首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hydrogarnet was synthesized hydrothermally below 200°C using molten slag obtained from municipal solid waste. For comparison, it was also synthesized using pure-phase CaO–Al2O3–SiO2–H2O, as reported previously. The structural and textural properties of this material were investigated using various analytical and spectroscopic techniques such as X-ray diffraction, X-ray fluorescence spectrometry, atomic absorption spectrometry (AAS), thermogravimetry/differential thermal analysis, Fourier transform infrared spectroscopy, and scanning electron microscopy. The Cl fixation ability of hydrogarnet was investigated in the temperature range 500–800°C in a fixed-bed flow reactor using a HCl concentration (1000 p.p.m.v.) similar to that of incinerator exhaust gas. Under these experimental conditions, the hydrogarnet was capable of reducing the HCl gas level to less than 1 p.p.m.v. Analysis of the spent catalyst revealed that the hydrogarnet was being transformed into wadalite and CaCl2 at high temperatures. The elution test for chromium ions in hydrogarnet obtained from slag was also used, and it was found that chromium ions were not eluted from hydrogarnet. Received: January 27, 2001 / Accepted: October 11, 2001  相似文献   

2.
Paper sludge is a waste product from the paper and pulp manufacturing industry that is generally disposed of in landfills. Pyrolysis of paper sludge can potentially provide an option for managing this waste by thermal conversion to higher calorific value fuels, bio-gas, bio-oils and charcoal. This work investigates the properties of paper sludge during pyrolysis and energy required to perform thermal conversion. The products of paper sludge pyrolysis were also investigated to determine their properties and potential energy value. The dominant volatile species of paper sludge pyrolysis at 10 °C/min were found to be CO and CO2, contributing to almost 25% of the paper sludge dry weight loss at 500 °C. The hydrocarbons (CH4, C2H4, C2H6) and hydrogen contributed to only 1% of the total weight loss. The bio-oils collected at 500 °C were primarily comprised of organic acids with the major contribution being linoleic acid, 2,4-decadienal acid and oleic acid. The high acidic content indicates that in order to convert the paper sludge bio-oil to bio-diesel or petrochemicals, further upgrading would be necessary. The charcoal produced at 500 °C had a calorific value of 13.3 MJ/kg.  相似文献   

3.
The modification of poly(vinyl chloride) was carried out with iminodiacetic acid (IDA, C4H7NO4) and iminodiacetic acid dimethylester (IDADM, C6H11NO4), as well as with n-dodecanethiol (DT, C12H26S) in the presence of K2CO3. The reaction was carried out at different temperatures below 100 °C with dimethyl formamide (DMF) and cyclohexanone as solvents. IDA did not show any reactivity, probably due to the dipolar character of the molecule. IDADM caused the elimination of HCl, while only substitution ratios of about 3 % were observed. However, the modification of PVC with DT resulted in a substitution rate of 18 % without elimination. DT-PVC showed excellent thermal properties, comparable with those of the unmodified polymer.  相似文献   

4.
The aim of this paper is to study the influence of the K2S2O8 content on the properties of poly (vinyl alcohol, (PVA). Firstly, PVA was dissolved in distilled water by heating by heating at 70 °C and then K2S2O8 was added in PVA solution under stirrer. The viscosity of PVA solution in the presence of K2S2O8 was analyzed by Brookfield Viscometers. The effects of K2S2O8 contents, PVA solution, temperature and reaction time on the viscosity of PVA solution were investigated. This was confirmed by Brookfield Viscometers. It is clear that the viscosity of PVA solution in the presence of K2S2O8 increased as function of reaction time and PVA content in solution. Rate of modified PVA was proportional to K2S2O8 contents and temperature and its activation energy was 16 kJ/mol. The structure of PVA in the presence of K2S2O8 changed from original PVA confirmed by ATR-FTIR and solid state NMR. In addition, the thermal properties of PVA containing K2S2O8 were also studied by TGA.  相似文献   

5.
A promising strategy for effectively incorporating metal-containing waste materials into a variety of ceramic products was devised in this study. Elemental analysis confirmed that copper was the predominant metal component in the collected electroplating sludge, and aluminum was the predominant constituent of waterworks sludge collected in Hong Kong. The use of waterworks sludge as an aluminum-rich precursor material to facilitate copper stabilization under thermal conditions provides a promising waste-to-resource strategy. When sintering the mixture of copper sludge and the 900 °C calcined waterworks sludge, the CuAl2O4 spinel phase was first detected at 650 °C and became the predominant product phase at temperatures higher than 850 °C. Quantification of the XRD pattern using the Rietveld refinement method revealed that the weight of the CuAl2O4 spinel phase reached over 50% at 850 °C. The strong signals of the CuAl2O4 phase continued until the temperature reached 1150 °C, and further sintering initiated the generation of the other copper-hosting phases (CuAlO2, Cu2O, and CuO). The copper stabilization effect was evaluated by the copper leachability of the CuAl2O4 and CuO via the prolonged leaching experiments at a pH value of 4.9. The leaching results showed that the CuAl2O4 phase was superior to the CuAlO2 and CuO phases for immobilizing hazardous copper over longer leaching periods. The findings clearly indicate that spinel formation is the most crucial metal stabilization mechanism when sintering multiphase copper sludge with aluminum-rich waterworks sludge, and suggest a promising and reliable technique for reusing both types of sludge waste for ceramic materials.  相似文献   

6.
This article describes the gasification of polyethylene–wood mixtures to form syngas (H2 and CO) with the aim of feedstock recycling via direct fermentation of syngas to ethanol. The aim was to determine the effects of four process parameters on process properties that give insight into the efficiency of gasification in general, and particularly into the optimum gasification conditions for the production of ethanol by fermentation of producer gas. Gasification experiments (fluidized bed, 800°–950°C) were done under different conditions to optimize the composition of syngas suitable for fermentation purposes. The data obtained were used for statistical analysis and modeling. In this way, the effect of each parameter on the process properties was determined and the model was used to predict the optimum gasification conditions. The parameters varied during the experiment were gasification temperature, equivalence ratio, the ratio of plastic to wood in the feed, and the amount of steam added to the process. The response models obtained proved to be statistically significant in the experimental domain. The optimum gasification conditions for maximization of carbon monoxide and hydrogen production were identified. The conditions are: temperature 900°C, equivalence ratio 0.15, amount of plastic in the feed 0.11 g/g feed, and amount of steam added 0.42 g/g feed. These optimum conditions are at the edge of the present experimental domain. The maximum combined CO and H2 efficiency was 42%, and for the maximum yield of CO and H2 it is necessary to minimize the polyethylene content, minimize the added steam and the equivalence ratio, and maximize temperature.  相似文献   

7.
In this work, a major fatty acid from coconut oil was used as starting material in preparing biodegradable polymers. Thus, polyesters and polyamides from varying proportions of monomers, hydroxy- and amino- derivatives of lauric acid were synthesized. Initially, the derivatives were prepared by regioselective chlorination of lauric acid, in the presence of ferrous ions in strong acid medium. Subsequent hydroxylation and amination procedures yielded the hydroxy- and amino- derivatives of lauric acid. These monomers were polymerized in a reaction tube by simple polycondensation method at 220–230 °C for 6–8 h without catalyst. Molecular weight determination using –COOH by end group titration and gel permeation chromatography (GPC) gave an average molar mass of 3,000–5,000 g mol−1 with n = 15–25 monomer units. Thermal properties such as glass transition (Tg) and decomposition (Td) temperatures were obtained using differential scanning calorimetry (DSC). The same processes of synthesis and determinations above were applied to coconut fatty acids, derived from saponification of coconut oil, and resulted to very similar conclusions. A quick biodegradation assay against fungus Aspergillus niger UPCC 4219 showed that the polymers prepared are more biodegradable than conventional plastics such as polypropylene, poly(ethyleneterepthalate) and poly(tetrafluoroethylene) but not as biodegradable as cellulosic (newsprint) paper.  相似文献   

8.
The conjugated soybean oil was synthesized through the isomerization reaction of soybean oil to transformed the structure of linoleic acid into conjugated linoleic acid structure, and Rhodium complexes (RhCl(Pph3)3) was used as catalyst. The efficiency on the conjugation of catalyst RhCl (Pph3)3, tin dichloride dehydrate (SnCl2·2H2O) and triphenylphosphine (Pph3) were evaluated. The results showed when RhCl(Pph3)3, SnCl2·2H2O and Pph3 are 9.25, 9.0 and 13.1 mg in 100 g soybean oil respectively, the highest conversion of conjugation achieved 96%. The free radical copolymerization of conjugated soybean oil with acrylonitrile (AN) and dicyclopentadiene (DCP) was studied. AIBN was used as the initiator. FT-IR and 1H-NMR results indicates that the conjugated soybean oil with AN and DCP did occur free radical copolymerization with the initiator AIBN. The product is light yellow powder. The thermal properties of the soy-based copolymer were investigated by TG and DSC. The initial degradation temperature of polymers is higher then 250 °C.  相似文献   

9.
Leaching experiments of rebuilt soil columns with two simulated acid rain solutions (pH 4.6–3.8) were conducted for two natural soils and two artificial contaminated soils from Hunan, south-central China, to study effects of acid rain on competitive releases of soil Cd, Cu, and Zn. Distilled water was used in comparison. The results showed that the total releases were Zn>Cu>Cd for the natural soils and Cd>Zn≫Cu for the contaminated soils, which reflected sensitivity of these metals to acid rain. Leached with different acid rain, about 26–76% of external Cd and 11–68% external Zn were released, but more than 99% of external Cu was adsorbed by the soils, and therefore Cu had a different sorption and desorption pattern from Cd and Zn. Metal releases were obviously correlated with releases of TOC in the leachates, which could be described as an exponential equation. Compared with the natural soils, acid rain not only led to changes in total metal contents, but also in metal fraction distributions in the contaminated soils. More acidified soils had a lower sorption capacity to metals, mostly related to soil properties such as pH, organic matter, soil particles, adsorbed SO4 2−, exchangeable Al3+ and H+, and contents of Fe2O3 and Al2O3.  相似文献   

10.
In the present work the photo-degradation of polychloroprene (PCP) in toluene solution catalyzed by FeCl3·6H2O and polychromatic light was investigated based on FTIR and 13C NMR spectroscopies, on conductivity measurements and DSC technique. The band in the 1700–1790 cm−1 range in the FTIR spectrum characterized the presence of carbonyl products due to the degradation of the PCP on the solution exposed to polychromatic light. The formation of carbonyl on degraded PCP was confirmed by the presence of signal on 13C NMR at δ 203.5. Products of PCP degradation, such as acid chlorides, generated in the toluene solution migrate to the aqueous phase (in contact with toluene phase) and the conductivity of aqueous phase increased as the time is elapsed. The area related to the PCP melting-peak on the DSC (film casted after the PCP-FeCl3·6H2O toluene solution has been exposed to polychromatic light) significantly decreased in comparison to that in the DSC of the raw PCP cast film.  相似文献   

11.
Alginates, extracted from algae are linear unbranched polymers containing β-(1→4)-linked d-mannuronic acid (M) and α-(1→4)-linked l-guluronic acid (G) residues. The conversion of alginic acid into the metal alginate is confirmed using FTIR spectroscopy. Asymmetric and symmetric stretching of free carboxyl group present in metal alginate occurs almost at the same position in various solvent compositions. Total intrusion volume of metal alginate prepared in propanol (0.0742 mL/g) is greater compared to those in ethanol (0.0648 mL/g) and methanol (0.0393 mL/g) as solvent. Surface morphology as well as porosity and pore size distribution of metal alginate are greatly influenced by solvent. It can be seen from thermal analysis results that calcium alginate prepared using different solvent compositions started decomposing at 100 °C, but rapid degradation started around 200 °C. The results showed a stepwise weight loss during thermal sweep, indicating different types of reactions during degradation. First and second step of rapid degradation was situated around 200–300 and 300–550 °C, respectively; whereas the final step is situated around 550–650 °C. The trend of degradation was similar for all the solvents, although the amount of final residue varied from one solvent to another. At the same time, lower thermal stability was also observed with higher heating rates. Additionally, a kinetic analysis was performed to fit with TGA data, where the entire degradation process has been considered as three consecutive first order reactions.  相似文献   

12.
A short and green method for the preparation of optically active aromatic polyamides (PAs) using tetrabutylammonium bromide (TBAB) as a molten ionic liquid is reported. Polycondensation reactions of amino acid containing diacid (2S)-5-(4-methyl-2-phthalimidylpentanoylamino)isophthalic acid with various commercially available diisocyanates in molten TBAB as a green medium or in N-methylpyrrolidone as common organic solvent with or without dibutyltin dilaurate as a catalyst under microwave irradiation were carried out. Various PAs were obtained with high yields and moderate inherent viscosities in the rang of 0.30–0.57 dL/g. The obtained polymers were characterized by FT-IR, specific rotation measurements, and representative of them by 1H NMR and elemental analysis techniques. Thermal properties of PAs were evaluated by thermogravimetric analysis and the results showed that the 10% weight loss temperature in a nitrogen atmosphere for four representative samples were more than 258 °C, which indicates that the resulting PAs have good thermal stability as well as excellent solubility.  相似文献   

13.
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a semi-polycrystalline biopolymer from the polyhydroxyalkanonate family has in recent years become a commercial bioplastic with mechanical properties comparable to isotactic polypropylene and enhanced O2, CO2 and H2O barrier properties. However, its brittleness and sensitivity to thermal and hydrolysis degradations restrict its applications. To overcome the problems associated with degradation during processing blending of PHBV and an epoxy-functionalized chain extender (Joncryl® ADR-4368 S) was conducted in a twin screw extruder. The effect of concentration of the chain extender on thermal, crystallization and rheological behaviours of PHBV was investigated. Thermal gravimetric analysis results indicated improvement in the resistance to thermal decomposition of PHBV by introducing the chain extender. This was accompanied with calculation of thermal degradation activation energy (Ea) using the Flyn–Walls–Ozawa method which confirmed increase of Ea with the increase in content of the chain extender. The rheological behaviour and crystallization of modified PHBV was characterized by rotational rheometry and differential scanning calorimetry techniques, respectively. The results show that addition of chain extender enhanced viscosity of PHBV and also reduce the rate of crystallization.  相似文献   

14.
Natural weathering was performed on poly(butylene succinate) (PBS) and its kenaf bast fibre (KBF) filled composites by exposing the specimens to a tropical climate for a period of 6 months (max–min temperature: 31.5–23.9 °C; relative humidity: 78.9%). The aim of this study was to investigate the effects of KBF loading and the addition of maleated PBS compatibiliser (PBSgMA) on the performance of the composites under natural weathering. As expected, the flexural properties of both the uncompatibilised and compatibilised composites dropped with increasing exposure time. The weathered specimens were also assessed by colour change analysis, FTIR spectroscopy analysis and SEM examination. The total colour change, ΔE ab , of both the uncompatibilised and compatibilised composites increased with weathering time. FTIR spectroscopy analysis confirmed the presence of oxidation products such as hydroxyl, carbonyl and vinyl species in the weathered uncompatibilised and compatibilised composites. SEM examination revealed the presence of surface defects such as cracking, tiny holes and degraded fibre, which explain the poor performance of the composites upon weathering.  相似文献   

15.
Electronic waste has been increasing proportionally with the technology. So, nowadays, it is necessary to consider the useful life, recycling, and final disposal of these equipment. Metals, such as Au, Ag, Cu, Sn and Ni can be found in the printed circuit boards (PCB). According to this, the aims of this work is to characterize the PCBs of mobile phones with aqua regia; obtaining “reference” values of leaching, to gold and silver, with cyanide and nitric acid, respectively; and study the process of leaching of these metals in alternative leaching with sodium thiosulfate and ammonium thiosulfate. The metals were characterized by digesting the sample with aqua regia for 1 and 2 h at 60 °C and 80 °C. The leaching of Au with a commercial reagent (cyanide) and the Ag with HNO3were made. The leaching of Au and Ag with alternative reagents: Na2S2O3, and (NH4)2S2O3 in 0.1 M concentration with the addition of CuSO4, NH4OH, and H2O2, was also studied. The results show that the digestion with aqua regia was efficient to characterize the metals present in the PCBs of mobile phones. However, the best method to solubilize silver was by digesting the sample with nitric acid. The leaching process using sodium thiosulfate was more efficient when an additional concentration of 0.015 and 0.030 M of the CuSO4 was added.  相似文献   

16.
A series of polyhydroxyalkanoates (PHA), all containing 1% nucleating agent but varying in structure, were melt-processed into films through single screw extrusion techniques. This series consisted of three polyhydroxybutyrate (PHB) and three polyhydroxybutyrate-valerate (PHBV) resins with varying valerate content. Processing parameters of temperature in the barrel (165–173 °C) and chill rolls (60 °C) were optimized to obtain cast films. The gel-permeation chromatography (GPC) results showed a loss of 8–19% of the polymer’s initial molecular weight due to extrusion processing. Modulated differential scanning calorimetry (MDSC) displayed glass transition temperatures of the films ranging from −4.6 to 6.7 °C depending on the amount of crystallinity in the film. DSC data were also used to calculate the percent crystallinity of each sample and slightly higher crystallinity was observed in the PHBV series of samples. X-ray diffraction patterns did not vary significantly for any of the samples and crystallinity was confirmed with X-ray data. Dynamic mechanical analysis (DMA) verified the glass transition trends for the films from DSC while loss modulus (E′) reported at 20 °C showed that the PHBV (3,950–3,600 MPa) had the higher E′ values than the PHB (3,500–2,698 MPa) samples. The Young’s modulus values of the PHB and PHBV samples ranged from 700 to 900 MPa and 900 to 1,500 MPa, respectively. Polarized light microscopy images revealed gel particles in the films processed through single-screw extrusion, which may have caused diminished Young’s modulus and tensile strength of these films. The PHBV film samples exhibited the greatest barrier properties to oxygen and water vapor when compared to the PHB film samples. The average oxygen transmission rate (OTR) and water vapor transmission rate (WVTR) for the PHBV samples was 247 (cc-mil/m2-day) and 118 (g-mil/m2-day), respectively; while the average OTR and WVTR for the PHB samples was 350 (cc-mil/m2-day) and 178 (g-mil/m2-day), respectively. Biodegradation data of the films in the marine environment demonstrated that all PHA film samples achieved a minimum of 70% mineralization in 40 days when run in accordance with ASTM 6691. For static and dynamic incubation experiments in seawater, microbial action resulting in weight loss as a function of time showed all samples to be highly biodegradable and correlated with the ASTM 6691 biodegradation data.  相似文献   

17.
In this study, the combustion and pyrolysis processes of three sewage sludge were investigated. The sewage sludge came from three wastewater treatment plants.Proximate and ultimate analyses were performed. The thermal behaviour of studied sewage sludge was investigated by thermogravimetric analysis with mass spectrometry (TGA-MS). The samples were heated from ambient temperature to 800 °C at a constant rate 10 °C/min in air (combustion process) and argon flows (pyrolysis process). The thermal profiles presented in form of TG/DTG curves were comparable for studied sludges. All TG/DTG curves were divided into three stages. The main decomposition of sewage sludge during the combustion process took place in the range 180–580 °C with c.a. 70% mass loss. The pyrolysis process occurred in lower temperature but with less mass loss. The evolved gaseous products (H2, CH4, CO2, H2O) from the decomposition of sewage sludge were identified on-line.  相似文献   

18.
Two different coal fly ashes coming from the burning of two coals of different rank have been used as a precursor for the preparation of steam activated carbons. The performance of these activated carbons in the SO2 removal was evaluated at flue gas conditions (100 °C, 1000 ppmv SO2, 5% O2, 6% H2O). Different techniques were used to determine the physical and chemical characteristics of the samples in order to explain the differences found in their behaviour. A superior SO2 removal capacity was shown by the activated carbon obtained using the fly ash coming from a subbituminous–lignite blend. Experimental results indicated that the presence of higher amount of certain metallic oxides (Ca, Fe) in the carbon-rich fraction of this fly ash probably has promoted a deeper gasification in the activation with steam. A more suitable surface chemistry and textural properties have been obtained in this case which explains the higher efficiency shown by this sample in the SO2 removal.  相似文献   

19.
Carbon microspheres with diameter of 1–10 μm were prepared by treatment of waste oil in a supercritical carbon dioxide (scCO2) system. The structure and morphology of the products were characterized by X-ray diffraction, field-emission scanning electron microscopy, and Raman spectrometry. It is shown that the products consist of graphite microspheres with relatively low graphitization. The yield of solid products increased from 26.8 wt% to 42.2 wt% as the reaction temperature was raised from 530°C to 600°C. Spheres with multilayer structure could be obtained by means of subsequent vacuum annealing of the carbon microspheres at 1500°C. The formation mechanisms of carbon microspheres in the scCO2 system and the influence of vacuum annealing on the structure are discussed in detail.  相似文献   

20.
In this study, the preparation of semi-interpenetrating polymer network (semi-IPN) composites composed of natural rubber and condensed tannin was performed by means of the enzyme-mimetic cross-linking of condensed tannin catalyzed by hematin. Prior to the preparation of the composites, the hematin-catalyzed cross-linking behavior of condensed tannin was evaluated by the TGA measurement. The TGA results indicated that condensed tannin was sufficiently cross-linked by the hematin-catalyzed reaction in the presence of appropriate amounts of 30% (w/v) H2O2 aq. to give the relatively thermostable materials. For the preparation of the composites, a solution of condensed tannin and hematin, and subsequently 30% (w/v) H2O2 aq. were added to natural rubber latex and the mixture was stirred at room temperature for 10 min to perform the cross-linking of condensed tannin, followed by drying of the reaction mixture at 50 °C for 5 h, which was subsequently put into a heat device and hot-pressed at 100 °C and 20 MPa for 20 min to give the semi-IPN composite. The tensile stress?Cstrain measurement of the composites was conducted to evaluate the mechanical properties, which were changeable depending on the weight ratios of natural rubber to condensed tannin and the amounts of 30% (w/v) H2O2 aq. Moreover, the miscibility of the cross-linked tannin with natural rubber in the composite was evaluated by the SEM measurement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号