首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of interfacial matrix/particle adhesion on the mechanical properties of poly(lactic acid) (PLA) micro-composites was investigated. The tensile strength of PLA/wood-flour micro-composites is almost independent of wood-flour content, suggesting only weak adhesion exists between the PLA matrix and the wood-flour particles. The addition of wood-flour resulted in an increase of up to 95% in the tensile modulus, in comparison with pure PLA, which showed a more resilient matrix. The addition of a coupling agent, methylenediphenyl-diisocyanate (MDI) to the composition resulted in an increase in tensile strength and tensile modulus of the micro-composites, of 10 and 135%, respectively, indicating enhanced matrix–particle interfacial adhesion. SEM and electron probe microanalysis provided evidence of improved interfacial adhesion between PLA and wood-flour particles from the addition of MDI. In contrast, addition of PEAA resulted in a micro-composite displaying substantially reduced tensile strength, up to 35% and a slightly increased in impact strength, up to 15%, consistent with the introduction of the rubbery PEAA component into the polymeric matrix. No evidence for increased matrix–particle adhesion was found for the PLA/wood-flour micro-composites containing PEAA.  相似文献   

2.
Renewable resource-based composites were prepared with acorn powder and Thermoplastic resin poly(lactic acid) (PLA) by twin-screw extrusion followed by injection molding processing or hot-compression molding processing. The study of the composites microstructure showed poor adhesion between acorn powder and PLA matrix. The hygroscopicity, mechanical properties and melt flow property of composites were promising even though the composites had a 70 wt% content of acorn powder. Silane coupling agent, 4,4′-Methylenebis (phenyl isocyanate) and PLA grafted with maleic anhydride did not show obvious effect on mechanical properties of composites. The impact resistance strength of reinforced composites with steel fiber webs were improved greatly in comparison with those having no steel fiber webs. Thermal properties results of DSC and DMA showed that the presence of acorn powder significantly affected the crystallinity, crystallization temperature (Tc), glass transition temperature (Tg) and melting temperature (Tm) of PLA matrix. The study results proved that composites had superior mechanical properties, enough to partially replace the conventional thermoplastic plastics.  相似文献   

3.
This paper investigates and compares the performances of polylactic acid (PLA)/kenaf (PLA-K) and PLA/rice husk (PLA-RH) composites in terms of biodegradability, mechanical and thermal properties. Composites with natural fiber weight content of 20% with fiber sizes of less than 100 μm were produced for testing and characterization. A twin-screw extrusion was used to compound PLA and natural fibers, and extruded composites were injection molded to test samples. Flexural and Izod impact test, TGA, soil burial test and SEM were used to investigate properties. All results were compared to a pure PLA matrix sample. The flexural modulus of the PLA increased with the addition of natural fibers, while the flexural strength decreased. The highest impact strength (34 J m−1), flexural modulus (4.5 GPa) and flexural strength (90 MPa) were obtained for the composite made of PLA/kenaf (PLA-K), which means kenaf natural fibers are potential to be used as an alternative filler to enhance mechanical properties. On the other hand PLA-RH composite exhibits lower mechanical properties. The impact strength of PLA has decreased when filled with natural fibers; this decrease is more pronounced in the PLA-RH composite. In terms of thermal stability it has been found that the addition of natural fibers decreased the thermal stability of virgin PLA and the decrement was more prominent in the PLA-RH composite. Biodegradability of the composites slightly increased and reached 1.2 and 0.8% for PLA-K and PLA-RH respectively for a period of 90 days. SEM micrographs showed poor interfacial between the polymer matrix and natural fibers.  相似文献   

4.
Environmental degradation and global warming are increasing as a result of the use of petroleum. Therefore, many industries are seeking more eco-friendly materials that will decrease the level of environmental contamination and economic cost. Recently, the level of coffee consumption has increased rapidly. Therefore, the amount of coffee grounds discarded is increasing. In this study, polylactic acid, coffee grounds and bamboo flour were compounded for green composites. Coffee grounds are used in the recycling of food waste. In addition, 4,4-methylene diphenyl diisocyanate (MDI) was used as a coupling agent. The mechanical strength of green composites decreased with increasing natural filler content. However, mechanical and thermal properties were increased by the addition of MDI as a coupling agent. The hydroxyl groups of natural fillers reacted with the isocyanate group of MDI, and a urethane linkage was created between the polymer and natural fillers.  相似文献   

5.
A new route to prepare poly(lactic acid) (PLA)/thermoplastic starch (TPS) blends is described in this work using poly(ethylene glycol) (PEG), a non-toxic polymer, as a compatibilizer. The influence of PEG on the morphology and properties of PLA/TPS blends was studied. The blends were processed using a twin-screw micro-compounder and a micro-injector. The morphologies were analyzed by scanning and transmission electron microscopies and the material properties were evaluated by dynamic-mechanical, differential scanning calorimetry, thermogravimetric analysis and mechanical tests. PLA/TPS blends presented large TPS phase size distribution and low adhesion between phases which was responsible for the lower elastic modulus of this blend when compared to pure PLA. The addition of PEG resulted in the increase of PLA crystallization, due to its plasticizing effect, and improvement of the interfacial interaction between TPS and PLA matrix. Results show that incorporation of PEG increased the impact strength of the ternary blend and that the elastic modulus remained similar to the PLA/TPS blend.  相似文献   

6.
The study was carried out to investigate the effects of filler content and two different compatibilizing agents (Eastman G-3003 and G-3216) on the mechanical properties of polypropylene reinforced with corn stalk and wood flour. In the sample preparation, three levels of filler loading (30, 40 and 50 wt%) and one level of compatibilizing agent content (2.5 wt%) were used. For overall trend, with addition of both grades of the compatibilizing agents, tensile and flexural properties of the composites significantly improved, as compared with the pure PP. Tensile and flexural properties reach a maximum at 40 wt% filler content and gradually decrease with a further increase in wood particle content. The composites treated with G-3003 gave better results in comparison with G-3216. This could be caused by the high melt viscosity of G-3003. In general, corn stalk flour filled composites showed superior mechanical properties.  相似文献   

7.
There has been considerable interest in the use of the biodegradable polymer poly(lactic acid) (PLA) as a replacement for petroleum derived polymers due to ease of processability and its high mechanical strength. Other material properties have however limited its wider application. These include its brittle properties, low impact strength and yellow tint. In an attempt to overcome these drawbacks, PLA was blended with four commercially available additives, commonly known as masterbatches. The effect of the addition of 1.5 wt% of the four masterbatches on the mechanical, thermal, optical and surface properties of the polymer was evaluated. All four masterbatches had a slight negative effect on the tensile strength of PLA (3–5% reduction). There was a four fold increase in impact resistance however with the addition of one of the masterbatches. Differential scanning calorimetry demonstrated that this increase corresponded to a decrease in the polymer crystallinity. However there was an associated increase in polymer haze with the addition of this masterbatch. The clarity of PLA was improved through the addition of an optical brightener masterbatch, but the impact resistance remained low. The glass transition and melting temperatures of PLA were not affected by the addition of the masterbatches, and no change was observed in surface energy. Some delay in PLA degradation, in a PBS degradation medium at 50 °C, was observed due to blending with these masterbatches.  相似文献   

8.
Natural composites have been important materials system due to preservation of earth environments. Natural fibers such as jute, hemp, bagasse and so on are very good candidate of natural composites as reinforcements. On the other hand regarding matrix parts thermosetting polymer and thermoplastic polymer deriver form petrochemical products are not environmental friendly material, even if thermoplastic polymer can be recycled. In order to create fully environmental friendly material (FEFM) biodegradable polymer which can be deriver from natural resources is needed. Therefore poly(lactic acid) (PLA) polymer is very good material for the FEFM. In this paper jute fiber filled PLA resin (jute/PLA) composites was fabricated by injection moldings and mechanical properties were measured. It is believable that industries will have much attention to FEFM, so that injection molding was adopted to fabricate the composites. Long fiber pellet fabricated by pultrusion technique was adopted to prepare jute/PLA pellet. Because it is able to fabricate composite pellets with relative long length fibers for injection molding process, where, jute yarns were continuously pulled and coated with PLA resin. Here two kinds of PLA materials were used including the one with mold releasing agent and the other without it. After pass through a heated die whereby PLA resin impregnates into the jute yarns and sufficient cooling, the impregnated jute yarns were cut into pellets. Then jute/PLA pellets were fed into injection machine to make dumbbell shape specimens. In current study, the effects of temperature of PLA melting temperature i.e. impregnation temperature and the kinds of PLA were focused to get optimum molding condition. The volume fractions of jute fiber in pellet were measured by several measuring method including image analyzing, density measurement and dissolution methods. Additionally, thermal and mechanical properties were investigated. It is found that 250° is much suitable for jute/PLA long fiber pultrusion process because of its less heat degradation of jute, better impregnation, acceptable mechanical property and higher production efficiency. Additionally the jute fibers seem much effective to increase deflection temperature under load, tensile modulus and Izod strength.  相似文献   

9.
Rapid growth of the biofuel industry is generating large amounts of coproducts such as distillers dried grains with solubles (DDGS) from ethanol production and glycerol from biodiesel. Currently these coproducts are undervalued, but they have application in the plastics industry as property modifiers. The objective of this research effort is to quantify the effects on mechanical properties of adding DDGS and glycerol to polylactic acid (PLA). The methodology was to physically mix DDGS, as filler, with PLA pellets and injection mold the blends into test bars using glycerol as a plasticizer. The bars were subject to mechanical testing procedures to obtain tensile strength, tensile and flexural moduli, elongation to break, and surface hardness of blends from 0 to 90?%, by weight, of plasticized filler. Blends were typically relatively brittle with little or no yielding prior to fracture, and the addition of glycerol enabled molding of blends with high levels of DDGS but did not increase strength. Any presence of filler decreased the tensile strength of the PLA, and 20?C30?% filler reduced strength by 60?%. The 35?C50?% filled PLA had about one-fifth the value for pure PLA; at 60?C65?% filler level, about 10?% tensile strength remained; and over 80?% filler, 95?% of the strength was lost. Over 20?% filler, the tensile modulus decreased. The 35?% plasticized, filled blend yielded about one-half the stiffness as the pure PLA case; flexural modulus trended in the same manner but demonstrated a greater loss of stiffness. Most blends had less than 3?% elongation to break while surface hardness measurements indicated that up to 60?% filler reduced Shore D hardness by less than 20?%. The tensile strength and modulus data are consistent with the findings of other researchers and indicate that the type of filler and amount and sequence of plasticization are secondary effects, and the total PLA displaced is the dominant factor in determining the mechanical strength of the PLA and DDGS blends. Up to 65?% plasticized DDGS filler can be injection molded, and sufficient mechanical strength exists to create a variety of products. Such a novel material provides higher-value utilization of the biofuel coproducts of glycerol and DDGS and maintains the biodegradable and biocompatible nature of PLA.  相似文献   

10.
“Green”/bio-based blends of poly(lactic acid) (PLA) and cellulolytic enzyme lignin (CEL) were prepared by twin-screw extrusion blending. The mechanical and thermal properties and the morphology of the blends were investigated. It was found that the Young’s modulus of the PLA/CEL blends is significantly higher than that of the neat PLA and the Shore hardness is also somewhat improved. However, the tensile strength, the elongation at break, and the impact strength are slightly decreased. Thermogravimetric analysis (TGA) shows that the thermal stability of the PLA is not significantly affected by the incorporation of the CEL, even with 40 wt% CEL. The results of FT-IR and SEM reveal that the CEL and the PLA are miscible and there are efficient interactions at the interfaces between them. These findings show that the CEL is a kind of feasible filler for the PLA-based blends.  相似文献   

11.
The biodegradability of polylactide (PLA) and gelatinized starches (GS) blend films in the presence of compatibilizer was investigated under controlled soil burial conditions. Various contents (0–40 wt%) of corn and tapioca starches were added as fillers; whereas, different amounts of methylenediphenyl diisocyanate (MDI) (0–2.5 wt%) and 10 wt% based on PLA content of polyethylene glycol 400 (PEG400) were used as a compatibilizer and a plasticizer, respectively. The biodegradation process was followed by measuring changes in the physical appearance, weight loss, morphological studies, and tensile properties of the blend films. The results showed that the presence of small amount of MDI significantly increased the tensile properties of the blends compared with the uncompatibilized blends. This is attributed to an improvement of the interfacial interaction between PLA and GS phases, as evidenced by the morphological results. For soil burial testing, PLA/GS films with lower levels (1.25 wt%) of MDI had less degradation; in contrast, at high level of MDI, their changes of physical appearance and weight loss tended to increase. These effects are in agreement with their water absorption results. Furthermore, biodegradation rates of the films were enhanced with increasing starch contents, while mechanical performances were decreased.  相似文献   

12.
Polyurethane (PU) based on polycaprolactone (PCL) and 4,4′ diphenyl methylene diisocyanate (MDI) was synthesized using a two-step method. The PU obtained was then blended with various amounts of cellulose extracted from alfa stems to prepare composite materials. The influence of cellulose on the thermal and mechanical properties of different composites was demonstrated by means of several characterization techniques such as Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM)…  相似文献   

13.
In attempt to enhance the compatibility of NR in PLA matrix, and furthermore to enhance mechanical properties of PLA, PLA/NR blends with strong interaction were prepared in Haake internal mixer, using dicumyl peroxide (DCP) as cross-linker. The effects of dicumyl peroxide on morphology, thermal properties, mechanical properties and rheological properties of PLA and PLA/NR blends were studied. The results indicated that dicumyl peroxide could increase the compatibility of poly(lactic acid) and natural rubber. With small amount of dicumyl peroxide, the effect on NR toughening PLA was enhanced and the tensile toughness of PLA/NR blends was improved. When the DCP content was up to 0.2 wt%, the PLA/NR blend reached the maximum elongation at break (26.21 %) which was 2.5 times of that of neat PLA (the elongation at break of neat PLA was 10.7 %). Meanwhile, with introducing 2 wt% DCP into PLA/NR blend, the maximum Charpy impact strength (7.36 kJ/m2) could be achieved which was 1.8 times of that of neat PLA (4.18 kJ/m2). Moreover, adding adequate amount of DCP could improve the processing properties of blends: the viscosity of PLA/NR blend decreased significantly and the lowest viscosity of the blends could be achieved when the DCP content was 0.5 wt%.  相似文献   

14.
Poly(lactic acid) (PLA) presents high strength and modulus, but very low toughness as well as slow crystallization. Natural rubber (NR) was blended to enhance the toughness and nucleating agent was added to improve the crystallization. Cyclodextrin (CD), considered as a green compound, as well as calcium carbonate (CaCO3) and talc were used as nucleating agents. Effects of these nucleating agents on crystallization, mechanical properties and morphology of neat PLA and PLA/NR blend were investigated. It was found that the addition of talc and CD decreased cold crystallization temperature (Tcc) of the PLA. Same result was obtained in PLA/NR blend containing talc. All nucleating agents increased the degree of crystallinity (ΧC) of PLA, whereas only talc and CaCO3 increased ΧC of PLA in PLA/NR blends. The enhanced toughness of PLA by the addition of nucleating agent was attributed to its increased crystallinity, as well as decreased spherulite size. For PLA/NR blends, the increase in toughness was mainly contributed by the presence of the rubber.  相似文献   

15.
Natural filler/poly(lactic acid)-Based composites have been prepared by melt blending in order to investigate the resulting thermal, mechanical, and oxygen permeability properties. To this aim, several wastes or by-products (namely, cellulose fibers, wood sawdust, hazelnut shells, flax fibers, corn cob and starch) have been used, ranging from 10 to 30 wt%. The presence of these fillers is responsible of a slight reduction of the polymer degradation temperature in nitrogen as well as of a significant increase of the storage modulus as a function of the filler content. The experimental data obtained by dynamic mechanical analysis have been mathematically fitted, employing three micromechanical models (namely, Voigt, Reuss and Halpin–Tsai). Furthermore, the presence of cellulose or starch has turned out to significantly reduce the polymer oxygen permeability. Finally, in order to fully assess the feasibility of such materials, an economic analysis has been carried out and discussed.  相似文献   

16.
Natural rubber grafted with poly(vinyl acetate) copolymer (NR-g-PVAc) was synthesized by emulsion polymerization. Three graft copolymers were prepared with different PVAc contents: 1 % (G1), 5 % (G5) and 12 % (G12). Poly(lactic acid) (PLA) was melt blended with natural rubber (NR) and/or NR-g-PVAc in a twin screw extruder. The blends contained 10–20 wt% rubber. The notched Izod impact strength and tensile properties were determined from the compression molded specimens. The effect of NR mastication on the mechanical properties of the PLA/NR/NR-g-PVAc blend was evaluated. Characterization by DMTA and DSC showed an enhancement in miscibility of the PLA/NR-g-PVAc blend. The temperature of the maximum tan δ of the PLA decreased with increasing PVAc content in the graft copolymer, i.e., from 71 °C (pure PLA) to 63 °C (the blend containing 10 % G12). The increase in miscibility brought about a reduction in the rubber particle diameter. These changes were attributed to the enhancement of toughness and ductility of PLA after blending with NR-g-PVAc. Therefore, NR-g-PVAc could be used as a toughening agent of PLA and as a compatibilizer of the PLA/NR blend. NR mastication was an efficient method for increasing the toughness and ductility of the blends which depended on the blend composition and the number of mastications.  相似文献   

17.
Functional Properties of Extruded Starch Acetate Blends   总被引:1,自引:0,他引:1  
Starch acetate, with degree of substitution of 2, was blended with 0, 7.5 and 15% polylactic acid (PLA), Eastar Bio Copolyester 14766 (EBC) or Mater-Bi ZF03U (MBI) and 10%, 13%, or 16% (d.b.) ethanol and twin-screw extruded at 160°C barrel temperature. Physical characteristics of the extrudates, such as radial expansion ratio, unit and bulk densities, and of the mechanical properties, including unit spring index and bulk spring index, were measured. Type of polymer, polymer content, and ethanol content significantly affected the physical characteristics and mechanical properties. The sample extruded with 7.5% PLA and 13% ethanol had the highest expansion ratio and bulk spring index. The sample with 15% MBI and 16% ethanol had the lowest unit density, while the sample with 7.5% PLA and 16% ethanol had lowest bulk denisty. The highest unit spring index was expressed in the sample containing 7.5% PLA and 10% ethanol.  相似文献   

18.
This work focused on the durability of short jute fiber reinforced poly(lactic acid) (PLA) composites in distilled water at different temperatures (23, 37.8 and 60 °C). Morphological, thermal and mechanical properties (tensile, flexural, and impact) of jute/PLA composites were investigated before and after aging. Different from traditional synthetic fiber reinforced polymer composites, the stability of jute/PLA composites in water was significantly influenced by hydrothermal temperature. The mechanical properties of the composites and molecular weight of PLA matrix declined quickly at 60 °C, however, this process was quite slower at temperatures of 23 and 37.8 °C. Impact properties of the composites were hardly decreased, but the tensile and flexural properties suffered a drop though to various degrees with three degradation stages at 23 and 37.8 °C. The poor interface of composites and the degradation of PLA matrix were the main damage mechanism induced by hydrothermal aging. Furthermore, considering the hydrolysis of PLA matrix, the cleavage of PLA molecular chain in different aging time was quantitatively investigated for the first time to illustrate hydrolysis degree of PLA matrix at different aging time.  相似文献   

19.
The objective of this work was to determine some physical and mechanical properties of the high density polyethylene (HDPE) composites reinforced with various mixtures of the paper sludge and the wood flour, and to evaluate the coupling agent performance. The waste sludge materials originating from two different sources including paper making waste water treatment sludge (PS) and ink-eliminated sludge (IES) were characterized in terms of physico-chemical properties. In the experiment, four levels of paper sludge (20, 30, 40 and 60 wt%), three levels of wood flour (20, 40 and 60 wt%), and two levels of coupling agent (MAPE) content (2 and 3 wt%) were used. The flexural properties of the composites were positively affected by the addition of the sludge. Especially, tensile modulus improved with the increase of paper sludge content. With the addition of MAPE, flexural properties improved considerably compared with control specimens (without any coupling agent). The results showed that the water absorption (WA) and thickness swelling (TS) values of the samples decreased considerably with increasing sludge content in the composite, while they increased with increasing wood flour content. It is to be noted that with incorporation of MAPE in the composite formulation, the compatibility between the wood flour and HDPE was enhanced through esterification, which reduced the WA and TS and improved the mechanical properties. Composites made with IES exhibited superior physico-mechanical properties compared with the PS filled composites. Overall results suggest that the waste paper sludge materials were capable of serving as feasible reinforcing fillers for thermoplastic polymer composites.  相似文献   

20.
Soybean Oil-Based Photo-Crosslinked Polymer Networks   总被引:1,自引:0,他引:1  
Novel soybean oil-based crosslinked polymer networks were prepared by UV photopolymerization and their mechanical properties were evaluated. Poly(ethylene glycol) diacrylate (PEGDA) and biodegradable poly(ε-caprolactone) diacrylate (PCLDA) were synthesized and used as crosslinking agent to form crosslinked polymer networks by UV-initiated free-radical polymerization with acrylated epoxidized soybean oil (AESO). The synthesis of acrylate end-capped macromers was confirmed using FT-IR and 1H NMR spectroscopic techniques. Photopolymerization time, the composition of reaction mixture, and the type and length of crosslinking agent were changed to obtain crosslinked polymer networks with various mechanical properties. Polymers prepared from AESO and PCL degraded 6% of the initial weight in 24 days in phosphate buffer solution (pH 7.2) containing lipase enzyme. These potentially biodegradable and biocompatible polymers can be used as ecofriendly materials for biomedical and other applications to replace the existing petroleum-based polymers currently used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号