首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 401 毫秒
1.
Stabilization/solidification (S/S) processes have been used as the final treatment step for hazardous wastes prior to land disposal. Fly ash is a by-product of coal-fired power generation; a significant proportion of this material is low-grade, reject material (rFA) that is unsuitable as a cement replacement due to its high carbon content and large particle size (>45 microm). Flue gas desulphurization (FGD) sludge is a by-product from the air pollution control systems used in coal-fired power plants. The objective of this work was to investigate the performance of S/S waste binder systems containing these two waste materials (rFA and FGD). Strength tests show that cement-based waste forms with rFA and FGD replacement were suitable for disposal in landfills. The addition of an appropriate quantity of Ca(OH)2 and FGD reduces the deleterious effect of heavy metals on strength development. Results of TCLP testing and the progressive TCLP test show that cement-rFA-Ca(OH)2 systems with a range of FGD additions can form an effective S/S binder. The Leachability Index indicates that cement-based waste forms with rFA replacement were effective in reducing the mobility of heavy metals.  相似文献   

2.
The application of cement-based stabilisation/solidification treatment to organic-containing wastes is made difficult by the adverse effect of organics on cement hydration. The use of organophilic clays as pre-solidification adsorbents of the organic compounds can reduce this problem because of the high adsorption power of these clays and their compatibility with the cementitious matrix. This work presents an investigation of the effect on hydration kinetics, physico-mechanical properties and leaching behaviour of cement-based solidified waste forms containing 2-chlorophenol and 1-chloronapthalene adsorbed on organophilic bentonites. These were prepared by cation exchange with benzyldimethyloctadecylammonium chloride and trimethyloctadecylammonium chloride. The binder was a 30% pozzolanic cement, 70% granulated blast furnace slag mixture. Several binder-to-bentonite ratios and different concentrations of the organics on the bentonite were used. Kinetics of hydration were studied by measurement of chemically bound water and by means of thermal and calorimetric analyses. Microstructure and other physico-mechanical properties of the solidified forms were studied by means of mercury intrusion porosimetry, scanning electron microscopy and unconfined compressive strength measurement. Leaching was checked by two different leaching tests: one dynamic, on monolithic samples, and the other static, on powdered samples. This study indicates that the incorporation of the organic-loaded bentonite in the binder matrix causes modifications in the hardened samples by altering cement hydration. The effects of the two organic contaminants are differentiated.  相似文献   

3.
This study investigated the properties of solidified waste using ordinary Portland cement (OPC) containing synthesized zeolite (SZ) and natural zeolite (NZ) as a binder. Natural and synthesized zeolites were used to partially replace the OPC at rates of 0%, 20%, and 40% by weight of the binder. Plating sludge was used as contaminated waste to replace the binder at rates of 40%, 50% and 60% by weight. A water to binder (w/b) ratio of 0.40 was used for all of the mixtures. The setting time and compressive strength of the solidified waste were investigated, while the leachability of the heavy metals was determined by TCLP. Additionally, XRD, XRF, and SEM were performed to investigate the fracture surface, while the pore size distribution was analyzed with MIP. The results indicated that the setting time of the binders marginally increased as the amount of SZ and NZ increased in the mix. The compressive strengths of the pastes containing 20 and 40wt.% of NZ were higher than those containing SZ. The compressive strengths at 28 days of the SZ solidified waste mixes were 1.2-31.1MPa and those of NZ solidified waste mixes were 26.0-62.4MPa as compared to 72.9MPa of the control mix at the same age. The quality of the solidified waste containing zeolites was better than that with OPC alone in terms of the effectiveness in reducing the leachability. The concentrations of heavy metals in the leachates were within the limits specified by the US EPA. SEM and MIP revealed that the replacement of Portland cement by zeolites increased the total porosity but decreased the average pore size and resulted in the better containment of heavy ions from the solidified waste.  相似文献   

4.
This article describes portland cement-based solidification/stabilization (S/S) treatment of heavy metal-contaminated soil. The soil was discovered during highway construction in West Jordan, Utah. Environmental Chemical Corporation (ECC) performed an emergency response to remediate the soil under contract with the EPA and the United States Bureau of Reclamation (USBR). The soil was treated by S/S. Treatment of the soil, contaminated with lead and arsenic, involved: (1) excavation, (2) size segregation, (3) reduction of oversized particles, (4) addition and mixture of portland cement and cement kiln dust, and (5) beneficial reuse of the treated soil as a subbase. S/S treatment successfully reduced Toxicity Characteristic Leaching Procedure (TCLP) concentrations of the contaminants to below regulatory levels.  相似文献   

5.
This paper explores the kinetics of carbonation of cement-based solidified hazardous waste. This study is part of a wide investigation into the effects of carbonation on solidified waste forms. Two commercially produced heavy metal wastes were solidified with three different types of Portland cement and two mineral admixtures and carbonated under controlled conditions. Measurements of the uptake of carbon dioxide were made for the different mixes and areas showing the degree of carbonation for each cement system were defined. The effects of water/binder ratio, waste and binder type on both total uptake of carbon dioxide and rate of carbonation were investigated and are discussed.  相似文献   

6.
Heavy metal-bearing waste usually needs solidification/stabilization (s/s) prior to landfill to lower the leaching rate. Cement is the most adaptable binder currently available for the immobilisation of heavy metals. The selection of cements and operating parameters depends upon an understanding of chemistry of the system. This paper discusses interactions of heavy metals and cement phases in the solidification/stabilisation process. It provides a clarification of heavy metal effects on cement hydration. According to the decomposition rate of minerals, heavy metals accelerate the hydration of tricalcium silicate (C3S) and Portland cement, although they retard the precipitation of portlandite due to the reduction of pH resulted from hydrolyses of heavy metal ions. The chemical mechanism relevant to the accelerating effect of heavy metals is considered to be H+ attacks on cement phases and the precipitation of calcium heavy metal double hydroxides, which consumes calcium ions and then promotes the decomposition of C3S. In this work, molecular models of calcium silicate hydrate gel are presented based on the examination of 29Si solid-state magic angle spinning/nuclear magnetic resonance (MAS/NMR). This paper also reviews immobilisation mechanisms of heavy metals in hydrated cement matrices, focusing on the sorption, precipitation and chemical incorporation of cement hydration products. It is concluded that further research on the phase development during cement hydration in the presence of heavy metals and thermodynamic modelling is needed to improve effectiveness of cement-based s/s and extend this waste management technique.  相似文献   

7.
A study is undertaken to determine the waste immobilization performance of low-level wastes in cement-clay mixtures. Liquid low-level wastes are precipitated using chemical methods, followed by solidification in drums. Solidification is done using cementation processes. Long-term leaching rates of the radionuclides are used as indicators of immobilization performance of solidified waste forms. In addition to evaluating the effects of kaolin clay on the leaching properties of the cemented waste forms, the effect of addition of kaolin on the strength of the cemented waste form is also investigated. The long term leaching tests show that inclusion of kaolin in cement reduces the leaching rates of the radionuclides significantly. However, clay additions in excess of 15 wt.% causes a significant decrease in the hydrolytic stability of cemented waste form. It is found that the best waste isolation, without causing a loss in the mechanical strength, is obtained when the kaolin content in cement is 5%.  相似文献   

8.
Fly ash has potential application in the construction of base liners for waste containment facilities. While most of the fly ashes improve in the strength with curing, the ranges of permeabilities they attain may often not meet the basic requirement of a liner material. An attempt has been made in the present context to reduce the hydraulic conductivity by adding lime content up to 10% to two selected samples of class F fly ashes. The use of gypsum, which is known to accelerate the unconfined compressive strength by increasing the lime reactivity, has been investigated in further improving the hydraulic conductivity. Hydraulic conductivities of the compacted specimens have been determined in the laboratory using the falling head method. It has been observed that the addition of gypsum reduces the hydraulic conductivity of the lime treated fly ashes. The reduction in the hydraulic conductivity of the samples containing gypsum is significantly more for samples with high amounts of lime contents (as high as 1000 times) than those fly ashes with lower amounts of lime. However there is a relatively more increase in the strengths of the samples with the inclusion of gypsum to the fly ashes at lower lime contents. This is due to the fact that excess lime added to fly ash is not effectively converted into pozzolanic compounds. Even the presence of gypsum is observed not to activate these reactions with excess lime. On the other hand the higher amount of lime in the presence of sulphate is observed to produce more cementitious compounds which block the pores in the fly ash. The consequent reduction in the hydraulic conductivity of fly ash would be beneficial in reducing the leachability of trace elements present in the fly ash when used as a base liner.  相似文献   

9.
The sludge from a steel processing unit bearing zinc, lead, iron, and manganese was solidified with ordinary Portland cement. The waste was stabilized in the specimens with a waste/binder ratio range of 0.16–4.0. On the basis of the available leaching and unconfined compressive strength, the performance of the solidified/stabilized waste was compared for different numbers of curing days. It was found that curing up to 28 days resulted in a performance improvement, as shown by less leaching of heavy metals and the increased unconfined compressive strength of the specimen. The treatment effectiveness of the solidification/stabilization process was assessed for the metals Pb, Zn, Fe, and Mn, and was found to be 89%, 95%, 74%, and 90%, respectively, for an optimum ratio of 4.0 after 28 days of curing.  相似文献   

10.
About 70% of all of the liquid and solid hazardous wastes commercially incinerated in the United States is being burned in cement kilns. The process inevitably results in residues, primarily heavy metals, entering the clinker and waste dusts (cement kiln dust, CKD) produced by these kilns. The effects of this trend on the nature and chemical composition of cement, actual and future, are discussed. The wastes burned by cement kilns are expected to increasingly have higher levels of heavy metals per Btu. In general, the effects are very simple to describe but have as yet unknown consequences. The present American Society for Testing and Materials (ASTM) standard does not effectively control hazardous waste burning residues in Portland Cement.The regulatory and economic pressures on CKD disposal suggest that much of it, and its heavy metal residues, will, in time, end up in the clinker and the resultant cement. The end point to the trend is the ability to make cement that passes the performance specifications while containing high levels of heavy metals. The only other alternative is to maximize the levels of heavy metals in the CKD, minimize the amount of CKD, and dispose of its as a hazardous waste.It is recommended that an effort to correlate heavy metal levels in clinker with adverse effects be undertaken, a new standard for cement containing hazardous and other waste residuals be developed, and labeling be required.  相似文献   

11.
Synthetic wastes have been widely employed to help elucidate the complex interactions between real wastes and hydraulic binders during solidification. In this work, a laboratory produced metal waste mixed with Portland cement and immediately carbonated it using an accelerated method. The microstructures of carbonated and non-carbonated control samples were distinct despite both being dominated by unusually large phenograins derived from the waste. In the carbonated sample waste phenograins remained unaltered, whereas cement grains were largely decalcified. As a consequence of decalcification, observable porosity was significantly reduced by the formation of precipitated carbonates.  相似文献   

12.
Accelerated carbonation of municipal solid waste incineration fly ashes   总被引:3,自引:0,他引:3  
As a result of the EU Landfill Directive, the disposal of municipal solid waste incineration (MSWI) fly ash is restricted to only a few landfill sites in the UK. Alternative options for the management of fly ash, such as sintering, vitrification or stabilization/solidification, are either costly or not fully developed. In this paper an accelerated carbonation step is investigated for use with fly ash. The carbonation reaction involving fly ash was found to be optimum at a water/solid ratio of 0.3 under ambient temperature conditions. The study of ash mineralogy showed the disappearance of lime/portlandite/calcium chloride hydroxide and the formation of calcite as carbonation proceeded. The leaching properties of carbonated ash were examined. Release of soluble salts, such as SO4, Cl, was reduced after carbonation, but is still higher than the landfill acceptance limits for hazardous waste. It was also found that carbonation had a significant influence on lead leachability. The lead release from carbonated ash, with the exception of one of the fly ashes studied, was reduced by 2-3 orders of magnitude.  相似文献   

13.
The rise in discarded or unwanted medications (UMs) is becoming an issue of great concern, as it has the potential to harm the components of the environment where it is discarded: particularly air, water and soil. To combat this problem, many researchers have investigated the best approach for the collection and proper disposal of UMs. This paper intends to elaborate upon a safe solution for treating this waste, specifically through a process of solidification/stabilization (S/S) that involves mixing UMs with asphalt cement and asphalt concrete mixtures. Volumes of 5, 10, 15 and 20 % of a mixture of UMs were mixed with asphalt cement and the analyzed properties of the mixture of UMs–asphalt included: softening point, ductility, penetration, flash and fire points, specific gravity and rotational viscosity. Marshal stability, flow, air voids, unit weight, voids in mineral aggregate (VMA) and voids filled with binder (VFB) of asphalt concrete mixture were also investigated. Results showed that this approach of S/S is a promising method for dual achievements to solve an environmental problem and to use the waste for road construction.  相似文献   

14.
Industrial by-products were used for the production of controlled low-strength material (CLSM). CLSM, also known as 'flowable fill' is used as a replacement of compacted soil in cases where the application of the latter is difficult or impossible. The low mechanical requirements (compared with structural concrete) enable the use of industrial by-products for the production of CLSM. In this study cement kiln dust, asphalt dust, coal fly ash, coal bottom ash and quarry waste were tested for the possibility of producing CLSM with large proportions of those wastes. The results showed that in most cases, CLSM with good properties could be made with significant amounts of dust (25-50%w), especially when the dust has some cementing or pozzolanic potential as do fly ash and cement kiln dust.  相似文献   

15.
Rotary kiln incinerators and cement kilns are two energy intensive processes, requiring high temperatures that can be obtained by the combustion of fossil fuel. In both processes, fossil fuel is often substituted by high or medium calorific waste to avoid resource depletion and to save costs. Two types of industrial calorific waste streams are considered: automotive shredder residue (ASR) and meat and bone meal (MBM). These waste streams are of current high interest: ASR must be diverted from landfill, while MBM can no longer be used for cattle feeding. The environmental impact of the incineration of these waste streams is assessed and compared for both a rotary kiln and a cement kiln. For this purpose, data from an extensive emission inventory is applied for assessing the environmental impact using two different modeling approaches: one focusing on the impact of the relevant flows to and from the process and its subsystems, the other describing the change of environmental impact in response to these physical flows. Both ways of assessing emphasize different aspects of the considered processes. Attention is paid to assumptions in the methodology that can influence the outcome and conclusions of the assessment. It is concluded that for the incineration of calorific wastes, rotary kilns are generally preferred. Nevertheless, cement kilns show opportunities in improving their environmental impact when substituting their currently used fuels by more clean calorific waste streams, if this improvement is not at the expense of the actual environmental impact.  相似文献   

16.
Cesium removal from de-ionized water, seawater, and limewater using copper ferrocyanide (CFC) and porous media including silica gel, bentonite, vermiculite, and zeolite as adsorbents were investigated; CFC was incorporated with vermiculite to prepare a compound adsorbent for improving the Cs-leaching resistance of solidified borate radwastes. It was shown that the Cs-removal efficiency by CFC, defined as the percentage of cesium removed or adsorpted from solution, was largely affected by pHs of the solutions. Good removal efficiency occurred at pHs ranging from 3 to 12 with the best from 7 to 10. Vermiculite and zeolite were shown to have better removal power than silica gel and bentonite, and vermiculite was chosen to incorporate with CFC to make compound adsorbents because of its good compatibility with CFC floc. Compound adsorbents with different CFC contents were used as additives in the solidification of radioactive borate wastes for improving the cesium leaching resistance of the solidified products. Experimental results showed that the cesium leachability index measured following the method described in ANSI/ANS 16.1 increased from 7.96 to 9.76 by adding 0.25% of a compound adsorbent containing 20% CFC and 80% vermiculite. It indicated that the compound adsorbent is very useful for improving cesium-leaching resistance of the solidified borate wastes.  相似文献   

17.
In this work, the utilization of shredded waste Poly-ethylene Terephthalate (PET) bottle granules as a lightweight aggregate in mortar was investigated. Investigation was carried out on two groups of mortar samples, one made with only PET aggregates and, second made with PET and sand aggregates together. Additionally, blast-furnace slag was also used as the replacement of cement on mass basis at the replacement ratio of 50% to reduce the amount of cement used and provide savings. The water–binder (w/b) ratio and PET–binder (PET/b) ratio used in the mixtures were 0.45 and 0.50, respectively. The size of shredded PET granules used in the preparation of mortar mixtures were between 0 and 4 mm. The results of the laboratory study and testing carried out showed that mortar containing only PET aggregate, mortar containing PET and sand aggregate, and mortars modified with slag as cement replacement can be drop into structural lightweight concrete category in terms of unit weight and strength properties. Therefore, it was concluded that there is a potential for the use of shredded waste PET granules as aggregate in the production of structural lightweight concrete. The use of shredded waste PET granules due to its low unit weight reduces the unit weight of concrete which results in a reduction in the death weight of a structural concrete member of a building. Reduction in the death weight of a building will help to reduce the seismic risk of the building since the earthquake forces linearly dependant on the dead-weight. Furthermore, it was also concluded that the use of industrial wastes such as PET granules and blast-furnace slag in concrete provides some advantages, i.e., reduction in the use of natural resources, disposal of wastes, prevention of environmental pollution, and energy saving.  相似文献   

18.
Ordinary Portland Cement (OPC) is often used for the solidification/stabilization (S/S) of waste containing heavy metals and salts. These waste components will precipitate in the form of insoluble compounds on to unreacted cement clinker grains preventing further hydration. In this study the long term effects of the presence of contaminants in solidified waste is examined by numerically simulating cement hydration after precipitation of metal salts on the surface of cement grains. A cement hydration model was extended in order to describe pore water composition and the effects of cement grain coating. Calculations were made and the strength development predicted by the model was found to agree qualitatively with experimental results found in literature. The complete model is useful in predicting the strength and leaching resistance of solidified products and developing solidification recipes based on cement.  相似文献   

19.
This article outlines the general design concepts and new chemistry necessary to achieve truly cost-effective management of an important part of the hazardous waste incineration system—i.e., the unit operations needed to treat wastewater generated by rotary kiln incinerators burning wastes containing halogens and heavy metals.  相似文献   

20.
The increasing awareness of the society about safe guarding heritage buildings and at the same time protecting the environment promotes strategies of combining principles of restoration with environmentally friendly materials and techniques. Along these lines, an experimental program was carried out in order to investigate the possibility of producing repair, lime-based mortars used in historic buildings incorporating secondary materials. The alternative material tested was recycled fine aggregates originating from mixed construction and demolition waste. Extensive tests on the raw materials have been performed and mortar mixtures were produced using different binding systems with natural, standard and recycled sand in order to compare their mechanical, physical and microstructure properties. The study reveals the improved behavior of lime mortars, even at early ages, due to the reaction of lime with the Al and Si constituents of the fine recycled sand. The role of the recycled sand was more beneficial in lime mortars rather than the lime–pozzolan or lime–pozzolan–cement mortars as a decrease in their performance was recorded in the latter cases due to the mortars’ structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号