首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Air pollution control (APC) residues from waste incineration have been blended with silica and alumina and the mix melted using DC plasma arc technology. The chemical composition of the fully amorphous homogeneous glass formed has been determined. Waste acceptance criteria compliance leach testing demonstrates that the APC residue derived glass releases only trace levels of heavy metals (Pb (<0.007mg/kg) and Zn (0.02mg/kg)) and Cl(-) (0.2mg/kg). These are significantly below the limit values for disposal to inert landfill. It is concluded that plasma treatment of APC residues can produce an inert glass that may have potential to be used either in bulk civil engineering applications or in the production of higher value glass-ceramic products.  相似文献   

2.
The main goal of this paper is to obtain a granular material formulated with Municipal Solid Waste Incineration (MSWI) bottom ash (BA) and air pollution control (APC) fly ash to be used as secondary building material. Previously, an optimum concrete mixture using both MSWI residues as aggregates was formulated. A compromise between the environmental behavior whilst maximizing the reuse of APC fly ash was considered and assessed. Unconfined compressive strength and abrasion resistance values were measured in order to evaluate the mechanical properties. From these results, the granular mixture was not suited for certain applications owing to the high BA/APC fly ash content and low cement percentages used to reduce the costs of the final product. Nevertheless, the leaching test performed showed that the concentrations of all heavy metals were below the limits established by the current Catalan legislation for their reutilization. Therefore, the material studied might be mainly used in embankments, where high mechanical properties are not needed and environmental safety is assured.  相似文献   

3.
Two disposal methods for MSWI bottom ash were assessed in a new life cycle assessment (LCA) model for road construction and disposal of residues. The two scenarios evaluated in the model were: (i) landfilling of bottom ash in a coastal landfill in Denmark and (ii) recycling of bottom ash as subbase layer in an asphalted secondary road. The LCA included resource and energy consumption, and emissions associated with upgrading of bottom ash, transport, landfilling processes, incorporation of bottom ash in road, substitution of natural gravel as road construction material and leaching of heavy metals and salts from bottom ash in road as well as in landfill. Environmental impacts associated with emissions to air, fresh surface water, marine surface water, groundwater and soil were aggregated into 12 environmental impact categories: Global Warming, Photochemical Ozone Formation, Nutrient Enrichment, Acidification, Stratospheric Ozone Depletion, Human Toxicity via air/water/soil, Ecotoxicity in water/soil, and a new impact category, Stored Ecotoxicity to water/soil that accounts for the presence of heavy metals and very persistent organic compounds that in the long-term might leach. Leaching of heavy metals and salts from bottom ash was estimated from a series of laboratory leaching tests. For both scenarios, Ecotoxicity(water) was, when evaluated for the first 100 yr, the most important among the twelve impact categories involved in the assessment. Human Toxicity(soil) was also important, especially for the Road scenario. When the long-term leaching of heavy metals from bottom ash was evaluated, based on the total content of heavy metals in bottom ash, all impact categories became negligible compared to the potential Stored Ecotoxicity, which was two orders of magnitudes greater than Ecotoxicity(water). Copper was the constituent that gave the strongest contributions to the ecotoxicities. The most important resources consumed were clay as liner in landfill and the groundwater resource which was potentially spoiled due to leaching of salts from bottom ash in road. The difference in environmental impacts between landfilling and utilization of bottom ash in road was marginal when these alternatives were assessed in a life cycle perspective.  相似文献   

4.
This work reviews strategies for the management of municipal solid waste incineration (MSWI) residues, particularly solid particles collected from flue gases. These tiny particles may be retained by different equipment, with or without additives (lime, activated carbon, etc.), and depending on the different possible combinations, their properties may vary. In industrial plants, the most commonly used equipment for heat recovery and the cleaning of gas emissions are: heat recovery devices (boiler, superheater and economiser); dry, semidry or wet scrubbers; electrostatic precipitators; bag filters; fabric filters, and cyclones. In accordance with the stringent regulations in force in developed countries, these residues are considered hazardous, and therefore must be treated before being disposed of in landfills. Nowadays, research is being conducted into specific applications for these residues in order to prevent landfill practices. There are basically two possible ways of handling these residues: landfill after adequate treatment or recycling as a secondary material. The different types of treatment may be grouped into three categories: separation processes, solidification/stabilization, and thermal methods. These residues generally have limited applications, mainly due to the fact that they tend to contain large quantities of soluble salts (NaCl, KCl, calcium compounds), significant amounts of toxic heavy metals (Pb, Zn, Cr, Cu, Ni, Cd) in forms that may easily leach out, and trace quantities of very toxic organic compounds (dioxin, furans). The most promising materials for recycling this residue are ceramics and glass-ceramic materials. The main purpose of the present paper is to review the published literature in this field. A range of studies have been summarized in a series of tables focusing upon management strategies used in various countries, waste composition, treatment processes and possible applications.  相似文献   

5.
The volcanic soil of Southern Chile was tested for its heavy metal retention capacity. The maximum uptakes for CrO4(2-) (CrVI), Cu(2+), Zn(2+) and Pb(2+) were determined to be 2.74, 5.32, 5.86 and 7.44 mg g(-1), respectively. At a slightly alkaline pH value (7.5), it seems that a precipitation-adsorption process was responsible for the Cu(2+) and Zn(2+) uptake onto volcanic soil. All the determined values are of the same order of magnitude as natural zeolites heavy metals adsorption capacities. In addition, the heavy metals diffusion model through a 1 m volcanic soil mineral liner shows breakthrough times of 21.6, 10.2 and 8.9 years, for Pb(2+), Zn(2+) and Cu(2+), respectively, confirming the trend obtained in the adsorption isotherms. The natural volcanic soil of Southern Chile is an interesting material for possible use as landfill mineral basal sealing. It has an appropriate sealing potential (average Kf value of 5.85 x 10(-9) m s(-1)) and a heavy metals retention capacity comparable with natural zeolites. About two-thirds of the agricultural land in Chile (approximately 0.4 million km2) is derived from volcanic ash, suggesting an important soil volume for future landfill projects, that could be obtained in sufficient quantities from urban building activities.  相似文献   

6.
Environmental assessment of residue disposal needs to account for long-term changes in leaching conditions. Leaching of heavy metals from incineration residues are highly affected by the leachate pH; the overall environmental consequences of disposing of these residues are therefore greatly influenced by changes in pH over time. The paper presents an approach for assessing pH changes in leachate from municipal solid waste incineration (MSWI) air-pollution-control (APC) residues. Residue samples were subjected to a stepwise batch extraction method in order to obtain residue samples at a range of pH values (similar to common pH-dependence tests), and then on these samples to determine leaching of alkalinity as well as remaining solid phase alkalinity. On a range of APC residues covering various pretreatment and disposal options, this procedure was used to determine leachable and residual alkalinity as a function of pH. Mass balance calculations for typical disposal scenarios were used to provide data on pH as a function of the liquid-to-solid (L/S) ratio in the leaching system. Regardless of residue type and pretreatment, pH was found to stay above 7 for L/S ratios up to about 2000 L kg(-1) corresponding to about 100,000 years in typical landfill scenarios. It was found that pH changes were mainly governed by alkalinity decreases from leaching processes rather than neutralization reactions. The results suggest that leaching testing for assessment purposes should be carried out in the alkaline range, for example, at pH 9. The paper offers a thorough basis for further modelling of incineration residue leaching and for modelling the environmental consequences of landfilling and utilization of these residues.  相似文献   

7.
COGNIS TERRAMET® soil leaching and Bescorp soil washing systems have been successfully combined to remediate an ammunition test burn area at the Twin Cities Army Ammunition Plant (TCAAP), New Brighton, Minnesota. This cleanup is the first in the country to successfully combine these two technologies, and it offers a permanent solution to heavy metal remediation. Over 20,000 tons of soil were treated in the project. The cleaned soil remained on-site, and the heavy metal contaminants were removed, recovered, and recycled. Eight heavy metals were removed from the contaminated soil achieving the very stringent cleanup criteria of <175 ppm for residual lead and achieving background concentrations for seven other project metals (antimony, cadmium, chromium, copper, mercury, nickel, and silver). Initial contaminant levels were measured as high as 86,000 ppm lead and 100,000 ppm copper, with average concentrations over 1,600 ppm each. In addition, both live and spent ordnance were removed in the soil treatment plant to meet the cleanup criteria. By combining soil washing and leaching, COGNIS and Bescorp were able to assemble a process which effectively treats all the soil fractions so that all soil material can be returned on-site, no wastewater is generated, and the heavy metals are recovered and recycled. No hazardous waste requiring landfill disposal was generated during the entire remedial operation.  相似文献   

8.
The present study addresses the theme of recycling potential of old open dumpsites by using landfill mining. Attention is focused on the possible reuse of the residual finer fraction (<4 mm), which constitutes more than 60% of the total mined material, sampled in the old open dumpsite of Lavello (Southern Italy). We propose a protocol of analysis of the landfill material that links chemical analyses and environmental bioassays. This protocol is used to evaluate the compatibility of the residual matrix for the disposal in temporary storages and the formation of “bio-soils” to be used in geo-environmental applications, such as the construction of barrier layers of landfills, or in environmental remediation activities. Attention is mainly focused on the presence of heavy metals and on the possible interaction with test organisms. Chemical analyses of the residual matrix and leaching tests showed that the concentration of heavy metals is always below the legislation limits. Biological acute tests (with Lepidum sativum, Vicia faba and Lactuca sativa) do not emphasize adverse effects to the growth of the plant species, except the bioassay with V. faba, which showed a dose–response effect. The new developed chronic bioassay test with Spartium junceum showed a good adaptation to stress conditions induced by the presence of the mined landfill material. In conclusion, the conducted experimental activities demonstrated the suitability of the material to be used for different purposes.  相似文献   

9.
Current disposal options for APC residues in the UK and alternative treatment technologies developed world-wide have been reviewed. APC residues are currently landfilled in the UK where they undergo in situ solidification, although the future acceptability of this option is uncertain because the EU waste acceptance criteria (WAC) introduce strict limits on leaching that are difficult to achieve. Other APC residue treatment processes have been developed which are reported to reduce leaching to below relevant regulatory limits. The Ferrox process, the VKI process, the WES-PHix process, stabilisation/solidification using cementitious binders and a range of thermal treatment processes are reviewed. Thermal treatment technologies convert APC residues combined with other wastes into inert glass or glass-ceramics that encapsulate heavy metals. The waste management industry will inevitably use the cheapest available option for treating APC residues and strict interpretation and enforcement of waste legislation is required if new, potentially more sustainable technologies are to become commercially viable.  相似文献   

10.
A number of LCA-based studies have reported on the environmental performance of landfilling of mixed waste, but little is known about the relative contributions of individual waste fractions to the overall impact potentials estimated for the mixed waste. In this paper, an empirical model has been used to estimate the emissions to the environment from landfilling of individual waste fractions. By means of the LCA-model EASEWASTE, the emissions estimated have been used to quantify how much of the overall impact potential for each impact category is to be attributed to the individual waste fractions. Impact potentials are estimated for 1 tonne of mixed waste disposed off in a conventional landfill with bottom liner, leachate collection and treatment and gas collection and utilization for electricity generation. All the environmental aspects are accounted for 100 years after disposal and several impact categories have been considered, including standard categories, toxicity-related categories and groundwater contamination.Amongst the standard and toxicity-related categories, the highest potential impact is estimated for human toxicity via soil (HTs; 12 mPE/tonne). This is mostly caused by leaching of heavy metals from ashes (e.g. residues from roads cleaning and vacuum cleaning bags), batteries, paper and metals. On the other hand, substantial net environmental savings are estimated for the categories Global Warming (GW; ?31 mPE/tonne) and Eco-Toxicity in water chronic (ETwc; ?53 mPE/tonne). These savings are mostly determined by the waste fractions characterized by a high content of biogenic carbon (paper, organics, other combustible waste). These savings are due to emissions from energy generation avoided by landfill gas utilization, and by the storage of biogenic carbon in the landfill due to incomplete waste degradation.  相似文献   

11.
This paper discusses the stabilisation/solidification process with Portland cement applied to municipal solid waste incineration residues. Two types of residues were considered: fly ash (FA) produced in an electrostatic precipitator, and air pollution control (APC) residues from a semi-dry scrubber process. Cement pastes with different percentages of FA and APC residues were characterised according to their physical properties, the effect of the hydration products and their leaching behaviour. Portland pastes prepared with APC residues showed a rapid setting velocity in comparison with setting time for those pastes substituted with FA residues. Portland cement hydration was retarded in FA pastes. Leaching test results showed that heavy metals (such as Zn, Pb and Cd) and sulphates are immobilised within the paste, whereas chlorides are only partially retained. The carbonation process increases the leachability of S04(2-) and heavy metals such as Zn and Cr.  相似文献   

12.
Metal containing wastes like MSWI fly ashes and blast furnace sludge form a major environmental problem as they are polluted with heavy metals. The ash has to be landfilled or can be used as a construction material, but a pretreatment is in general necessary. Washing of the ashes with water in order to dissolve soluble salts or extracting the heavy metals with chemicals are possibilities. Blast furnace sludge contains large quantities of iron and carbon and could be recycled in the blast furnace, if the zinc content were not that high. Using a hydrometallurgical process the zinc can be removed from the sludge particles. In order to evaluate such treatment methods knowledge of the leaching behaviour of the studied material is very important. One of the factors influencing the leaching behaviour is the composition and mineralogy of the solids. A sequential extraction procedure, whereby the material is sequentially leached with different leaching solutions, can be used as an aid to characterize the material and to determine which chemical conditions are needed to obtain a sufficient extraction efficiency. To verify the accuracy of the sequential extraction procedure, a method is tested on MSWI fly ash and evaluated by comparing the results with those of leaching experiments whereby the final pH of the leaching solutions is varied over a wide range. Based upon this evaluation some suggestions for the use of the sequential extraction procedure are made and an adapted procedure is suggested, and applied to a blast furnace sludge.  相似文献   

13.
Most ashes contain a significant amount of heavy metals and when released from disposed or used ash materials, they can form a major environmental concern for underground waters. The use of water extracts to assess the easily mobilisable content of heavy metals may not provide an appropriate measure. This study describes the patterns of heavy metal release from ash materials in context with results from the German standard extraction method DIN-S4 (DIN 38 414 S4). Samples of four different ashes (municipal solid waste incineration ash, wood ash, brown coal ash and hard coal ash) were subjected to a number of serial batch tests with liquid renewal, some of which involved the addition of acid to neutralize carbonates and oxides. Release of heavy metals showed different patterns depending on the element, the type of material, the method of extraction and the type of the extractant used. Only a small fraction of the total heavy metal contents occurred as water soluble salts; of special significance was the amount of Cr released from the wood ash. The reaction time (1, 24 or 72 h between each extraction step with water) had only a small effect on the release of heavy metals. However, the release of most of the heavy metals was governed by the dissolution processes following proton inputs, indicating that pH-dependent tests such as CEN TC 292 or others are required to estimate long-term effects of heavy metal releases from ashes. Based on the chemical characteristics of ash materials in terms of their form and solubility of heavy metals, recommendations were made on the disposal or use of the four ash materials.  相似文献   

14.
Leachability and metal-binding capacity in ageing landfill material   总被引:1,自引:0,他引:1  
In order to study the stability of landfilled heavy metals, landfill material from a combined household and industrial waste landfill was aerated for 14 months to simulate the natural ageing processes as air slowly begins to penetrate the landfill mass. During aeration, the pH of the landfill material decreased from around 8.6 to 8.1 and the carbon content also decreased. In order to investigate the possible fate of metals in ageing landfills, a four-stage sequential extraction technique was applied. The ability of the materials to bind metal ions by electrostatic attractions and to form stronger complexes was studied separately. The amount of exchangeable cations, the capacity to bind metal ions by electrostatic attraction and the capacity of the landfill material to complex copper ions were increased by the aeration process. However, results from the sequential analysis showed an increased solubility of sulphur and some metals (Cd, Co, Cu, Ni and Zn). Equilibrium speciation models (Medusa) indicated that the organic matter deposit had a significant capacity to bind metal ions provided that pH was sufficiently high. However, as carbonates are consumed over time, the risk for metal mobility increases. Therefore, the landfills can become an environmental risk, depending on variations in the solubility of metal ions due to changes in pH, redox status and the availability of organic material.  相似文献   

15.
Portland cement (CEMI) was used to solidify air pollution control (APC) residues from an energy-from-waste plant burning municipal solid waste. APC residue/CEMI mixes were prepared with CEMI additions ranging from 0 to 50 weight% (wt%) of total dry mass and water/solids ratios between 0.40 and 0.80. Isothermal conduction calorimetry was used to assess the effect of APC residues on the hydration of CEMI. Although up to 30wt% additions of APC residues accelerated CEMI hydration, the total heat of hydration during the initial 98h was significantly reduced. Higher levels of APC residues severely inhibited CEMI hydration. The consistence, setting time, compressive strength, porosity and chloride leaching characteristics of the solidified products were determined. As might be expected, increasing the CEMI addition and reducing the water content resulted in increased compressive strengths. All mixes achieved compressive strengths greater than 1MPa at 7 and 28days but only 50wt% samples did not show significant strength reduction when tested after immersion in water. Monolithic leaching tests indicated low physical immobilisation of chloride in the CEMI solidified APC residues, with chloride leaching in excess of relevant UK landfill waste acceptance criteria (WAC). The results of this study show that greater than 50% CEMI additions would be required to effectively treat APC residues to meet current WAC limits.  相似文献   

16.
In Eritrea, farmers have applied landfill materials as fertiliser to their fields for several decades. A sampling scheme in the landfill site of Asmara and selected farmers' fields was carried out to investigate the benefits and risks of using landfill materials for agriculture. Soil samples were collected from farmers' fields (7 samples) and from the Asmara landfill site (12 samples). The samples were analysed for major plant nutrients, heavy metals (Cd, Cr, Cu, Pb, Ni, Hg and Zn), and some physical properties. Nearly 65% (by weight) of the total landfill material mined from the landfill site constituted waste fractions of various substances. The remaining 35% was composed of soil-like materials, which are apparently used to fertilize agricultural soils. The average organic matter, total nitrogen, and available phosphorus contents of soils with landfill material measured 2.4%, 0.13%, and 45 mg kg(-1), respectively. However, soils without landfill material consisted of 1.1 % organic matter, 0.04% total N, and <40 mg kg(-1) of available P. Except for Hg, all the other heavy metals in the landfill site showed values above the permissible limits. In particular, the average concentrations of Cu (913 mg kg(-1)) and Pb (598 mg kg(-1)) in the landfill site were nine-fold and four-fold greater than the allowable limits, respectively. It is, therefore, suggested that composting fresh organic wastes should be considered and tested as an alternative material for fertilising agricultural soils and to maintain the quality of the environment.  相似文献   

17.
Municipal Solid Waste Incineration (MSWI) produces different sorts of residues, bottom ash, fly ashes and Air Pollution Control (APC) residues. Generally, fly ashes and APC residues are mixed at the MSWI plant and manage as a sole residue. In this study, fly ashes and APC residues have been sampled separately at different Belgian MSWI plant and analysed by X-ray fluorescence in order to highlight the composition differences that may appear between the solids. Ca and Cl are found to be the major elements in most of the samples. Lithophilic elements, such as Al and Si, are richer in furnace and boiler ashes, as can be expected. Leaching tests also show differences between the residues; leachates from furnace and boiler ashes are alkaline while those from bag filter residues present a pH value of 6, which impacts the leaching of heavy metals (Pb and Zn). The results suggest that it could be advantageous to manage fly ashes and APC residues separately by adjusting the treatment to their specificities.  相似文献   

18.
In this study, percolation and batch leaching tests were considered in order to characterize the behaviour of air pollution control (APC) residues produced in a municipal solid waste incinerator (MSWI) as a function of the liquid to solid ratio (L/S). This waste is hazardous, and taking into account their physical and chemical properties, leaching of contaminants into the environment is the main concern. In our work the leaching behaviour of toxic heavy metals (Pb, Zn, Cr, Ni and Cu) and inorganics associated with soluble salts (Na, K, Ca and Cl) was addressed. Although pH of the leaching solution is the most important variable, L/S may also play an important role in leaching processes. In our work, results from column and batch tests were compared in terms of concentration (mg/L) and releasing (mg/kg). The APC residues revealed to be hazardous according to both tests, and both Pb and Cl far exceeded the regulatory thresholds. The material exhibits high solubility, and when the liquid to solid ratio was high, more than 50% can be solubilised. The patterns of release may be in some cases availability or solubility controlled, and the former was easier to identify. When the results from column and batch experiments were compared by representing the cumulative released amounts (in mg/kg) as a function of L/S, both curves match for Zn, Ni, Cu, K, Na, Cl and Ca, but for Cr and Pb a significant difference was observed. In fact, the column experiments revealed that under percolation conditions it should be expected slow releasing of Pb along time. From this study, it can be concluded that the released amounts obtained in batch experiments for a certain L/S should be considered as the worst case for medium term. Some simple models proposed on the literature and based on local equilibrium assumption showed good fitting to experimental data for soluble species (non-reactive solutes).  相似文献   

19.
Fresh municipal solid waste incineration residues (MSWIR) and a drilling core of 2-10 years old landfilled MSWIR were investigated to determine the alterations due to weathering in a landfill. Physical and geochemical properties and transformations of major components and heavy metals were analyzed for fresh and landfilled residues. Carbonates and hydroxides (10-12vol%) as major mineralogical compositions in the 8-10 years weathered MSWIR were observed by modal analysis of thin sections. Three step sequential extractions indicated that reducible phases, mainly the Fe, Al and Mn hydroxides increased with depth in the landfill. A pH controlled leaching test (including availability test and pH dependent leaching test) was then conducted. Results indicated lower concentrations of leachable contents at pH values from 6 to 10 for the four elements (Pb, Zn, Al and Fe) in the 8-10 years landfilled residues than in the fresh and 1-2 years landfilled residues. This means that 8-10 years weathered MSWIR became more stable than fresh landfilled residues. The reasons for the stabilization of these elements might be the hydration of Al and Fe during weathering in the landfill, which then results in the heavy metals adsorptions of these minerals.  相似文献   

20.
An optimization of the air pollution control (APC) residue washing process was carried out to minimize the release of chloride and heavy metals. Taking into account economic parameters such as the consumption of water and reaction time, the best relation found was a S/L ratio of 1/3 during 1 h. At a laboratory scale and according to the values obtained for chloride and heavy metals, the APC residue is classified as non-special according to Catalonian Regulations (Spain). Moreover, the pH of the solution, when MgSO(4) is added during the washing process, may be controlled by the formation of gypsum. In these conditions, the concentration of heavy metals will decrease as a consequence of the formation of their respective insoluble hydroxides. Therefore, the counter-current batch washing process with the addition of small amounts of MgSO(4) is revealed as an economically feasible treatment of the APC residue. This washed residue is ready to be used as secondary material or to be landfilled safely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号