首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The combination of electrokinetic and zero‐valent iron (ZVI) treatments were used to treat soils contaminated with chlorinated solvents, including dense nonaqueous phase liquid (DNAPL), at an active industrial site in Ohio. The remediation systems were installed in tight clay soils under truck lots and entrances to loading docks without interruption to facility production. The electrokinetic system, called LasagnaTM, uses a direct current electrical field to mobilize contaminant via electroosmosis and soil heating. The contaminants are intercepted and reduced in situ using treatment zones containing ZVI. In moderately contaminated soils around the LasagnaTM‐treated source areas, a grid of ZVI filled boreholes were emplaced to passively treat residual contamination in decades instead of centuries. The remediation systems were installed below grade and did not interfere with truck traffic during the installation and three years of operation. The LasagnaTM systems removed 80 percent of the trichloroethylene (TCE) mass while the passive ZVI borings system has reduced the TCE by 40 percent. The remediation goals have been met and the site is now in monitoring‐only mode as natural attenuation takes over. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
Field‐scale pilot tests were performed to evaluate enhanced reductive dechlorination (ERD) of dissolved chlorinated solvents at a former manufacturing facility located in western North Carolina (the site). Results of the site assessment indicated the presence of two separate chlorinated solvent–contaminated groundwater plumes, located in the northern and southern portions of the site. The key chlorinated solvents found at the site include 1,1,2,2‐tetrachloroethane, trichloroethene, and chloroform. A special form of EHC® manufactured by Adventus Americas was used as an electron donor at this site. In this case, EHC is a pH‐buffering electron donor containing controlled release carbon and ZV Iron MicroSphere 200, a micronscale zero‐valent iron (ZVI) manufactured by BASF. Approximately 3,000 pounds of EHC were injected in two Geoprobe® boreholes in the saprolite zone (southern plume), and 3,500 pounds of EHC were injected at two locations in the partially weathered rock (PWR) zone (northern plume) using hydraulic fracturing techniques. Strong reducing conditions were established immediately after the EHC injection in nearby monitoring wells likely due to the reducing effects of ZV Microsphere 200. After approximately 26 months, the key chlorinated VOCs were reduced over 98 percent in one PWR well. Similarly, the key chlorinated solvent concentrations in the saprolite monitoring wells decreased 86 to 99 percent after initial increases in concentrations of the parent chlorinated solvents. The total organic carbon and metabolic acid concentrations indicated that the electron donor lasted over 26 months after injection in the saprolite aquifer. © 2009 Wiley Periodicals, Inc.  相似文献   

3.
A field pilot test in which hydraulic fracturing was used to emplace granular remediation amendment (a mixture of zero‐valent iron [ZVI] and organic carbon) into fine‐grained sandstone to remediate dissolved trichloroethene (TCE)‐contaminated groundwater was performed at a former intercontinental ballistic missile site in Colorado. Hydraulic fracturing was used to enhance the permeability of the aquifer with concurrent emplacement of amendment that facilitates TCE degradation. Geophysical monitoring and inverse modeling show that the network of amendment‐filled fractures extends throughout the aquifer volume targeted in the pilot test zone. Two years of subsequent groundwater monitoring demonstrate that amendment addition resulted in development of geochemical conditions favorable to both abiotic and biological TCE degradation, that TCE concentrations were substantially reduced (i.e., greater than 90 percent reduction in TCE mass), and that the primary degradation processes are likely abiotic. The pilot‐test data aided in re‐evaluating the conceptual site model and in designing the full‐scale remedy to address a larger portion of the TCE‐contaminated groundwater plume. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
Point Pelee National Park (PPNP) is highly contaminated with dichlorodiphenyltrichloroethane (DDT) and dieldrin due to the historical use of these two persistent organochlorine pesticides. Zero‐valent iron (ZVI) technology with and without amendments has been successfully used in the past to promote organochlorine pesticides degradation in several locations in North America and Europe. In this study, the use of two commercially available ZVI products, DARAMEND® and EHC®, to promote DDT and dieldrin degradation in PPNP's soil and groundwater were investigated. DARAMEND® was applied to PPNP's soil in a laboratory experiment and in an in situ pilot‐scale plot. In both cases, DARAMEND® did not significantly increase DDT or dieldrin degradation in treated soils. The effectiveness of EHC® was tested in a laboratory experiment that simulated the park's groundwater environment using PPNP's pesticide contaminated soil. The result was consistent with the one reported for DARAMEND®, in that there was no significant increase in DDT or dieldrin degradation in any of the samples treated with EHC®. These results demonstrate that both of these ZVI commercially available products are not suitable for in situ remediation at PPNP.  ©2017 Wiley Periodicals, Inc.  相似文献   

5.
Emulsified zero‐valent iron (EZVI) is a surfactant‐stabilized, biodegradable emulsion that forms droplets consisting of a liquid‐oil membrane surrounding zero‐valent iron (ZVI) particles in water. This article summarizes the results obtained during the first field‐scale deployment of EZVI at NASA's Launch Complex 34 (LC34) located on Cape Canaveral Air Force Station, Florida, in August 2002 and presents the results of recent follow‐on laboratory tests evaluating the mechanisms, which contribute to the performance of the technology. The field‐scale demonstration evaluated the performance of EZVI containing nanoscale zero‐valent iron (NZVI) when applied to dense, nonaqueous phase liquid (DNAPL) trichloroethylene (TCE) in the saturated zone. Results of the field demonstration indicate substantial reductions in TCE soil concentrations (greater than 80 percent) at all but two soil boring locations and significant reductions in TCE groundwater concentrations (e.g., 60 percent to 100 percent) at all depths targeted with EZVI. Laboratory tests conducted in 2005 suggest that both NZVI particles and EZVI containing NZVI can provide significant reductions in TCE mass when used to treat TCE DNAPL in small test reactors. However, EZVI was able to reduce TCE concentrations to lower levels than were obtained with NZVI alone, likely as a result of the combined impact of sequestration of the TCE into the oil phase and degradation of the TCE with the NZVI. © 2006 Wiley Periodicals, Inc.  相似文献   

6.
EOS, or emulsified oil substrate, was used to stimulate anaerobic biodegradation of trichloroethene (TCE) and tetrachloroethene (PCE) at a former Army‐owned manufacturing facility located in the Piedmont area of North Carolina. Previous use of chlorinated solvents at the facility resulted in soil and groundwater impacts. Ten years of active remediation utilizing soil vacuum extraction and air sparging (SVE/AS) were largely ineffective in reducing the TCE/PCE plume. In 2002, the Army authorized preparation of an amended Remedial Action Plan (RAP) to evaluate in situ bioremediation methods to remediate TCE in groundwater. The RAP evaluated eight groundwater remediation technologies and recommended EOS as the preferred bioremediation alternative for the site. Eight wells were drilled within the 100 × 100 feet area believed to be the primary source area for the TCE plume. In a first injection phase, dilute EOS emulsion was injected into half of the wells. Distribution of the carbon substrate through the treatment zone was enhanced by pumping the four wells that were not injected and recirculating the extracted water through the injection wells. The process was repeated in a second phase that reversed the injection/extraction well pairs. Overall, 18,480 pounds of EOS were injected and 163,000 gallons of water were recirculated through the source area. Anaerobic groundwater conditions were observed shortly after injection with a corresponding decrease in both PCE and TCE concentrations. Dissolved oxygen, oxidation‐reduction potential, and sulfate concentrations also decreased after injection, while TCE‐degradation products, ferrous iron, and methane concentrations increased. The reduction in TCE allowed the Army to meet the groundwater remediation goals for the site. Approximately 18 months after injection, eight wells were innoculated with a commercially prepared dechlorinating culture (KB‐1) in an attempt to address lingering cis‐1,2‐dichloroethene (cis‐DCE) and vinyl chloride (VC) that continued to be observed in some wells. Dehalococcoides populations increased slightly post‐bioaugmentation. Both cis‐DCE and VC continue to slowly decrease. © 2007 Wiley Periodicals, Inc.  相似文献   

7.
8.
In situ treatability studies are being conducted to evaluate various in situ technologies to manage groundwater contamination at the NASA Marshall Space Flight Center in Huntsville, Alabama. The focus of these studies is to evaluate remediation options for contaminated (mostly aerobic) groundwater occurring within the basal portion of a clayey residuum called the rubble zone. The tension‐saturated media and unsaturated media lying above the rubble zone are also being treated where they make up a significant component of the contaminant mass. An in situ chemical reduction field pilot test was implemented (following bench‐scale tests) during July and August 2000. The test involved the injection of zero‐valent iron powder in slurry form, using the FeroxSM process patented by ARS Technologies, Inc. The pilot test focused on trichloroethene (TCE)‐contaminated groundwater within the rubble zone. Maximum pre‐injection concentrations of about 72,800 micrograms per liter (μg/l) were observed and no secondary sources are believed to exist beneath the area. The potential presence of unexploded ordnance forced an implementation strategy where source area injections were completed, as feasible, followed by overlapping injections in a down gradient alignment to create a permeable reactive zone for groundwater migration. Eight post‐injection rounds of groundwater performance monitoring were completed. The results are encouraging, in terms of predicted responses and decreasing trends in contaminant levels. © 2003 Wiley Periodicals, Inc.  相似文献   

9.
Fenton's reagent in its conventional form, although effective for contaminant treatment, is impractical from an in‐situ field application perspective due to low pH requirements (i.e., pH 3‐4), and limited reagent mobility when introduced into the subsurface. Modified Fenton's processes that use chelated‐iron catalysts and stabilized hydrogen peroxide have been developed with the goal of promoting effective in‐situ field application under native pH conditions (i.e., pH 5‐7), while extending the longevity of hydrogen peroxide. Laboratory experiments conducted in soil columns packed with organic soil to compare modified Fenton's catalysts with conventional catalysts (acidified iron [II]) indicated superior mobility and sorption characteristics for modified Fenton's catalysts. Furthermore, the acidic pH of a conventional catalyst was buffered to the native soil range, leading to increased iron precipitation/adsorption following permeation through the soil column. The chelates present within the modified Fenton's catalyst showed greater affinity toward iron compared with the native soil and, hence, minimized iron loss through adsorption during the permeation process even at pH 5‐7. Field effectiveness of the modified Fenton's process was demonstrated at a former dry‐cleaning facility located in northeast Florida. Preliminary laboratory‐scale experiments were conducted on soil‐slurry and groundwater samples to test the process efficacy for remediation of chlorinated solvents. Based on successful experimental results that indicated a 94 percent (soil slurry) to 99 percent (groundwater) reduction of cis‐1,2‐DCE, PCE, and TCE, a field‐scale treatment program was initiated utilizing a plurality of dual‐zone direct push injection points installed in a grid fashion throughout the site. Results of treatment indicated a 72 percent reduction in total chlorinated contamination detected in the site groundwater following the first injection event; the reduction increased to 90 percent following the second injection event. © 2002 Wiley Periodicals Inc.  相似文献   

10.
Permeable reactive barriers made of zero‐valent iron (ZVI PRBs) have become a prominent remediation technology in addressing groundwater contamination by chlorinated solvents. Many ZVI PRBs have been installed across the United States, some as research projects, some at the pilot scale, and many at full scale. As a passive and in situ remediation technology, ZVI PRBs have many attractive features and advantages over other approaches to groundwater remediation. Ten ZVI PRBs installed in California were evaluated for their performance. Of those ten, three are discussed in greater detail to illustrate the complexities that arise when quantifying the performance of ZVI PRBs, and to provide comment on the national debate concerning the downgradient effects of source‐zone removal or treatment on plumes of contaminated groundwater. © 2009 Wiley Periodicals, Inc.  相似文献   

11.
Two adjacent automotive component manufacturers in Japan had concentrations of trichloroethene (TCE) and perchloroethene (PCE) in soils and groundwater beneath their plants. One of the manufacturers extensively used these solvents in its processes, while the adjacent manufacturer had no documentation of solvent use. The conceptual site model (CSM) initially involved a single source that migrated from one building to under the adjacent building. Further, because low concentrations of daughter products (e.g., cis‐1,2‐dichloroethene; 3.6 to 840 micrograms per liter [μg/L]) were detected in groundwater, the CSM did not consider intrinsic degradation to be a significant fate mechanism. With this interpretation, the initial remedial design involved both source treatment and perimeter groundwater control to prevent offsite migration of the solvents in groundwater. Identifying whether intrinsic degradation was occurring and could be quantified represented a means of eliminating this costly and potentially redundant component. Further, incorporating intrinsic degradation into the remediation design would also allow for a more focused source treatment, resulting in further cost savings. Three rounds of sampling and data interpretation applying compound specific isotope analysis (CSIA) were used to refine the CSM. The first sampling round involved three‐dimensional CSIA (13C, 37Cl, and 2H), while the second two rounds involved 13C only, focusing on degradation over time. For the May 2012 sampling, δ13C for PCE ranged from –31‰ to –29.6 ‰ and for TCE ranged from –30.4‰ to –28.3‰; showing similar values. δ2H for TCE ranged from 581‰ to 629‰, indicating a manufactured TCE rather than that resulting from dehalogenation processes from PCE. However, mixing of manufactured TCE with that resulting from degraded PCE cannot be ruled out. Because of the similar δ13C ratios for PCE and TCE, and 37Cl data for PCE and TCE, fractionation and enrichment factors could not be relied upon. Fractionation patterns were evaluated using graphical methods to trace TCE to the source location to better focus the locations for steam injection. Graphical methods were also used to define the degradation mechanism and from this, incorporate intrinsic degradation processes into the remedial design, eliminating the need for a costly perimeter pump and treat system. ©2015 Wiley Periodicals, Inc.  相似文献   

12.
Tetrachloroethene (PCE) releases at a former dry cleaner resulted in impacts to soil and shallow groundwater beneath and adjacent to the building. Subsurface impacts led to vapor intrusion with PCE concentrations between 900 and 1,200 micrograms per cubic meter (μg/m3) in indoor air. The migration pathways of impacted soil vapor were evaluated through implementation of a helium tracer test and vapor sampling of an exterior concrete block wall. Results confirmed that the concrete block wall acted as a conduit for vapor intrusion into the building. A combination of remediation efforts focused on mass reduction in the source area as well as mitigation efforts to inhibit vapor migration into the building. Excavation of soils beneath the floor slab and installation of a spray‐applied vapor barrier resulted in PCE concentrations in indoor air decreasing by over 97.9 percent. Operation of an active ventilation system installed under the floor slab and groundwater remediation via injections of nano‐scale zero valent iron (nZVI) further reduced PCE concentrations in indoor air by over 99.8 percent compared to baseline conditions. While significant reductions of PCE concentrations in groundwater were observed within two months after injection, maximum reductions to PCE concentrations in indoor air were not observed for an additional 12 months. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
Despite the installation in the 1980s and 1990s of hydraulic containment systems around known source zones (four slurry walls and ten pump‐and‐treat systems), trichloroethene (TCE) plumes persist in the three uppermost groundwater‐bearing units at the Middlefield‐Ellis‐Whisman (MEW) Superfund Study Area in Mountain View, California. In analyzing TCE data from 15 recovery wells, the observed TCE mass discharge decreased less than an order of magnitude over a 10‐year period despite the removal of an average of 11 pore volumes of affected groundwater. Two groundwater models were applied to long‐term groundwater pump‐and‐treat data from 15 recovery wells to determine if matrix diffusion could explain the long‐term persistence of a TCE plume. The first model assumed that TCE concentrations in the plume are controlled only by advection, dispersion, and retardation (ADR model). The second model used a one‐dimensional diffusion equation in contact with two low‐permeability zones (i.e., upper and lower aquitard) to estimate the potential effects of matrix diffusion of TCE into and out of low‐permeability media in the plume. In all 15 wells, the matrix diffusion model fit the data much better than the ADR model (normalized root mean square error of 0.17 vs. 0.29; r2 of 0.99 vs. 0.19), indicating that matrix diffusion is a likely contributing factor to the persistence of the TCE plume in the non‐source‐capture zones of the MEW Study Area's groundwater‐extraction wells. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
A study was conducted to evaluate the efficacy of PHOSter® technology for treating groundwater contaminated with trichloroethene (TCE) at Edwards Air Force Base, California. The technology consists of injecting a gaseous mixture of air, methane, and nutrients into groundwater with the objective of stimulating the growth of methanotrophs, a naturally occurring microbial group that is capable of catalyzing the aerobic degradation of chlorinated solvents into nontoxic products. Injection operations were performed at one well for a period of three months. Six monitoring wells were utilized for groundwater and wellhead vapor monitoring and for groundwater and microbial sampling. In the five monitoring wells located within 44 feet of the injection well, the following results were observed: dissolved oxygen concentrations increased to a range between 6 and 8 milligrams per liter (μg/L); the biomass of target microbial groups increased by one to five orders of magnitude; and TCE concentrations decreased by an average of 92 percent, and to below the California primary maximum contaminant level (MCL; 5 micrograms per liter [µg/L]) in the well closest to the injection well. © 2008 Wiley Periodicals, Inc. *
  • 1 This article is a U.S. Government work and, as such, is in the public domain of the United States of America.
  •   相似文献   

    15.
    A former dry‐cleaning site in Jackson, Tennessee, has undergone remediation to treat dense nonaqueous‐phase liquid (trichloroethene [TCE] and tetrachloroethene [PCE]) contamination in the subsurface. The dry cleaning operation closed in 1977. In 2002, a series of injections were made at the site consisting of corn syrup, vegetable oils, and Simple Green®. In 2004, approximately 200 cubic yards of contaminated soil were excavated, and the bottom of the excavation was covered with sodium lactate. In 2009, the site was characterized using proprietary electrical resistivity imaging (ERI; commercially available as Aestus GeoTrax SurveysTM). Follow‐up confirmation soil borings targeted anomalies detected via the geophysical work. The results indicate an extremely electrically conductive (less than 1 ohm‐m) vadose zone downgradient from the injection wells, and extremely electrically resistive areas (greater than 10,000 ohm‐m) in the phreatic zone near the injection area. The sample data indicate that the electrically resistive anomalous zones contain moderate to high concentrations of undegraded dry‐cleaning compounds. Electrically conductive anomalous zones are interpreted to be areas of biological activity generated by the amendments injected into the subsurface based on the extreme conductivity values detected, the chemical composition (i.e., PCE degradates are present), and the dominant vadose‐zone location of the conductive zones. © 2012 Wiley Periodicals, Inc.  相似文献   

    16.
    In June and July 2001, the Massachusetts Department of Environmental Protection (MassDEP) installed a permeable reactive barrier (PRB) to treat a groundwater plume of chlorinated solvents migrating from an electronics manufacturer in Needham, Massachusetts, toward the Town of Wellesley's Rosemary Valley wellfield. The primary contaminant of concern at the site is trichloroethene (TCE), which at the time had a maximum average concentration of approximately 300 micrograms per liter directly upgradient of the PRB. The PRB is composed of a mix of granular zero‐valent iron (ZVI) filings and sand with a pure‐iron thickness design along its length between 0.5 and 1.7 feet. The PRB was designed to intercept the entire overburden plume; a previous study had indicated that the contaminant flux in the bedrock was negligible. Groundwater samples have been collected from monitoring wells upgradient and downgradient of the PRB on a quarterly basis since installation of the PRB. Inorganic parameters, such as oxidation/reduction potential, dissolved oxygen, and pH, are also measured to determine stabilization during the sampling process. Review of the analytical data indicates that the PRB is significantly reducing TCE concentrations along its length. However, in two discrete locations, TCE concentrations show little decrease in the downgradient monitoring wells, particularly in the deep overburden. Data available for review include the organic and inorganic analytical data, slug test results from nearby bedrock and overburden wells, and upgradient and downgradient groundwater‐level information. These data aid in refining the conceptual site model for the PRB, evaluating its performance, and provide clues as to the reasons for the PRB's underperformance in certain locations. © 2008 Wiley Periodicals, Inc.  相似文献   

    17.
    In the 1960s, trichloroethene (TCE) was used at what is now designated as Installation Restoration Program Site 32 Cluster at Vandenberg Air Force Base to flush missile engines prior to launch and perhaps for other degreasing activities, resulting in releases of TCE to groundwater. The TCE plume extends approximately 1 kilometer from the previous launch facilities beyond the southwestern end of the site. To limit further migration of TCE and chlorinated degradation by‐products, an in situ, permeable, reactive bioremediation barrier (biobarrier) was designed as a cost‐effective treatment technology to address the TCE plume emanating from the source area. The biobarrier treatment would involve injecting carbon‐based substrate and microbes to achieve reductive dechlorination of volatile organic compounds, such as TCE. Under reducing conditions and in the presence of certain dechlorinating microorganisms, TCE degrades to nontoxic ethene in groundwater. To support the design of the full‐scale biobarrier, a pilot test was conducted to evaluate site conditions and collect pertinent design data. The pilot test results indicated possible substrate delivery difficulties and a smaller radius of influence than had been estimated, which would be used to determine the final biobarrier well spacing. Based on these results, the full‐scale biobarrier design was modified. In January 2010, the biobarrier was implemented at the toe of the source area by adding a fermentable substrate and a dechlorinating microbial culture to the subsurface via an injection well array that spanned the width of the TCE plume. After the injections, the groundwater pH in the injection wells continued to decrease to a level that could be detrimental to the population of Dehalococcoides in the SDC‐9TM culture. In addition, 7 months postinjection, the injection wells could not be sampled due to fouling. Cleaning was required to restore their functions. Bioassay and polymerase chain reaction analyses were conducted, as well as titration tests, to assess the need for biobarrier amendments in response to the fouling issues and low pH. Additionally, slug tests were performed on three wells to evaluate possible localized differences in hydraulic conductivity within the biobarrier. Based on the test results, the biobarrier was amended with sodium carbonate and inoculated a second time with SDC‐9TM. The aquifer pH was restored, and reductive dechlorination resumed in the treatment zone, evidenced by the reduction in TCE and the increase in degradation products, including ethene. © 2011 Wiley Periodicals, Inc.  相似文献   

    18.
    Residual dense nonaqueous phase liquid (DNAPL) composed of trichloroethene (TCE) was identified in a deeper interval of an overburden groundwater system at a manufacturing facility located in northern New England. Site hydrostratigraphy is characterized by two laterally continuous and transmissive zones consisting of fully‐saturated fine sand with silt and clay. The primary DNAPL source was identified as a former dry well with secondary contributions from a proximal aboveground TCE storage tank. A single additive‐injection mobilization in 2001 utilizing a food‐grade injectate formulated with waste dairy product and inactive yeast enhanced residual TCE DNAPL destruction in situ by stimulating biotic reductive dechlorination. The baseline TCE concentration was detected up to 97,400 μg/L in the deeper interval of the overburden groundwater system, and enhanced reductive dechlorination (ERD) achieved >99 percent reduction in TCE concentrations in groundwater over nine years with no evidence of sustained rebound. TCE concentrations have remained nondetect below 2.0 μg/L for the last five consecutive sampling rounds between 2013 and 2015. ERD utilizing a food‐grade injectate is a green remediation technology that has destroyed residual DNAPL at the site and achieved similar results at other residual DNAPL sites during both pilot‐ and full‐scale applications. ©2016 Wiley Periodicals, Inc.  相似文献   

    19.
    A common technology to remediate and/or contain contaminated groundwater is pump‐and‐treat remediation (P&T). Traditionally, P&T systems have been designed to operate continuously to achieve steady‐state capture zones, for which large amounts of energy are required. Green and sustainable remediation (GSR) is emerging as a viable method to minimize the adverse effects of remediation on the environment. One of the challenges associated with photovoltaic‐ (PV‐) powered P&T systems is the assessment of their performance given the intermittent nature of the power availability. This article characterizes the hydraulic containment effectiveness of a PV‐powered P&T system without energy storage using data collected at two different remediation sites, a Dry‐Cleaning Environmental Response Trust Fund site in Rolla, Missouri, and the Former Nebraska Ordnance Plant near Mead, Nebraska. Additionally, a method to estimate the effectiveness of the hydraulic containment as a function of the total volume of groundwater expected to be extracted is being proposed. Two transient and a continuously pumped capture zones were modeled using Visual MODFLOW® 2012.1 along with MODPATH and compared. The study shows that smaller capture zones will be generated from intermittent pumping when compared to continuous pumping. © 2013 Wiley Periodicals, Inc.  相似文献   

    20.
    Tetrachloroethene (PCE)‐ and trichloroethene (TCE)‐impacted sites pose significant challenges even when site characterization activities indicate that biodegradation has occurred naturally. Although site‐specific, regulatory, and economic factors play roles in the remedy‐selection process, the application of molecular biological tools to the bioremediation field has streamlined the assessment of remedial alternatives and allowed for detailed evaluation of the chosen remedial technology. The case study described here was performed at a PCE‐impacted site at which reductive dechlorination of PCE and TCE had led to accumulation of cis‐dichlorethene (cis‐DCE) with concentrations ranging from approximately 10 to 100 mg/L. Bio‐Trap® samplers and quantitative polymerase chain reaction (qPCR) enumeration of Dehalococcoides spp. were used to evaluate three remedial options: monitored natural attenuation, biostimulation with HRC®, and biostimulation with HRC‐S®. Dehalococcoides populations in HRC‐S‐amended Bio‐Traps deployed in impacted wells were on the order of 103 to 104 cells/bead but were below detection limits in most unamended and HRC‐amended Bio‐Traps. Thus the in situ Bio‐Trap study identified biostimulation with HRC‐S as the recommended approach, which was further evaluated with a pilot study. After the pilot HRC‐S injection, Dehalococcoides populations increased to 106 to 107 cells/bead, and concentrations of cis‐DCE and vinyl chloride decreased with concurrent ethene production. Based on these results, a full‐scale HRC‐S injection was designed and implemented at the site. As with the pilot study, full‐scale HRC‐S injection promoted growth of Dehalococcoides spp. and stimulated reductive dechlorination of the daughter products cis‐DCE and vinyl chloride. © 2008 Wiley Periodicals, Inc.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号