首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
石化废水剩余污泥在厌氧消化时,污泥停留时间长,且产气量较低,并且反应器容积较大,所需资金投入较高.污泥厌氧消化预处理能够改变污泥特性,缩短了后续消化时间,提高甲烷产量,减少剩余污泥量.综述了各种污泥预处理技术的最新进展,分析了石化污泥厌氧消化预处理的可行性.  相似文献   

2.
高分子絮凝剂对污泥脱水性能的影响   总被引:7,自引:0,他引:7  
邹鹏  宋碧玉  舒丽芬 《化工环保》2004,24(Z1):114-116
使用活性污泥法处理废水会产生大量剩余污泥,给污泥的处理和处置带来很大麻烦.许多方法可用于减少剩余污泥量,如消化和脱水.化学药剂可用于提高污泥的脱水性能.介绍了污泥脱水性能的表达方式及聚电解质提高污泥脱水性能的原理,讨论了聚电解质提高污泥脱水性能的相关影响因素.  相似文献   

3.
余林锋  汤兵  余国骏 《化工环保》2007,27(5):426-430
介绍厂超声波调理污泥的作用机理、超声波调理对污泥结构和污泥性质(包括沉降性能、脱水性能、微生物细胞的破解效应、厌氧消化性能、活性等)的影响,阐述了超声波和絮凝剂联用、超声波和氧化剂联用、超声波和电解联用、超声波和酸碱调节联用、超声波和γ射线联用等技术在污泥调理中的应用,并针对目前存在的问题提出了今后进一步研究的思路。  相似文献   

4.
污泥作为一种污水处理的产物,常被认为是一种固体废弃物,最常用的处理方式是经过简单脱水后进行填埋处理。随着污泥蕴含的价值逐渐被社会所认知,污泥作为一种资源被逐渐利用。通过对污泥的资源化深入研究与分析,总结出污泥资源化的几种方式,并对污泥各种资源化技术的TRL(技术就绪水平)进行系统分析,结果表明,在商业化应用上,厌氧消化制沼气技术已经趋于成熟,陶粒制备技术具备较高的应用化前景,其他资源化技术尚存在或多或少的技术难点,仍处于理论或实验阶段,需要做大量研究工作。  相似文献   

5.
采用水热技术处理含油污泥,考察了反应温度和反应时间对水热处理后含油污泥性质的影响,分析了含油污泥的减量化效果。实验结果表明:对含水率为70.6%(w)、含油率为32.0%(w)的含油污泥进行水热处理时,与反应时间相比,反应温度对含油污泥的脱水性能影响更大,是影响含油污泥热水解反应的重要因素;含油污泥经水热处理后,脱水性能得到改善,在所有实验条件下减量化率均高于78.8%,其中,在反应温度190 ℃、反应时间30 min的条件下,减量化率达到88.2%。  相似文献   

6.
超声波处理剩余活性污泥促进厌氧消化   总被引:8,自引:1,他引:8  
用超声波处理剩余活性污泥(简称污泥),考察了污泥絮体结构、污泥中溶解性化学需氧量(SCOD)的变化规律及超声波处理对污泥厌氧消化的影响。实验结果表明,声强大于1 040W/m2时,用超声波处理污泥30m in以上,污泥絮体被打碎,污泥絮体结构遭到严重破坏,污泥中SCOD迅速增加,加速了污泥中有机质的水解反应;声强为2 000W/m2时,用超声波处理污泥60m in,中温((37±1)℃)厌氧消化10d,COD去除率为41%;厌氧消化25d的总产气量比未经超声波处理的污泥总产气量提高了53%;将发酵罐容积放大10倍,经超声波处理的污泥25d累积的总产气量比未经超声波处理的污泥总产气量提高了约25%。  相似文献   

7.
膜生物反应器中污泥自消化技术进展   总被引:2,自引:1,他引:1  
介绍了国内外膜生物反应器(MBR)中污泥的消化技术,分析了控制运行条件法、物理法、化学法污泥消化技术及生物法污泥自消化技术的优缺点,指出了在MBR中没置局部厌氧区域法污泥自消化技术的重要意义.  相似文献   

8.
国外动态     
美国研究了自加热嗜热好氧消化和厌氧消化相结合的二段消化法。其工艺流程为:污泥和氧气分别由好气段消化器的上部、下部进入,在50—55℃下停留1小时之后进入厌氧反应器,在47—50℃下停留8天,产生的气体(含 CH_160—65%)从厌氧反应器上部排出,污泥从槽底排出。  相似文献   

9.
国外动态     
改进污泥处理过程减少污泥量JWPCF,57[2],116(1985).污水处理厂污泥的处理一般采用重力增稠和厌氧消化,以稳定污泥和除臭.消化后的污泥就地堆放后倾入海中.在纽约,为了减少污泥体积,研究了多种技术,包括消化污泥的循环、倾析、淘洗-再增稠和  相似文献   

10.
本文论述了消化污泥的浓度对厌氧生化效果的影响。通过厌氧生化产气速率与COD去除速率相互关系的研究,改变了进料方式,使设备的负荷提高2倍,也为厌氧生化处理废水的可生化性的测定提供了一条新的途径。  相似文献   

11.
High rate algal ponds are an economic and sustainable alternative for wastewater treatment, where microalgae and bacteria grow in symbiosis removing organic matter and nutrients. Microalgal biomass produced in these systems can be valorised through anaerobic digestion. However, microalgae anaerobic biodegradability is limited by the complex cell wall structure and therefore a pretreatment step may be required to improve the methane yield. In this study, ultrasound pretreatment at a range of applied specific energy (16–67 MJ/kg TS) was investigated prior to microalgae anaerobic digestion. Experiments showed how organic matter solubilisation (16–100%), hydrolysis rate (25–56%) and methane yield (6–33%) were improved as the pretreatment intensity increased. Mathematical modelling revealed that ultrasonication had a higher effect on the methane yield than on the hydrolysis rate. A preliminary energy assessment indicated that the methane yield increase was not high enough as to compensate the electricity requirement of ultrasonication without biomass dewatering (8% VS).  相似文献   

12.
Co-digestion of grease trap sludge and sewage sludge   总被引:3,自引:0,他引:3  
Redirection of organic waste, from landfilling or incineration, to biological treatment such as anaerobic digestion is of current interest in the Malmö-Copenhagen region. One type of waste that is expected to be suitable for anaerobic digestion is sludge from grease traps. Separate anaerobic digestion of this waste type and co-digestion with sewage sludge were evaluated. The methane potential was measured in batch laboratory tests, and the methane yield was determined in continuous pilot-scale digestion. Co-digestion of sludge from grease traps and sewage sludge was successfully performed both in laboratory batch and continuous pilot-scale digestion tests. The addition of grease trap sludge to sewage sludge digesters was seen to increase the methane yield of 9–27% when 10–30% of sludge from grease traps (on VS-basis) was added. It was also seen that the grease trap sludge increases the methane yield without increasing the sludge production. Single-substrate digestion of grease trap sludge gave high methane potentials in batch tests, but could not reach stable methane production in continuous digestion.  相似文献   

13.
To enhance the anaerobic digestion of municipal waste-activated sludge (WAS), ultrasound, thermal, and ultrasound + thermal (combined) pretreatments were conducted using three ultrasound specific energy inputs (1000, 5000, and 10,000 kJ/kg TSS) and three thermal pretreatment temperatures (50, 70 and 90 °C). Prior to anaerobic digestion, combined pretreatments significantly improved volatile suspended solid (VSS) reduction by 29-38%. The largest increase in methane production (30%) was observed after 30 min of 90 °C pretreatment followed by 10,000 kJ/kg TSS ultrasound pretreatment. Combined pretreatments improved the dimethyl sulfide (DMS) removal efficiency by 42-72% but did not show any further improvement in hydrogen sulfide (H2S) removal when compared with ultrasound and thermal pretreatments alone. Economic analysis showed that combined pretreatments with 1000 kJ/kg TSS specific energy and differing thermal pretreatments (50-90 °C) can reduce operating costs by $44-66/ton dry solid when compared to conventional anaerobic digestion without pretreatments.  相似文献   

14.
A study of existing organic waste types in Malm?, Sweden was performed. The purpose was to gather information about organic waste types in the city to be able to estimate the potential for anaerobic treatment in existing digesters at the wastewater treatment plan (WWTP). The urban organic waste types that could have a significant potential for anaerobic digestion amount to about 50 000 tonnes year(-1) (sludge excluded). Some of the waste types were further evaluated by methane potential tests and continuous pilot-scale digestion. Single-substrate digestion and co-digestion of pre-treated, source-sorted organic fraction of municipal solid waste, wastewater sludge, sludge from grease traps and fruit and vegetable waste were carried out. The experiments showed that codigestion of grease sludge and WWTP sludge was a better way of making use of the methane potential in the grease trap sludge than single-substrate digestion. Another way of increasing the methane production in sludge digesters is to add source-sorted organic fraction of municipal solid waste (SSOFMSW). Adding SSOFMSW (20% of the total volatile solids) gave a 10-15% higher yield than could be expected by comparison with separate digestion of sludge respective SSOFMSW. Co-digestion of sludge and organic waste is beneficial not just for increasing gas production but also for stabilizing the digestion process. This was seen when co-digesting fruit and vegetable waste and sludge. When co-digested with sludge, this waste gave a better result than the separate digestion of fruit and vegetable waste. Considering single-substrate digestion, SSOFMSW is the only waste in the study which makes up a sufficient quantity to be suitable as the base substrate in a full-scale digester that is separated from the sludge digestion. The two types of SSOFMSW tested in the pilot-scale digestion were operated successfully at mesophilic temperature. By adding SSOFMSW, grease trap sludge and fruit and vegetables waste to sludge digesters at the wastewater treatment plant, the yearly energy production from methane could be expected to increase from 24 to 43 GWh.  相似文献   

15.
Microwave (MW) irradiation is one of the new and possible methods used for pretreating the sludge. Following its use in different fields, this MW irradiation method has proved to be more appropriate in the field of environmental research. In this paper, we focused on the effects of MW irradiation at different intensities on solubilization, biodegradation and anaerobic digestion of sludge from the dairy sludge. The changes in the soluble fractions of the organic matter, the biogas yield, the methane content in the biogas were used as control parameters for evaluating the efficiency of the MW pretreatment. Additionally, the energetic efficiency was also examined. In terms of an energetic aspect, the most economical pretreatment of sludge was at 70% intensity for 12 min irradiation time. At this, COD solubilization, SS reduction and biogas production were found to be 18.6%, 14% and 35% higher than the control, respectively. Not only the increase in biogas production was investigated, excluding protein and carbohydrate hydrolysis was also performed successfully by this microwave pretreatment even at low irradiation energy input. Also, experiments were carried out in semi continuous anaerobic digesters, with 3.5 L working volume. Combining microwave pretreatment with anaerobic digestion led to 67%, 64% and 57% of SS reduction, VS reduction and biogas production higher than the control, respectively.  相似文献   

16.
The hybrid anaerobic solid-liquid (HASL) system, which is a modified two-phase anaerobic digester, is to be used in an industrial scale operation to minimize disposal of food waste at incineration plants in Singapore. The aim of the present research was to evaluate freezing/thawing of food waste as a pre-treatment for its anaerobic digestion in the HASL system. The hydrolytic and fermentation processes in the acidogenic reactor were enhanced when food waste was frozen for 24h at -20 degrees C and then thawed for 12h at 25 degrees C (experiment) in comparison with fresh food waste (control). The highest dissolved COD concentrations in the leachate from the acidogenic reactors were 16.9g/l on day 3 in the control and 18.9g/l on day 1 in the experiment. The highest VFA concentrations in the leachate from the acidogenic reactors were 11.7g/l on day 3 in the control and 17.0g/l on day 1 in the experiment. The same volume of methane was produced during 12 days in the control and 7 days in the experiment. It gave the opportunity to diminish operational time of batch process by 42%. The effect of freezing/thawing of food waste as pre-treatment for its anaerobic digestion in the HASL system was comparable with that of thermal pre-treatment of food waste at 150 degrees C for 1h. However, estimation of energy required either to heat the suspended food waste to 150 degrees C or to freeze the same quantity of food waste to -20 degrees C showed that freezing pre-treatment consumes about 3 times less energy than thermal pre-treatment.  相似文献   

17.
This paper aims at characterizing the quality of different treated sludges from Paris conurbation in terms of micropollutants and assessing their fate during different sludge treatment processes (STP). To achieve this, a large panel of priority and emerging pollutants (n = 117) have been monitored in different STPs from Parisian wastewater treatment plants including anaerobic digestion, thermal drying, centrifugation and a sludge cake production unit. Considering the quality of treated sludges, comparable micropollutant patterns are found for the different sludges investigated (in mg/kg DM – dry matter). 35 compounds were detected in treated sludges. Some compounds (metals, organotins, alkylphenols, DEHP) are found in every kinds of sludge while pesticides or VOCs are never detected. Sludge cake is the most contaminated sludge, resulting from concentration phenomenon during different treatments. As regards treatments, both centrifugation and thermal drying have broadly no important impact on sludge contamination for metals and organic compounds, even if a slight removal seems to be possible with thermal drying for several compounds by abiotic transfers. Three different behaviors can be highlighted in anaerobic digestion: (i) no removal (metals), (ii) removal following dry matter (DM) elimination (organotins and NP) and iii) removal higher than DM (alkylphenols – except NP – BDE 209 and DEHP). Thus, this process allows a clear removal of biodegradable micropollutants which could be potentially significantly improved by increasing DM removal through operational parameters modifications (retention time, temperature, pre-treatment, etc.).  相似文献   

18.
The potential benefits of nanoscale zero-valent iron (nZVI) on sludge stabilization, either the abatement of odor or the improvement of biogas production, were investigated in this study. Two commercial-grade microscale iron powders were also utilized for comparison. Adding 0.10 wt% of nZVI in sludge during anaerobic incubation significantly reduced the concentration of H2S in biogas by 98.0 % (96.2–98.9 %), probably attributed by reactions between sulfides and the neo-formed hydrous Fe(II)/Fe(III) oxides layer at the surface of ZVI nanoparticles. Meanwhile, the percentage of P in bioavailable fractions decreased from 76.8 to 52.5 %, possibly due to the formation of vivianite [Fe3(PO4)2]. Furthermore, 0.10 wt% of nZVI in anaerobic digestion for 17 days enhanced the concentration of CH4 in biogas by 5.1–13.2 % and improved the production of biogas and methane by 30.4 and 40.4 %, respectively. The amendment of iron nanoparticles during anaerobic digestion can not only effectively reduce H2S in biogas, but also potentially boost methane production significantly.  相似文献   

19.
The aim of this work is to estimate biogas production by anaerobic digestion of agricultural byproduct silage at the low carbon green village in South Korea. The composition of agricultural byproduct from hot pepper farms was analyzed and it was found to be favorable with anaerobic digestion. In the cases of silage materials, the theoretical methane potentials of all of the ensiled materials were increased with silage storage having an increased range from 103 to 120 % compared to that without ensiling. The biochemical methane potential (BMP) tests showed that the ultimate methane potential of ensiled material was measured to be higher than that of raw material without silage storage, while the first order hydrolysis constant was lower. All of the silage materials containing microbial additives used in this study showed higher ultimate methane potentials and first order hydrolysis constants than raw material and silage material without additives. The change of ultimate methane potential was analyzed over time, and all of the test materials, except Day 2, showed higher ultimate methane potential than raw material, Day 0, and the highest was found on Day 40.  相似文献   

20.
The optimization of anaerobic digestion aims to maximize organic waste stabilization after a short digestion period. This paper presents the optimization performance of the combined anaerobic digestion and sequential staging concept in a thermophilic, solid-state batch system as a treatment technology prior to landfill. The former involves enhanced pre-stage flushing with the addition of microaeration and inoculum in the methane phase. The latter involves leachate cross-recirculation between the mature and fresh waste reactors without conducting a pre-stage operation. The optimized process for combined anaerobic digestion showed that reducing the pre-stage operation with the maximum removal of organics from the waste bed is beneficial. Moreover, the sequential staging concept offers an improved process over the combined anaerobic digestion wherein the specific methane yield of 11.9 and 7.2 L CH4 kg(-1) volatile solids (VS) per day was achieved, respectively. After 28 days of operation, the sequential staging process showed an improved waste stabilization with 86 and 79% mass and volume reduction, respectively. A higher methane yield of 334 L CH4 kg(-1) VS with 86% VS reduction, which is equivalent to 84% process efficiency was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号