首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Printed circuit boards incorporated in most electrical and electronic equipment contain valuable metals such as Cu, Ni, Au, Ag, Pd, Fe, Sn, and Pb. In order to employ a hydrometallurgical route for the recycling of valuable metals from printed circuit boards, a mechanical pre-treatment step is needed. In this study, the metallic components from waste printed circuit boards have been enriched using a mechanical separation process. Waste printed circuit boards shredded to <10mm were milled using a stamp mill to liberate the various metallic components, and then the milled printed circuit boards were classified into fractions of <0.6, 0.6-1.2, 1.2-2.5, 2.5-5.0, and >5.0mm. The fractions of milled printed circuit boards of size <5.0mm were separated into a light fraction of mostly non-metallic components and a heavy fraction of the metallic components by gravity separation using a zig-zag classifier. The >5.0mm fraction and the heavy fraction were subjected to two-step magnetic separation. Through the first magnetic separation at 700 Gauss, 83% of the nickel and iron, based on the whole printed circuit boards, was recovered in the magnetic fraction, and 92% of the copper was recovered in the non-magnetic fraction. The cumulative recovery of nickel-iron concentrate was increased by a second magnetic separation at 3000 Gauss, but the grade of the concentrate decreased remarkably from 76% to 56%. The cumulative recovery of copper concentrate decreased, but the grade increased slightly from 71.6% to 75.4%. This study has demonstrated the feasibility of the mechanical separation process consisting of milling/size classification/gravity separation/two-step magnetic separation for enriching metallic components such as Cu, Ni, Al, and Fe from waste printed circuit boards.  相似文献   

2.
This paper presents a comparison between printed circuit boards from computers and mobile phones. Since printed circuits boards are becoming more complex and smaller, the amount of materials is constantly changing. The main objective of this work was to characterize spent printed circuit boards from computers and mobile phones applying mineral processing technique to separate the metal, ceramic, and polymer fractions. The processing was performed by comminution in a hammer mill, followed by particle size analysis, and by magnetic and electrostatic separation. Aqua regia leaching, loss-on-ignition and chemical analysis (inductively coupled plasma atomic emission spectroscopy - ICP-OES) were carried out to determine the composition of printed circuit boards and the metal rich fraction. The composition of the studied mobile phones printed circuit boards (PCB-MP) was 63 wt.% metals; 24 wt.% ceramics and 13 wt.% polymers; and of the printed circuit boards from studied personal computers (PCB-PC) was 45 wt.% metals; 27 wt.% polymers and ceramics 28 wt.% ceramics. The chemical analysis showed that copper concentration in printed circuit boards from personal computers was 20 wt.% and in printed circuit boards from mobile phones was 34.5 wt.%. According to the characteristics of each type of printed circuit board, the recovery of precious metals may be the main goal of the recycling process of printed circuit boards from personal computers and the recovery of copper should be the main goal of the recycling process of printed circuit boards from mobile phones. Hence, these printed circuit boards would not be mixed prior treatment. The results of this paper show that copper concentration is increasing in mobile phones and remaining constant in personal computers.  相似文献   

3.
In this research, a two-step process consisting of vacuum pyrolysis and vacuum centrifugal separation was employed to treat waste printed circuit boards (WPCBs). Firstly, WPCBs were pyrolysed under vacuum condition at 600 °C for 30 min in a lab-scale reactor. Then, the obtained pyrolysis residue was heated under vacuum until the solder was melted, and then the molten solder was separated from the pyrolysis residue by the centrifugal force. The results of vacuum pyrolysis showed that the type-A of WPCBs (the base plates of which was made from cellulose paper reinforced phenolic resin) pyrolysed to form an average of 67.97 wt.% residue, 27.73 wt.% oil, and 4.30 wt.% gas; and pyrolysis of the type-B of WPCBs (the base plates of which was made from glass fiber reinforced epoxy resin) led to an average mass balance of 72.20 wt.% residue, 21.45 wt.% oil, and 6.35 wt.% gas. The results of vacuum centrifugal separation showed that the separation of solder was complete when the pyrolysis residue was heated at 400 °C, and the rotating drum was rotated at 1200 rpm for 10 min. The pyrolysis oil and gas can be used as fuel or chemical feedstock after treatment. The pyrolysis residue after solder separation contained various metals, glass fibers and other inorganic materials, which could be recycled for further processing. The recovered solder can be reused directly and it can also be a good resource of lead and tin for refining.  相似文献   

4.
Pulverization of waste printed circuit boards   总被引:1,自引:0,他引:1  
A new pulverization method to reduce the volume of waste printed circuit boards is reported. About 50% of printed circuit boards with integrate circuits (ICs) could be pulverized by our method in one 20-min batch, but boards without ICs could not be pulverized. By repeating the process three times, about 95% of printed circuit boards with ICs could be made into a fine powder with particles less than 106µm. A weight-drop test was also performed to examine the strength of the printed circuit boards and clarify the mechanism of pulverization. When a weight was dropped on the solder-welding side of the board ruptures occurred more easily than when the weight was dropped on the IC-mounted side. With a heavy weight, the IC was fractured more easily when the potential energy was low. Where the stress was concentrated, two types of rupture location were found on printed circuit boards with ICs. One was where the IC was connected to the printed circuit board. The other was where the surface had undulations. It also became clear that the fracture of printed circuit boards depends on the impacting weight rather than on the potential energy.  相似文献   

5.
Here, we focused on the recycling of waste printed circuit boards (WPCBs) using vacuum pyrolysis-centrifugation coupling technology (VPCT) aiming to obtain valuable feedstock and resolve environmental pollution. The two types of WPCBs were pyrolysed at 600°C for 30 min under vacuum condition. During the pyrolysis process, the solder of WPCBs was separated and recovered when the temperature range was 400-600°C, and the rotating drum was rotated at 1000 rpm for 10 min. The type-A of WPCBs pyrolysed to form an average of 67.91 wt.% residue, 27.84 wt.% oil, and 4.25 wt.% gas; and pyrolysis of the type-B of WPCBs led to an average mass balance of 72.22 wt.% residue, 21.57 wt.% oil, and 6.21 wt.% gas. The GC-MS and FT-IR analyses showed that the two pyrolysis oils consisted mainly of phenols and substituted phenols. The pyrolysis oil can be used for fuel or chemical feedstock for further processing. The recovered solder can be recycled directly and it can also be a good resource of lead and tin for refining. The pyrolysis residues contained various metals, glass fibers and other inorganic materials, which could be recovered after further treatment. The pyrolysis gases consisted mainly of CO, CO(2), CH(4), and H(2), which could be collected and recycled.  相似文献   

6.
Europium and yttrium metals and some valuable salts were recovered from the powder coating the inner surface of the glass tubes of fluorescent lamps. The tubes were broken under 30% aqueous acetone to avoid emission of mercury vapor to the atmosphere, and the powder was collected by brushing. Metals available in the powder were pressure leached using sulfuric/nitric acid mixture. Sulphate salt of europium and yttrium so obtained was converted to thiocyanate. Trimethyl-benzylammonium chloride solvent was used to selectively extract Eu and Y from the thiocyanate solution. The metal loaded in the organic solvent was recovered by N-tributylphosphate in 1M nitric acid to produce nitrate salts of Eu and Y. Europium nitrate was separated from yttrium nitrate by dissolving in ethyl alcohol. The isolated powder contained 1.62% europium oxide, 1.65% yttrium oxide, 34.48% calcium sulphate, 61.52% Ca orthophosphate and 0.65% other impurity metals by weight. Autoclave digestion of the powder in the acid mixture for 4h at approximately 125 degrees C and 5 MPa dissolved 96.4% of the yttrium and 92.8% of the europium. Conversion of the sulphate to thiocyanate is favoured at low temperature. Extraction of Eu and Y from the thiocyanate solution attained its maximum at approximately 80 degrees C. N-tributylphosphate in 1N nitric acid at 125 degrees C achieved a stripping extent of 99%. Thermal reduction using hydrogen gas at 850 degrees C and 1575 degrees C produced europium and yttrium metals, respectively. A metal separation factor of 9.4 was achieved. Economic estimation revealed that the suggested method seemed feasible for industrial applications.  相似文献   

7.
以硝酸-磺酸型退锡剂为基础配方,研制了一种脱除废旧电路板表面残留焊锡的剥离液.该剥离液以硝酸为氧化剂,氨基磺酸为稳定剂,苯并三氮唑为铜的缓蚀剂.实验结果表明:剥离液的最佳配比为硝酸浓度3 mol/L,氨基磺酸浓度0.4 mol/L,苯并三氮唑浓度0.08 mol/L;每升剥离液可处理3.5 kg废旧电路板,处理后电路板中的铅离子含量降至100 mg/kg以下.该剥离液处理后的电路板表面的铜箔保持完好,基本没有被剥离液浸蚀.  相似文献   

8.
Journal of Material Cycles and Waste Management - E-waste is an important secondary source of precious metals. Especially discarded printed circuit boards (PCBs) contain high concentrations of...  相似文献   

9.
Currently only limited materials, such as common metals and plastics, are recovered from waste flat-panel displays, thus necessitating the development of a comprehensive recycling process. This study aims to establish a statistical database about the types and amounts of valuable resources in waste liquid crystal display (LCD) products. To obtain these data, the waste LCD products were disassembled into four components: plastics, printed circuit boards, metals, and other materials, including their panels, and the weight of each component was measured. Overall, the product weight decreased with increasing manufacturing year regardless of the product screen size; however, the decreasing rate varied from 14 to 73%. The metal weight ratios decreased significantly by 24–31%. Meanwhile, regardless of the manufacturing year, the plastic weight ratios remained almost constant at about 20%. On the other hand, the weight ratio of the other components increased by 26–46% with increasing manufacturing year suggesting that rare-earth metal recycling has become more important. These statistical analyses are expected to contribute to the development of an eco-friendly, high-efficiency dismantling/separation process that will enable higher value recycling and minimal waste disposal.  相似文献   

10.
Waste printed circuit boards (PCBs) contain a large number of metals such as Cu, Sn, Pb, Cd, Cr, Zn, and Mn. In this work, an efficient and environmentally friendly process for metals recovery from waste PCBs by supercritical water (SCW) pre-treatment combined with acid leaching was developed. In the proposed process, waste PCBs were pre-treated by SCW, then the separated solid phase product with concentrated metals was subjected to an acid leaching process for metals recovery. The effect of SCW pre-treatment on the recovery of different metals from waste PCBs was investigated. Two methods of SCW pre-treatment were studied: supercritical water oxidation (SCWO) and supercritical water depolymerization (SCWD). Experimental results indicated that SCWO and SCWD pre-treatment had significant effect on the recovery of different metals. SCWO pre-treatment was highly efficient for enhancing the recovery of Cu and Pb, and the recovery efficiency increased significantly with increasing pre-treatment temperature. The recovery efficiency of Cu and Pb for SCWO pre-treatment at 420 °C was 99.8% and 80%, respectively, whereas most of the Sn and Cr were immobilized in the residue. The recovery of all studied metals was enhanced by SCWD pre-treatment and increased along with pre-treatment temperature. Up to 90% of Sn, Zn, Cr, Cd, and Mn could be recovered for SCWD pre-treatment at 440 °C.  相似文献   

11.
The progress of the technology is directly related to the growth of production and consumption of electrical/electronics equipment, especially of personal computers. This type of equipment has a relatively short average lifetime, 2-3 years. The amount of defective or obsolete equipment has been increasing substantially; consequently its disposition and/or recycling should be studied. In this work, printed circuit boards, which are used in personal computers, were studied in order to recover the metals in the circuit boards through mechanical processing, such as crushing, screening, as well as magnetic and electrostatic separation. The results obtained demonstrate the feasibility of using these processes to separate metal fractions from polymers and ceramics, and that it is possible to obtain a fraction concentrated in metals containing more than 50% on average of copper, 24% of tin and 8% of lead.  相似文献   

12.
Characterization of TV scrap was carried out by using a variety of methods, such as chemical analysis, particle size and shape analysis, liberation degree analysis, thermogravimetric analysis, sink-float test, and IR spectrometry. A comparison of TV scrap, personal computer scrap, and printed circuit board scrap shows that the content of non-ferrous metals and precious metals in TV scrap is much lower than that in personal computer scrap or printed circuit board scrap. It is expected that recycling of TV scrap will not be cost-effective by utilizing conventional manual disassembly. The result of particle shape analysis indicates that the non-ferrous metal particles in TV scrap formed as a variety of shapes; it is much more heterogeneous than that of plastics and printed circuit boards. Furthermore, the separability of TV scrap using density-based techniques was evaluated by the sink-float test. The result demonstrates that a high recovery of copper could be obtained by using an effective gravity separation process. Identification of plastics shows that the major plastic in TV scrap is high impact polystyrene. Gravity separation of plastics may encounter some challenges in separation of plastics from TV scrap because of specific density variations.  相似文献   

13.
This study characterizes the composition of plastic frames and printed circuit boards from end-of-life mobile phones. This knowledge may help define an optimal processing strategy for using these items as potential raw materials. Correct handling of such a waste is essential for its further “sustainable” recovery, especially to maximize the extraction of base, rare and precious metals, minimizing the environmental impact of the entire process chain. A combination of electronic and chemical imaging techniques was thus examined, applied and critically evaluated in order to optimize the processing, through the identification and the topological assessment of the materials of interest and their quantitative distribution. To reach this goal, end-of-life mobile phone derived wastes have been systematically characterized adopting both “traditional” (e.g. scanning electronic microscopy combined with microanalysis and Raman spectroscopy) and innovative (e.g. hyperspectral imaging in short wave infrared field) techniques, with reference to frames and printed circuit boards. Results showed as the combination of both the approaches (i.e. traditional and classical) could dramatically improve recycling strategies set up, as well as final products recovery.  相似文献   

14.
Recycling of waste printed circuit boards (WPCBs) is an important subject not only for the protection of environment but also for the recovery of valuable materials. A feasibility study was conducted to dissolve bromine epoxy resins of WPCBs using ionic liquid (IL) of 1-ethyl-3-methylimizadolium tetrafluoroborate [EMIM(+)][BF(4)(-)] (nonaqueous green solvent) for recovering copper foils and glass fibers. Experimental results indicated that the initial delamination had seen from the cross-section of the WPCBs by mean of metallographic microscope and digital camera when WPCBs were heated in [EMIM(+)][BF(4)(-)] at 240°C for a duration of 30min. When temperature was increased to 260°C for a duration of 10min, the bromine epoxy resins of WPCBs were throughout dissolved into [EMIM(+)][BF(4)(-)] and the separations of copper foils and glass fibers from WPCBs were completed. This clean and non-polluting technology offers a new way to recycle valuable materials from WPCBs and prevent the environmental pollution of WPCBs effectively.  相似文献   

15.

Given the increase in digital product waste, demand for recycling of printed circuit boards (PCBs) is increasing. Precious and minor metals are often well concentrated in integrated circuit (IC) chips, especially in PCBs; hence, IC chips are primary targets for recycling. The technology for the non-destructive detachment of IC chips from PCBs is increasing in sophistication; however, the effectiveness of IC chip detachment is currently assessed manually and visually. In the present study, an automated IC chip detachment assessment method was developed, which combines multistep binarization and template matching of X-ray transmission images of crushed PCBs. To validate the method, five types of mechanically crushed PCBs from mobile phones were examined, and the developed method successfully assessed the IC chip detachment rate, with an average error rate of only 2.2% compared to visual assessment.

  相似文献   

16.
Separation of waste printed circuit boards (WPCBs) has been a bottleneck in WPCBs resource processing. In this study, the separation of WPCBs was performed using dimethyl sulfoxide (DMSO) as a solvent. Various parameters, which included solid to liquid ratio, temperature, WPCB sizes, and time, were studied to understand the separation of WPCBs by dissolving bromine epoxy resin using DMSO. Experimental results showed that the concentration of dissolving the bromine epoxy resin increased with increasing various parameters. The optimum condition of complete separation of WPCBs was solid to liquid ratio of 1:7 and WPCB sizes of 16 mm2 at 145 °C for 60 min. The used DMSO was vapored under the decompression, which obtained the regenerated DMSO and dissolved bromine epoxy resin. This clean and non-polluting technology offers a new way to separate valuable materials from WPCBs and prevent the environmental pollution of waste printed circuit boards effectively.  相似文献   

17.
A new strain, Pseudomonas Chlororaphis (PC), was found for dissolving gold, silver, and copper from the metallic particles of crushed waste printed circuit boards (PCBs). The optimized conditions that greatly improved the ability of producing CN? (for dissolving metals) were obtained. Dissolving experiments of pure gold, silver, and copper showed that the metals could be changed into Au+, Ag+, and Cu2+. PC cells and their secreta would adsorb metallic ions. Meanwhile, metallic ions destroyed the growth of PC. Dissolving experiments of metallic particles from crushed waste PCBs were performed by PC. The results indicated that 8.2% of the gold, 12.1% silver, and 52.3% copper were dissolved into solution. This paper contributed significance information to recovering precious metals from waste PCBs by bioleaching.  相似文献   

18.
In this paper, utilizing the existing primary copper smelter process for the recovery of metals from waste printed circuit boards (PCBs) is proposed as an alternative to the current backyard operations in developing countries. The Model for Evaluating Metal Recycling Efficiency from Complex Scraps (MEMRECS) concept is introduced as a tool for the evaluation of the eco-efficiency of metals recovery from waste PCBs. Based on the MEMRECS approach, the relative contribution of every metal fraction to the recyclability of the whole product is estimated. Thereby, gold content is identified as a key factor strongly influencing the efficiency of metals recovery from waste PCBs. Furthermore, it could be used as an indicator for the categorization of waste PCBs before feeding them into the recycling process. Finally, an integrated process is proposed to optimize the eco-efficiency of metals recovery from waste PCBs in developing countries.  相似文献   

19.
Thermogravimetric (TG) analysis and infrared spectroscopy were used to analyze the pyrolysis characteristics of printed circuit board scraps (PCBs), coal powder and their mixtures under nitrogen atmosphere. The experimental results show that there is a large difference between waste PCBs and coal powder in pyrolysis processing. The pyrolysis properties of the mixing samples are the result of interaction of the PCBs and coal powder, which is influenced by the content of mixture. The degree of pyrolysis and pyrolysis properties of the mixture are much better than that of the single component. The TG and the differential thermogravimetric (DTG) curves of the PCBs mixed with coal powder move towards the high-temperature zone with increasing amount of coal powder and subsequently the DTG peak also becomes wider. The Coats–Redfern integral method was used to determine the kinetic parameters of pyrolysis reaction mechanism with the different proportion of mixture. The gas of pyrolysis mainly composes of CO2, CO, H2O and some hydrocarbon. The bromide characteristic absorption peak has been detected obviously in the pyrolysis gas of PCBs. On the contrary, the absorption peak of the bromide is not obvious in pyrolysis gas of the PCBs samples adding 40% coal powder.  相似文献   

20.
Computer circuit board scrap was first treated with one part concentrated nitric acid and two parts water at 70 degrees C for 1 h. This step dissolved the base metals, thereby liberating the chips from the boards. After solid-liquid separation, the chips, intermixed with some metallic flakes and tin oxide precipitate, were mechanically crushed to liberate the base and precious metals contained within the protective plastic or ceramic chip cases. The base metals in this crushed product were dissolved by leaching again with the same type of nitric acid-water solution. The remaining solid constituents, crushed chips and resin, plus solid particles of gold, were leached with aqua regia at various times and temperatures. Gold was precipitated from the leachate with ferrous sulphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号