首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The efficiency of a blast furnace slag cement (Spanish CEM III/B) for immobilizing simulated radioactive borate liquid waste [containing H3BO3, NaCl, Na2SO4 and Na(OH)] has been evaluated by means of a leaching attack in de-mineralized water at the temperature of 40 degrees C over 180 days. The leaching was carried out according to the ANSI/ANS-16.1-1986 test. Moreover, changes of the matrix microstructure were characterized through porosity and pore-size distribution analysis carried out by mercury intrusion porosimetry (MIP), X-ray diffraction (XRD) and thermal analysis (TG). The results were compared with those obtained from a calcium aluminate cement matrix, previously published.  相似文献   

2.
The technical properties of cement mortars containing natural fine aggregate that is replaced by lead blast furnace slag at 25 and 35% level were assessed at fixed water-to-cement (W/C) ratio and at fixed flow table value. The leachabilities of some toxic elements from the cement mortars were also assessed to test the environmental suitability of the slag for use in preparation of cement mortar. At fixed W/C ratio, the strength of the mortar decreased with increase of the slag content. On the other hand, at fixed consistency, strength increased with increasing slag content in the mortar composition. The concentrations of some toxic elements in the leachates collected from the mortars containing slag were slightly higher than for the control mortar, but the concentrations in the leachates remained within the regulatory limits for recycling in construction applications. For most elements, leaching from a mortar containing 35% of slag was similar to that from a mortar containing 25% of slag. Therefore, 35% of natural sand can be beneficially replaced with Pb slag to produce cement mortar without affecting the mechanical and leaching properties studied in this work.  相似文献   

3.
Elemental mercury, contaminated with radionuclides, presents a waste disposal problem throughout the Department of Energy complex. In this paper we describe a new process to immobilize elemental mercury wastes, including those contaminated with radionuclides, in a form that is non-dispersible, will meet EPA leaching criteria, and has low mercury vapor pressure. In this stabilization and solidification process, elemental mercury is combined with an excess of powdered sulfur polymer cement (SPC) and sulfide additives in a mixing vessel and heated to approximately 40 degrees C for several hours, until all of the mercury is converted into mercuric sulfide (HgS). Additional SPC is then added and the temperature of the mixture raised to 135 degrees C, resulting in a molten liquid which is poured into a mold where it cools and solidifies. The final treated waste was characterized by powder X-ray diffraction and found to be a mixture of the hexagonal and orthorhombic forms of mercuric sulfide. The Toxicity Characteristic Leaching Procedure was used to assess mercury releases, which for the optimized process averaged 25.8 microg/l, with some samples being well below the new EPA Universal Treatment Standard of 25 microg/l. Longer term leach tests were also conducted, indicating that the leaching process was dominated by diffusion. Values for the effective diffusion coefficient averaged 7.6x10(-18) cm2/s. Concentrations of mercury vapor from treated waste in equilibrium static headspace tests averaged 0.6 mg/m3.  相似文献   

4.
Site investigations at an oil and gas facility identified a highly acidic waste referred to as residual acid tar that resulted in the transport of dissolved nickel toward the point of compliance at concentrations that exceeded site environmental screening levels. Solidification/stabilization (S/S) via deep soil mixing was selected as the remedial approach and a mixture of ground granulated blast furnace slag cement and Portland cement was subjected to treatability testing to evaluate the reagent mix's ability to achieve treatment objectives. Results from the treatability test showed a cement mix dose of 21 percent was sufficient to raise the pH above the target of 6.0 and reduce dissolved nickel concentrations to below site screening levels in leachate from treated samples of residual acid tar and material impacted by residual acid tar. Cement mix doses of 21 percent or greater were sufficient to achieve target strengths in the unimpacted shallow overburden. However, none of the doses tested were able to achieve target strengths in the residual acid tar or peaty material impacted by the residual acid tar. Results showed soil strengths increased significantly when the pH in leachate from the treated samples approached 12, suggesting the presence of organic acids related to the peaty soils may interfere with the cement set. Recommendations from the study include additional treatability testing to evaluate pre‐treatment with hydrated lime to satisfy acid neutralization requirements prior to dosing with the cement mix. ©2016 Wiley Periodicals, Inc.  相似文献   

5.
Ordinary Portland Cement (OPC) is often used for the solidification/stabilization (S/S) of waste containing heavy metals and salts. These waste components will precipitate in the form of insoluble compounds on to unreacted cement clinker grains preventing further hydration. In this study the long term effects of the presence of contaminants in solidified waste is examined by numerically simulating cement hydration after precipitation of metal salts on the surface of cement grains. A cement hydration model was extended in order to describe pore water composition and the effects of cement grain coating. Calculations were made and the strength development predicted by the model was found to agree qualitatively with experimental results found in literature. The complete model is useful in predicting the strength and leaching resistance of solidified products and developing solidification recipes based on cement.  相似文献   

6.
Solidification in a cementitious matrix is a viable alternative for low-level nuclear waste management; it is therefore important to understand the behavior and properties of such wasteforms. We have examined the cementitious solidification of simulated off-gas waste streams resulting from the vitrification of low-level nuclear waste. Different possible methods for scrubbing the off-gasses from a vitrifier give rise to three possible types of waste compositions: acidic (from aqueous dissolution of volatile NOx and POx carried over from the vitrifier), basic (from neutralizing the former with sodium hydroxide), and fully carbonated (arising from a direct-combustion vitrifier). Six binder compositions were tested in which ordinary Portland cement was replaced at different proportions by fly ash and/or ground granulated blast furnace slag. A high solution to binder ratio of 1l/1 kg was used to minimize the volume of the wasteform and 10% attapulgite clay was added to all mixes to ensure that the fresh mix did not segregate prior to setting. The 28-day compressive strengths decreased when a high proportion of cement was replaced with fly ash, but were increased significantly when the cement was replaced with slag. The heats of hydration at early age for the various solids compositions decreased when cement was replaced with either fly ash or slag; however, for the fly ash mix the low heat was also associated with a significant decrease in compressive strength. High curing temperature (60 degrees C) or the use of extra-fine slag did not significantly affect the compressive strength. Recommendations for choice of binder formulations and treatment of off-gas condensates are discussed.  相似文献   

7.
The fixation and leaching of cement stabilized arsenic   总被引:3,自引:0,他引:3  
The solidification/stabilization of sodium arsenite, sodium arsenate, arsenic trioxide and arsenic pentoxide at dosages of approximately 10% has been investigated using sequential batch leaching tests. The leaching of arsenic, which was found to be diffusion based, was clearly least effective for those formulations containing additional iron(II). Calcium was found to influence the leaching of cement immobilized arsenic: those formulations containing the greatest Ca:As mole ratios were generally the most successful. Analysis using both FTIR and SEM revealed substantial changes to the cement matrices of those formulations to which the ferrous sulfate had been added. Ettringite was identified in the cement+ferrous sulfate formulations.  相似文献   

8.
Fly ash from municipal solid waste incinerators (MSWI) is classified as hazardous in the European Waste Catalogue. Proper stabilization processes should be required before any management option is put into practice. Due to the inorganic nature of MSWI fly ash, cementitious stabilization processes are worthy of consideration. However, the effectiveness of such processes can be severely compromised by the high content of soluble chlorides and sulphates. In this paper, a preliminary washing treatment has been optimized to remove as much as possible soluble salts by employing as little as possible water. Two different operating conditions (single-step and two-step) have been developed to this scope. Furthermore, it has been demonstrated that stabilized systems containing 20% of binder are suitable for safer disposal as well as for material recovery in the field of road basement (cement bound granular material layer). Three commercially available cements (pozzolanic, limestone and slag) have been employed as binders.  相似文献   

9.
The application of cement-based stabilisation/solidification treatment to organic-containing wastes is made difficult by the adverse effect of organics on cement hydration. The use of organophilic clays as pre-solidification adsorbents of the organic compounds can reduce this problem because of the high adsorption power of these clays and their compatibility with the cementitious matrix. This work presents an investigation of the effect on hydration kinetics, physico-mechanical properties and leaching behaviour of cement-based solidified waste forms containing 2-chlorophenol and 1-chloronapthalene adsorbed on organophilic bentonites. These were prepared by cation exchange with benzyldimethyloctadecylammonium chloride and trimethyloctadecylammonium chloride. The binder was a 30% pozzolanic cement, 70% granulated blast furnace slag mixture. Several binder-to-bentonite ratios and different concentrations of the organics on the bentonite were used. Kinetics of hydration were studied by measurement of chemically bound water and by means of thermal and calorimetric analyses. Microstructure and other physico-mechanical properties of the solidified forms were studied by means of mercury intrusion porosimetry, scanning electron microscopy and unconfined compressive strength measurement. Leaching was checked by two different leaching tests: one dynamic, on monolithic samples, and the other static, on powdered samples. This study indicates that the incorporation of the organic-loaded bentonite in the binder matrix causes modifications in the hardened samples by altering cement hydration. The effects of the two organic contaminants are differentiated.  相似文献   

10.
综述了铬渣无害化处理技术的研究进展,分析了各种技术在实际应用过程中的效果,指出各种处理技术的优缺点,详细介绍了固化法中水泥固化和药剂稳定化两种处理技术,提出开发重金属螯合剂是今后铬渣稳定化处理的研究方向.  相似文献   

11.
Fly- and scrubber-ash (weight ratio of approximately 1:3) from municipal solid waste incinerators (MSWI) are a major land-fill disposal problem due to their leaching of heavy metals. We uniformly mixed both types of ash with optimal amounts of waste glass frit, which was then melted into a glassy slag. The glassy slag was then pulverized to a particle size smaller than 38 μm for use as a cement substitute (20–40% of total cement) and blended with sand and cement to produce slag-blended cement-mortar (SCM) specimens. The toxicity characteristics of the leaching procedure tests on the pulverized slag samples revealed that the amount of leached heavy metals was far below regulatory thresholds. The compressive strength of the 28-day cured SCM specimens was comparable to that of ordinary Portland cement mortars, while the compressive strength of specimens cured for 60 or 90 days were 3–11% greater. The observed enhanced strength is achieved by Pozzolanic reaction. Preliminary evaluation shows that the combination of MSWI fly- and scrubber-ash with waste glass yields a cost effective and environmentally friendly cement replacement in cement-mortars.  相似文献   

12.
This article describes portland cement-based solidification/stabilization (S/S) treatment of heavy metal-contaminated soil. The soil was discovered during highway construction in West Jordan, Utah. Environmental Chemical Corporation (ECC) performed an emergency response to remediate the soil under contract with the EPA and the United States Bureau of Reclamation (USBR). The soil was treated by S/S. Treatment of the soil, contaminated with lead and arsenic, involved: (1) excavation, (2) size segregation, (3) reduction of oversized particles, (4) addition and mixture of portland cement and cement kiln dust, and (5) beneficial reuse of the treated soil as a subbase. S/S treatment successfully reduced Toxicity Characteristic Leaching Procedure (TCLP) concentrations of the contaminants to below regulatory levels.  相似文献   

13.
A synthetic, mixed-metal solution has been stabilised by treatment with sodium hydroxide, sodium sulphide, and sodium silicate, respectively. The three stabilised filter cakes have subsequently been solidified using additions of ordinary Portland cement and pulverised fuel ash (PFA) which are typically used in UK solidification operations. Both the stabilised filter cakes and the solidified wastes have been subjected to an equilibrium extraction test, a modified TCLP test, and a series of single-extraction, batch leach tests using an increasingly acidic leachant. Metal release was found to be primarily dependent on the pH of the leachate. Under mildly acidic conditions, the percentages leached from the stabilised and the stabilised/solidified wastes were comparable for most metals. A high-volume fraction of these solidified wastes is occupied by the stabilised filter cake. When they are broken up and tested in single-extraction leach tests, the primary effect of the cementitious additives is to increase the pH of the leachate so that most heavy metals remain insoluble. When tested under acidic leachate conditions, copper, lead, and mercury were found to be particularly well retained within sodium sulphide stabilised wastes. Under similar test conditions, cadmium was leached at very low levels from the sodium silicate stabilised waste.  相似文献   

14.
The performance of products arising from the stabilization/solidification of slags from lead batteries recycle into a Portland cement matrix has been evaluated not only in order to get a stabilized waste to be disposed of according to the current legislation, but also to obtain a recyclable material, with both economic and environmental benefits. Under this respect a detailed characterization of raw slags has been performed and different slag-cement samples have been prepared by varying the slag content. The parameters related to the cementation process have been evaluated and a series of tests on the final waste forms have been carried out, aimed at assessing both mechanical performance and leaching behaviour. In spite of the acceptable values for flexural, compressive and tensile strength, however, the high release of lead from the solidification products seems to be a limiting factor for a reusable material. While explanations of such phenomenon are given (high alkalinity of Portland cement; early "doping" of cementitious components by lead in the amorphous state), the main conclusion of the research work is that further efforts should be addressed to the adoption of a different or a modified incorporation matrix.  相似文献   

15.
Steel slag can be applied as substitute for natural aggregates in construction applications. The material imposes a high pH (typically 12.5) and low redox potential (Eh), which may lead to environmental problems in specific application scenarios. The aim of this study is to investigate the potential of accelerated steel slag carbonation, at relatively low pCO2 pressure (0.2 bar), to improve the environmental pH and the leaching properties of steel slag, with specific focus on the leaching of vanadium. Carbonation experiments are performed in laboratory columns with steel slag under water-saturated and -unsaturated conditions and temperatures between 5 and 90 °C. Two types of steel slag are tested; free lime containing (K3) slag and K1 slag with a very low free lime content. The fresh and carbonated slag samples are investigated using a combination of leaching experiments, geochemical modelling of leaching mechanisms and microscopic/mineralogical analysis, in order to identify the major processes that control the slag pH and resulting V leaching. The major changes in the amount of sequestered CO2 and the resulting pH reduction occurred within 24 h, the free lime containing slag (K3-slag) being more prone to carbonation than the slag with lower free lime content (K1-slag). While carbonation at these conditions was found to occur predominantly at the surface of the slag grains, the formation of cracks was observed in carbonated K3 slag, suggesting that free lime in the interior of slag grains had also reacted. The pH of the K3 slag (originally pH ± 12.5) was reduced by about 1.5 units, while the K1 slag showed a smaller decrease in pH from about 11.7 to 11.1. However, the pH reduction after carbonation of the K3 slag was observed to lead to an increased V-leaching. Vanadium leaching from the K1 slag resulted in levels above the limit values of the Dutch Soil Quality Decree, for both the untreated and carbonated slag. V-leaching from the carbonated K3 slag remained below these limit values at the relatively high pH that remained after carbonation. The V-bearing di-Ca silicate (C2S) phase has been identified as the major source of the V-leaching. It is shown that the dissolution of this mineral is limited in fresh steel slag, but strongly enhanced by carbonation, which causes the observed enhanced release of V from the K3 slag. The obtained insights in the mineral transformation reactions and their effect on pH and V-leaching provide guidance for further improvement of an accelerated carbonation technology.  相似文献   

16.
Hydrogen sulphide (H2S) gas is a major odorant at municipal landfills. The gas can be generated from different waste fractions, for example demolition waste containing gypsum based plaster board. The removal of H2S from landfill gas was investigated by filtering it through mineral wool waste products. The flow of gas varied from 0.3 l/min to 3.0 l/min. The gas was typical for landfill gas with a mean H2S concentration of ca. 4500 ppm. The results show that the sulphide gas can effectively be removed by mineral wool waste products. The ratios of the estimated potential for sulphide precipitation were 19:1 for rod mill waste (RMW) and mineral wool waste (MWW). A filter consisting of a mixture of MWW and RMW, with a vertical perforated gas tube through the center of filter material and with a downward gas flow, removed 98% of the sulfide gas over a period of 80 days. A downward gas flow was more efficient in contacting the filter materials. Mineral wool waste products are effective in removing hydrogen sulphide from landfill gas given an adequate contact time and water content in the filter material. Based on the estimated sulphide removal potential of mineral wool and rod mill waste of 14 g/kg and 261 g/kg, and assuming an average sulphide gas concentration of 4500 ppm, the removal capacity in the filter materials has been estimated to last between 11 and 308 days. At the studied location the experimental gas flow was 100 times less than the actual gas flow. We believe that the system described here can be upscaled in order to treat this gas flow.  相似文献   

17.
Journal of Material Cycles and Waste Management - Solidification/stabilization (S/S) of hazardous waste using cement for immobilization of contaminants has been recognized as Best Demonstrated...  相似文献   

18.
This study investigated the effects of slag composition on the hydration characteristics of slag blended cement (SBC) pastes. Synthetic slag samples were prepared by melting CaO-modified and Al(2)O(3)-modified municipal solid waste incinerator (MSWI) fly ash. MSWI fly ash was mixed with 5% CaO and 5% Al(2)O(3) (by weight), respectively, resulting in two fly ash mixtures. These mixtures were then melted at 1400 degrees C for 30 min to produce two types of slag with different contents, designated at C-slag and A-slag. Both the C-slag and A-slag samples exhibited a pozzolanic activity index higher than the unmodified slag sample. The results show that the synthetic slags all met the Taiwan EPA's current regulatory thresholds. These synthetic slags were then blended with ordinary Portland cement (OPC) at various weight ratios ranging from 10 to 40%. The 28-day strength of the C1 paste was higher than that developed by the OPC paste, suggesting that the C-slag contributed to the earlier strength of the SBC pastes. At curing times beyond 28 days, the strength of the A1 paste samples approached that of the OPC paste samples. It can be seen from this that increasing the amount of calcium and aluminum oxide increases the early strength of SBC. The C-slag blended cement paste samples showed an increase in the number of fine pores with the curing time, showing that the C-slag enhanced the pozzolanic reactions, filling the pores. Also, the incorporation of a 10% addition of C-slag also tended to enhance the degree of hydration of the SBC pastes during the early ages (3-28 days). However, at later ages, no significant difference in degree of hydration between the OPC pastes and the SBC pastes was observed with the 10% C-slag addition. However, the incorporation of A-slag did decreased the degree of hydration. A slag blend ratio of 40% significantly decreased the hydration degree.  相似文献   

19.
In this work, the utilization of shredded waste Poly-ethylene Terephthalate (PET) bottle granules as a lightweight aggregate in mortar was investigated. Investigation was carried out on two groups of mortar samples, one made with only PET aggregates and, second made with PET and sand aggregates together. Additionally, blast-furnace slag was also used as the replacement of cement on mass basis at the replacement ratio of 50% to reduce the amount of cement used and provide savings. The water–binder (w/b) ratio and PET–binder (PET/b) ratio used in the mixtures were 0.45 and 0.50, respectively. The size of shredded PET granules used in the preparation of mortar mixtures were between 0 and 4 mm. The results of the laboratory study and testing carried out showed that mortar containing only PET aggregate, mortar containing PET and sand aggregate, and mortars modified with slag as cement replacement can be drop into structural lightweight concrete category in terms of unit weight and strength properties. Therefore, it was concluded that there is a potential for the use of shredded waste PET granules as aggregate in the production of structural lightweight concrete. The use of shredded waste PET granules due to its low unit weight reduces the unit weight of concrete which results in a reduction in the death weight of a structural concrete member of a building. Reduction in the death weight of a building will help to reduce the seismic risk of the building since the earthquake forces linearly dependant on the dead-weight. Furthermore, it was also concluded that the use of industrial wastes such as PET granules and blast-furnace slag in concrete provides some advantages, i.e., reduction in the use of natural resources, disposal of wastes, prevention of environmental pollution, and energy saving.  相似文献   

20.
The rise in discarded or unwanted medications (UMs) is becoming an issue of great concern, as it has the potential to harm the components of the environment where it is discarded: particularly air, water and soil. To combat this problem, many researchers have investigated the best approach for the collection and proper disposal of UMs. This paper intends to elaborate upon a safe solution for treating this waste, specifically through a process of solidification/stabilization (S/S) that involves mixing UMs with asphalt cement and asphalt concrete mixtures. Volumes of 5, 10, 15 and 20 % of a mixture of UMs were mixed with asphalt cement and the analyzed properties of the mixture of UMs–asphalt included: softening point, ductility, penetration, flash and fire points, specific gravity and rotational viscosity. Marshal stability, flow, air voids, unit weight, voids in mineral aggregate (VMA) and voids filled with binder (VFB) of asphalt concrete mixture were also investigated. Results showed that this approach of S/S is a promising method for dual achievements to solve an environmental problem and to use the waste for road construction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号