsorption capacity. The low cost adsorbents are mainly derived from waste materials such as fly ash, steel slag, red mud, bagasses wastes and wood wastes. Besides that, natural resources such as clays have also been applied as low cost CO2 adsorbents. Surface modifications have also been applied to the low cost adsorbents, including metal ion exchange and amine impregnation to enhance CO2 adsorption capacity. In the last section, the current status of CO2 adsorbents is summarized and future trends are discussed briefly to predict the potential materials which can be applied as CO2 adsorbents.  相似文献   

2.
Cesium removal from de-ionized water, seawater, and limewater using copper ferrocyanide (CFC) and porous media including silica gel, bentonite, vermiculite, and zeolite as adsorbents were investigated; CFC was incorporated with vermiculite to prepare a compound adsorbent for improving the Cs-leaching resistance of solidified borate radwastes. It was shown that the Cs-removal efficiency by CFC, defined as the percentage of cesium removed or adsorpted from solution, was largely affected by pHs of the solutions. Good removal efficiency occurred at pHs ranging from 3 to 12 with the best from 7 to 10. Vermiculite and zeolite were shown to have better removal power than silica gel and bentonite, and vermiculite was chosen to incorporate with CFC to make compound adsorbents because of its good compatibility with CFC floc. Compound adsorbents with different CFC contents were used as additives in the solidification of radioactive borate wastes for improving the cesium leaching resistance of the solidified products. Experimental results showed that the cesium leachability index measured following the method described in ANSI/ANS 16.1 increased from 7.96 to 9.76 by adding 0.25% of a compound adsorbent containing 20% CFC and 80% vermiculite. It indicated that the compound adsorbent is very useful for improving cesium-leaching resistance of the solidified borate wastes.  相似文献   

3.
This article describes the utility of Spizizen medium in effecting the release of 2,4 dinitrotoluene (DNT) from plasticized propellant in aged clay soil and of added Pseudomonas organisms in enhancing the rate of degradation of DNT in clay and sandy soils. DNT is an environmental problem because of its toxicity to mammals. It is proposed that the citrate in Spizizen medium chelates metals that form the aggregates of humin in aged clay soils, thereby releasing propellant components. Lack of awareness of DNT mobilization by citrate or other polyanions may lead to a potential underestimation of the 2,4 DNT present in aged contaminated soil and a potential increased release of DNT following exposure to solvents containing citrate or other polyanions. DNT in contaminated sandy soils was rapidly degraded when Pseudomonas and Spizizen medium were added (85% degraded in 20 days). Pseudomonas isolated/Torn soils at the Badger Plant have particular utility for the in situ degradation of 2,4 DNT in clay and sandy soils because they metabolize Spizizen medium, thrive in diverse climates, and have been selected for their ability to grow in soils contaminated with DNT. Mixture of either the contaminated clay soil or the contaminated sandy soil with uncontaminated prairie silt loam (20:80 ratio) facilitated management of the treatment process. This observation is important because of the widespread distribution, and hence low cost, of this soil type in the central United States.  相似文献   

4.
Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments--a review   总被引:45,自引:0,他引:45  
The spread of contaminants in soil can be hindered by the soil stabilization technique. Contaminant immobilizing amendments decrease trace element leaching and their bioavailability by inducing various sorption processes: adsorption to mineral surfaces, formation of stable complexes with organic ligands, surface precipitation and ion exchange. Precipitation as salts and co-precipitation can also contribute to reducing contaminant mobility. The technique can be used in in situ and ex situ applications to reclaim and re-vegetate industrially devastated areas and mine-spoils, improve soil quality and reduce contaminant mobility by stabilizing agents and a beneficial use of industrial by-products. This study is an overview of data published during the last five years on the immobilization of one metalloid, As, and four heavy metals, Cr, Cu, Pb and Zn, in soils. The most extensively studied amendments for As immobilization are Fe containing materials. The immobilization of As occurs through adsorption on Fe oxides by replacing the surface hydroxyl groups with the As ions, as well as by the formation of amorphous Fe(III) arsenates and/or insoluble secondary oxidation minerals. Cr stabilization mainly deals with Cr reduction from its toxic and mobile hexavalent form Cr(VI) to stable in natural environments Cr(III). The reduction is accelerated in soil by the presence of organic matter and divalent iron. Clays, carbonates, phosphates and Fe oxides were the common amendments tested for Cu immobilization. The suggested mechanisms of Cu retention were precipitation of Cu carbonates and oxy-hydroxides, ion exchange and formation of ternary cation-anion complexes on the surface of Fe and Al oxy-hydroxides. Most of the studies on Pb stabilization were performed using various phosphorus-containing amendments, which reduce the Pb mobility by ionic exchange and precipitation of pyromorphite-type minerals. Zn can be successfully immobilized in soil by phosphorus amendments and clays.  相似文献   

5.
Emerging organic contaminants (EOCs) are widespread in the environment, and concentrations above the acceptable limits are being detected due to improved detection methods, technologies, and regulations for their monitoring. Increasing use of new consumer, pharmaceutical, and scientific products has introduced EOCs, such as nanomaterials and siloxanes, into the environment. The releases of EOCs into the environment can lead to surface‐water, soil, and groundwater contamination. The presence of pharmaceuticals and their enantiomers can lead to resistant algal strains and, thus, more persistent algal toxins. This review discusses some of the prominent EOCs and the methods for their remediation. This is useful for assessing current remediation technologies and for developing new technologies to treat EOCs in water. © 2008 Wiley Periodicals, Inc.  相似文献   

6.
The application of cement-based stabilisation/solidification treatment to organic-containing wastes is made difficult by the adverse effect of organics on cement hydration. The use of organophilic clays as pre-solidification adsorbents of the organic compounds can reduce this problem because of the high adsorption power of these clays and their compatibility with the cementitious matrix. This work presents an investigation of the effect on hydration kinetics, physico-mechanical properties and leaching behaviour of cement-based solidified waste forms containing 2-chlorophenol and 1-chloronapthalene adsorbed on organophilic bentonites. These were prepared by cation exchange with benzyldimethyloctadecylammonium chloride and trimethyloctadecylammonium chloride. The binder was a 30% pozzolanic cement, 70% granulated blast furnace slag mixture. Several binder-to-bentonite ratios and different concentrations of the organics on the bentonite were used. Kinetics of hydration were studied by measurement of chemically bound water and by means of thermal and calorimetric analyses. Microstructure and other physico-mechanical properties of the solidified forms were studied by means of mercury intrusion porosimetry, scanning electron microscopy and unconfined compressive strength measurement. Leaching was checked by two different leaching tests: one dynamic, on monolithic samples, and the other static, on powdered samples. This study indicates that the incorporation of the organic-loaded bentonite in the binder matrix causes modifications in the hardened samples by altering cement hydration. The effects of the two organic contaminants are differentiated.  相似文献   

7.
Pesticides are widely used in modern agriculture to minimize financial losses and maintain food supplies. In southeast Asia, where agriculture is the principal economic activity, pesticides are considered essential, particularly in tropical regions seeking to enter the global economy by providing off-season fresh fruits and vegetables. The absence of a strong legal framework for pesticides facilitated a significant increase in the use of low-quality pesticides. Farmers ignore the risks, safety instructions, and protective directives when using pesticides. They are only concerned about the effectiveness of the pesticides for killing pests, without paying attention to the effects on their health and the environment. The improper usage of pesticides and the incorrect disposal of pesticide wastes contributed to the pollution of groundwater, surface water, and soil, and induced health problems in local communities. This paper describes the impact of the exposure of pesticides on human health and water resources in connection with the usage of pesticides and their management. Because of availability, the data are mainly taken for Northern Vietnam, and applied to the water quality in the delta; nevertheless, the problem relates to all countries in the delta, and similar situations may be found in other regions, particularly in Asia.  相似文献   

8.
Soluble phosphate is a common ingredient of fertilizer used in agriculture production all over the world. This chemical mixed with soil is transported into the water and marine environment via rainfall causing a range of environmental problems such as toxic algae bloom. Kaolin clay is a common material found in soil and is used as a model system to understand the effects of phosphate adsorption on the flocculation/dispersion of the clay slurries. In the topics, torrential downpours are common. The large water flow will easily disperse the unflocculated or weakly flocculated sediments over a wide area including river and marine environments. Phosphate adsorption was found to weaken the interparticle forces between clay platelets in the slurries. At high enough concentration, it will completely deflocculate the clay slurries, i.e. the net interparticle force is repulsive. A deflocculated slurry is characterised by a low viscosity and no yield stress. As a result, it is much easier to disperse this slurry over a wide area possible even in a small downpour. This study will present the flow and yield stress behaviour of kaolin clay slurries under the influence of adsorbed phosphate.  相似文献   

9.
Mechanical blending of contaminated soil with amendments has recently reemerged as an important treatment technology. From its original application using large‐diameter augers in the early 1990s to the current use of rotary drum blenders, soil blending is being used as an alternative to other remediation technologies like amendment injection and soil vapor and groundwater extraction. Shallow (approximately 10 m below ground surface [bgs] or less) soil blending also offers an alternative to excavation and disposal. Soil blending has been used to remediate a site with various contaminants including, but not limited to, chlorinated solvents, petroleum, and metals. The types of soils susceptible to soil blending vary from sands and gravels to silts and clays to fractured rock and combinations of all of these. The types of amendments blended include oxidants, reducing agents, biological enhancements, and stabilizing amendments. Soil blending systems deliver the power to the mixing head to adequately mix the soil and amendment to enhance remediation effectiveness. Since long‐term contamination is often a result of heterogeneously distributed residual contaminant in localized source zones that are difficult to access, the typical aim of soil blending is to homogenize the soil while effectively distributing amendment to these zones made accessible by blending. By effectively homogenizing the soil, however, soil blending will increase the void ratio and disrupt the shear strength and bearing capacity of the soil so an important component of a soil blending technology is proper recovery of these geotechnical parameters. This can be achieved by using well‐known soil improvement techniques such as amending all or a portion of the blended area with Portland cement or lime. Several case studies of soil blending treatments of different contaminants and amendments in various soil types are provided.  相似文献   

10.
以无烟煤、烟煤、褐煤以及工业半焦、烟煤半焦为载体,采用超声辅助加压浸渍法制备了Mn-Ce双金属吸附剂。利用固定床装置对吸附剂的烟气脱硫活性进行了评价,并运用BET、XRD和FTIR技术对其进行了表征。结果表明:吸附剂的脱硫活性主要由焙烧后的金属氧化物提供,金属离子本身无脱硫活性;炭基载体中的酯基是影响金属组分脱硫活性的主要因素,酯基在焙烧过程中分解使得金属组分暴露出来,提高了吸附剂的脱硫活性;中等变质程度的烟煤是制备吸附剂的良好载体,含有适量酯基,使得吸附剂表面金属组分分散均匀。  相似文献   

11.
Deep drainage technique utilised for flood mitigation in low-land coastal areas of Australia during the late 1960s has resulted in the generation of sulphuric acid in soil by the oxidation of pyritic materials. Further degradation of the subsurface environment with widespread contamination of the underlying soil and groundwater presents a major and challenging environmental issue in acid sulphate soil (ASS) terrains. Although several ASS remediation techniques recently implemented in the floodplain of Southeast Australia including operation of gates, tidal buffering and lime injections could significantly control the pyrite oxidation, they could not improve the long-term water quality. More recently, permeable reactive barriers (PRBs) filled with waste concrete aggregates have received considerable attention as an innovative, cost-effective technology for passive in situ clean up of groundwater contamination. However, long-term efficiency of these PRBs for treating acidic groundwater has not been established. This study analyses and evaluates the performance of a field PRB for treating the acidic water over 2.5 years. The pilot-scale alkaline PRB consisting of recycled concrete was installed in October 2006 at a farm of southeast New South Wales for treating ASS-impacted groundwater. Monitoring data of groundwater quality over a 30 month period were assessed to evaluate the long-term performance of the PRB. Higher pH value (~pH 7) of the groundwater immediately downstream of the PRB and higher rates of iron (Fe) and aluminium (Al) removal efficiency (>95%) over this study period indicates that recycled concrete could successfully treat acidic groundwater. However, the overall pH neutralising capacity of the materials within the barrier declined with time from an initial pH 10.2 to pH 7.3. The decline in the performance with time was possibly due to the armouring of the reactive material surface by the mineral precipitates in the form of iron and aluminium hydroxides and oxyhydroxides as indicated by geochemical modelling.  相似文献   

12.
Two activated carbons (ACs) prepared from cattle manure compost (CMC) by ZnCl(2) activation were selected and out-gassed in a helium flow at various temperatures for 2h. The pore structure and surface chemical properties of the two selected ACs and their out-gassing treated ACs were characterized using N(2) adsorption-desorption, elements analysis, SEM and Boehm titration. A basic dye, methylene blue (MB), was chosen as an adsorbate to investigate the adsorption capacity for organic contaminant onto the activated carbons. It was found that the out-gassing treatment at 400 degrees C had little effect on the textural characteristics of the carbons but significantly changed the surface chemical properties such as surface functional groups concentration, pH and pH(PZC). The CMC-based activated carbons exhibited excellent performance for MB adsorption due to their high surface area, large mesopore volume and high nitrogen content. The kinetics of MB adsorption onto the activated carbons followed a pseudo-second-order equation, and the equilibrium data agreed well with the Langmuir model under the experimental conditions. The highest adsorption rate constant of k(ad) and the largest adsorption capacity of q(m) were found be 1.44x10(-4)g/mgmin and 519mg/g, respectively. The results suggested that the CMC-based activated carbons were effective adsorbents for the removal of methylene blue from aqueous solution.  相似文献   

13.
Pesticides can have a number of adverse impacts on crops, soil and water. In this paper, we focus on the physical and hydraulic properties of soils controlling the leaching of pesticides into the shallow groundwater of the Rattaphum Catchment in Thailand. Results from an analysis of soil physical properties, hydraulic conductivity, dye tracer and bromide tests show that the top 10–30 cm of soils in the three agro-ecosystems (vegetables, fruits and rubber) have a high clay and organic carbon content and are relatively impermeable with very low hydraulic conductivity (15–40 cm/day). Most of the dye and bromide were retained in the top clayey layer; the bromide forming a miniature bulge below 30 cm in two profiles which dissipated after 30 days, while the pesticides were mainly confined to the top 10 cm.  相似文献   

14.
Water hyacinths are becoming a problem in lakes, ponds and waterways in many parts of the world. This paper contains a literature study of different ways to use water hyacinths, mainly in agricultural or alternative energy systems. The literature review indicated that water hyacinths can be rich in nitrogen, up to 3.2% of DM and have a C/N ratio around 15. The water hyacinth can be used as a substrate for compost or biogas production. The sludge from the biogas process contains almost all of the nutrients of the substrate and can be used as a fertiliser. The use of water hyacinth compost on different crops has resulted in improved yields. The high protein content makes the water hyacinth possible to use as fodder for cows, goats, sheep and chickens. Water hyacinth, due to its abundant growth and high concentrations of nutrients, has a great potential as fertiliser for the nutrient deficient soils of Africa and as feed for livestock. Applying the water hyacinths directly without any other processing than sun drying, seems to be the best alternative in small-scale use due to the relatively small losses of nutrients and workload required. To meet the ever-growing energy demand, biogas production could be one option but it requires investments and technological skills that would impose great problems in developing countries where the water hyacinth is often found. Composting as an alternative treatment has the advantage of a product that is easy to work into the soil compared with dried water hyacinths, because of the decomposed structure. Harvesting and transport of water hyacinths can be conducted manually on a small scale and does not require a new harvesting technique to be introduced. Transporting of fresh water hyacinths means, if used as fertiliser in amounts large enough to enhance or effect crop growth, an unreasonably large labour requirement. Based on the labour need and the limited access to technology, using dried water hyacinths, as green manure is a feasible alternative in many developing countries.  相似文献   

15.
Remediation of heavy metal contamination in soil is a widespread environmental issue. Conventional remediation techniques are invasive and often too expensive, particularly if large areas of soil are contaminated. Phytoremediation is the use of plants to remediate soil and groundwater. Phytoremediation of inorganic comtaminants such as metals can be further catagorized into phytostabilization and phytoextraction. These techniques have gained an increasing amount of attention and research over the last ten years. Phytoextraction of heavy metals and periodical removal of harvestable plant parts results in a gradual decrease of pollutant levels in the top soil. Woody species such as Salix sp. (willow) do not represent the fastest phytoextraction procedure compared to uptake by herbaceous species; however, they offer the added advantage of possible reuse of the produced biomass (wood) for the production of renewable energy. Here we present the results of a field experiment conducted to evaluate the use of Salix to remediate soil contaminated with cadmium and zinc at a dredged sediment disposal site in Flanders, Belgium. © 2003 Wiley Periodicals, Inc.  相似文献   

16.
Volatile substances and gases resulting e.g. from degradation processes of chemicals in soils emit into the atmosphere and no chemical mass balance is complete without considering this path. Closed soil chambers allow the evaluation of this transfer to the atmosphere. This study deals with the influence of soil chambers with a glass plate cover on physical soil conditions in the chambers and the possibility to simulate the exterior conditions within the chambers. The water content immediately at the soil surface is an important factor for the microbial activity and the transfer of gaseous compounds to the atmosphere as well. It is monitored by specially designed water content sensors in 1 cm depth in the chamber and as control outside. Funnels with a cross section equal to the soil surface area of the chamber collect the rain water and channel it into the soil chamber. This results in soil water content in the chambers very similar to that outside. For the purpose of analysing 14CO2 and volatile 14C-compounds, air is permanently pumped through the chamber. In order to simulate natural conditions, the wind speed is measured 1 cm above the soil surface outside the chambers. A control circuit adjusts the air flow through the chamber to a value corresponding to the wind speed outside. Temperature measurements in 1 cm depth verify that there is no significant difference between the soil chamber and the control outside.  相似文献   

17.
This work, on the ashes from the wastewater treatment plant of Galindo (Vizcaya, Spain), has been outlined with the purpose of finding their physico-chemical properties and suggesting possible applications. Ashes contain important quantities of iron, calcium, silica, alumina and phosphates. X-Ray diffraction data make it possible to estimate the mineralogical compositions of the original ashes and also, after thermal treatment at 1200 and 1300 degrees C, the main reactions occurring in thermal treatment. Particle size analysis makes it possible to classify ashes as a very fine powdered material. The thermal treatment leads to a densification of the material and provokes losses of weight mainly due to the elimination of water, carbon dioxide and sulphur trioxide. Application tests show that ashes are not suitable for landfill and similar applications, because of their plastic properties. Testing for pozzolanic character, after the ashes had been heated at 1200 degrees C, did not lead to a strong material probably due to low contents in silica and alumina or to requiring a higher heating temperature. Thermal treatment leads to densification of the material with a considerable increase of compressive strength of the probes. The use of additives (clays and powdered glass) to improve ceramic properties of ashes will be the aim of a future work.  相似文献   

18.
Nuclear magnetic resonance (NMR) geophysical tools have been widely used in the petroleum exploration industry since the 1960s and have improved significantly in the last two decades. These tools can provide estimates of bulk porosity and fluid content, quantification of bound versus mobile fluids, and estimates of hydraulic conductivity (K). Although the size and cost of oil‐field tools historically limited their use for near‐surface applications, smaller and more economical downhole NMR logging tools are now available for detecting and characterizing the formation water content and K to support environmental and groundwater resource investigations. These tools can be deployed using direct‐push drilling techniques or they can be lowered into existing open borings or wells with nonconductive polyvinyl chloride casings and screens. In many cases, using the tool in existing wells offers a safer and more cost‐effective alternative compared to drilling new boreholes. For environmental investigations, NMR can provide useful high‐resolution quantitative hydrostratigraphic information that can provide additional valuable data to further inform and refine the conceptual site model. This paper highlights several NMR field investigations that demonstrate the viability of this technology as a site characterization tool for near‐surface investigations. NMR measurements were compared to data from lithologic logs, cone penetrometer testing data, and prior field hydraulic tests. Use of NMR to detect vadose zone water, including previously unidentified perched groundwater zones, provided hydrostratigraphic details that could not be gleaned from historical well drilling logs and were used to evaluate drainable pore water versus pore water bound in small pores by capillary forces or electrochemically clay‐bond water. NMR also produced K estimates similar to those from conventional hydraulic tests, but the improved vertical resolution from NMR provided additional information regarding the vertical heterogeneity of the formation along the entire length of the well or borehole. Additionally, bench‐scale tests are presented that confirm the capability for NMR to reliably detect and quantify light nonaqueous phase liquid saturation (specifically diesel fuel and weathered gasoline) in situ. The field tests combined with bench‐scale testing results affirm the applicability and potential for NMR as a practical characterization tool that should increasingly be utilized in environmental investigations.  相似文献   

19.
Much work has been done on gaseous emissions and leaching of nitrogenous compounds from whole soil profiles and also from soil surface measurements which are assumed to be mainly due to topsoil activity. In soils with an impervious clay subsoil, the boundary between the topsoil and subsoil may provide an interface for microbial activity, including N transformations. In this study, we investigated movement and transformations of two reactive N species (nitrate and urea) at the subsoil interface using a series of replicate, intact soil blocks, under two contrasting watering regimes. We measured fluxes in both liquid and gaseous phases and demonstrated that nitrate reaching the subsoil interface does not necessarily leach into water systems, but may denitrify immediately and could, therefore, add to atmospheric pollution through N2O production. On the other hand, ammonium reaching the subsoil interface either directly, or after mineralization, appears to be more mobile than expected and has the potential to pollute watercourses.  相似文献   

20.
Much work has been done on gaseous emissions and leaching of nitrogenous compounds from whole soil profiles and also from soil surface measurements which are assumed to be mainly due to topsoil activity. In soils with an impervious clay subsoil, the boundary between the topsoil and subsoil may provide an interface for microbial activity, including N transformations. In this study, we investigated movement and transformations of two reactive N species (nitrate and urea) at the subsoil interface using a series of replicate, intact soil blocks, under two contrasting watering regimes. We measured fluxes in both liquid and gaseous phases and demonstrated that nitrate reaching the subsoil interface does not necessarily leach into water systems, but may denitrify immediately and could, therefore, add to atmospheric pollution through N2O production. On the other hand, ammonium reaching the subsoil interface either directly, or after mineralization, appears to be more mobile than expected and has the potential to pollute watercourses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号