首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 78 毫秒
1.
采用聚乙烯亚胺(PEI)改性氨基化锆基金属有机骨架材料(UiO-66-NH2)制备了UiO-66-NH2/PEI,利用XRD、SEM和FTIR对产物进行了表征,并将其用于吸附水中的U(Ⅵ)。考察了UiO-66-NH2/PEI吸附U(Ⅵ)的影响因素,并研究了吸附动力学和等温线。实验结果表明:UiO-66-NH2/PEI对U(Ⅵ)具有良好的吸附效果,PEI与UiO-66-NH2质量比为30%、溶液pH为6、吸附剂投加量为80 mg/L、吸附时间为120 min、初始U(Ⅵ)质量浓度为10 mg/L时,UiO-66-NH2/PEI对U(Ⅵ)的去除率达98.2%(303 K下);UiO-66-NH2/30%PEI对U(Ⅵ)的吸附在60 min内达到平衡,吸附过程符合准二级动力学模型和Langmuir模型,最大吸附量达452.49 mg/g。  相似文献   

2.
以γ-Al2O3作为载体,先后负载CeO2,MnC2O4,Fe(NO33,CrO3,Ni(NO32,NH4VO3等多种金属组分制备γ-Al2O3负载多金属复合催化剂,并用于模拟烟气的选择性催化还原脱硝。通过SEM和XRD技术对催化剂进行了表征。表征结果显示:Fe,Mn,Cr的添加能增加催化剂的低温催化活性、提高催化剂的N2选择性;γ-Al2O3对活性金属氧化物的负载效果良好。实验结果表明:各金属化合物的最佳加入量为 w(MnC2O4·2H2O)=20%,w(Fe(NO33·9H2O)=15%,w(CrO3)=10%,w(Ni(NO32·6H2O)=5%,w(NH4VO3)=10%,w(CeO2)=5%,w(γ-Al2O3)=35%;以在最佳正交实验条件下制得的γ-Al2O3负载多金属复合物为催化剂,在脱硝反应温度为205 ℃的条件下,NO转化率为96.7%;γ-Al2O3负载多金属复合催化剂经5次重复使用,NO转化率仍可稳定在94%左右。  相似文献   

3.
以西南某极低放射性废物处置场土壤为研究对象,采用静态吸附和动态吸附实验获取处置场地质特征参数,结合PHREEQC软件和地下水数值模拟系统(GMS)预测U(Ⅵ)在处置场环境中的化学种态和迁移规律。结果表明:U(Ⅵ)在处置场土壤中的吸附平衡时间为20 d,吸附分配系数为358 mL/g;U(Ⅵ)在处置场地下水环境中主要以UO2(CO322-和UO2(CO334-形式存在;处置场关闭后安全运行30 a,处置场中心U(Ⅵ)质量浓度下降4.20%,外围50 m与下游河流边界处U(Ⅵ)质量浓度分别为初始给定值的3.40%和1.32%;在12 a时有0.10%的U(Ⅵ)到达河边。  相似文献   

4.
以FeSO4化学还原法为对照,开展硫酸盐还原菌原位修复铬污染土壤的田间试验研究。试验结果表明:微生物法处理后,土壤中Cr(Ⅵ)含量从6.48 mg/kg降至0.95 mg/kg,下降率为85.33%,修复后的土地质量符合国家一类建设用地的标准;土壤浸出液中Cr(Ⅵ)质量浓度从0.162 mg/L降至0.004 mg/L,下降率为97.53%;土壤中硫酸根浓度略有降低,硫酸盐还原菌的丰度显著增加。微生物原位修复铬污染土壤的效果好于化学还原法。  相似文献   

5.
采用浸渍法和嫁接法分别将1-丁基-3-甲基咪唑双三氟甲烷磺酰亚胺盐([Bmim]TFSI)、丙基三辛基鏻四氟硼酸盐([P(C3H7)(C8H173]BF4)和丙基三辛基鏻双三氟甲烷磺酰亚胺盐([P(C3H7)(C8H173]TFSI)负载于活性炭上。对产物进行了热重和孔结构分析,并以气相甲苯和二甲苯为代表物,研究了其对芳香烃的静态和动态吸附性能。研究结果表明:活性炭经离子液体改性后,能显著提高其对芳香烃的吸附性能;其中 [P(C3H7)(C8H173]TFSI和[P(C3H7)(C8H173]BF4)浸渍改性活性炭的甲苯静态吸附量较大,分别为782 mg/g和777 mg/g (25 ℃,0.1 MPa);[P(C3H7)(C8H173]BF4浸渍改性活性炭对于3种二甲苯异构体的吸附量最大,且排序依次为邻二甲苯>间二甲苯>对二甲苯。吸附动力学研究表明,在较高的甲苯初始浓度和较低的气体流量下,[P(C3H7)(C8H173]TFSI浸渍改性活性炭具有更好的吸附性能。  相似文献   

6.
采用臭氧氧化—湿式钙法吸收工艺对模拟烟气进行同时脱硫脱硝处理。O3于150 ℃下具有较高的热稳定性,可将NO氧化为高价态氮氧化物,且NO氧化率随n(O3)∶n(NO)的增大而逐渐提高。烟气中SO2和H2O的存在对NO氧化率的影响不大。O3对SO2的氧化率较低,约为5%。3%(w)石灰石浆液对SO2的吸收率接近100%,NOx吸收率随n(O3)∶n(NO)的增大而逐渐提高,当n(O3)∶n(NO)为1.6时NOx吸收率可达约65%。SO2能促进吸收液对NOx的脱除。石灰石浆液中加入0.2%(w)的(NH42SO3或Na2SO3后NOx吸收率可达约85%或82%,且吸收率随添加剂加入量的增加而提高,添加(NH42SO3的NOx吸收率略高于添加Na2SO3。  相似文献   

7.
赵桦萍 《化工环保》2016,36(3):345-349
采用β-环糊精作为H2O2氧化茜素红褪色反应的增敏剂,建立了催化动力学光度法测定工业废水中Cr(Ⅵ)的新方法。该方法最佳反应条件为:反应体系总体积25 mL,0.1 mol/L的H2SO4溶液加入量2.0 mL,1.0×10-3 mol/L茜素红溶液加入量1.5 mL,30%的H2O2溶液加入量4.0 mL,100 g/L的β-环糊精溶液加入量3.0 mL。在最大吸收波长554 nm处测定反应前后溶液的吸光度,Cr(Ⅵ)的质量浓度与吸光度差值(ΔA)在4.0×10-4~5.4×10-2 mg/L范围内符合比尔定律,线性回归方程为:ΔA=18.52ρ+ 0.018,相关系数为0.996 6,检出限为3.5×10-4 mg/L,加标回收率为99.46%~101.3%,6次测定的相对标准偏差小于等于2.4%。该法的测定结果与GB/T 7467-1987中的二苯碳酰二肼分光光度法相近。  相似文献   

8.
以氯化铜、纳米γ-Fe2O3和硫脲为原材料,乙二醇为溶剂,采用溶剂热法制备了磁性CuS/γ-Fe2O3复合光催化剂。考察了该光催化剂对刚果红染料废水的处理效果。在m(CuS):m(γ-Fe2O3)=2:1、刚果红初始质量浓度为10 mg/L、光催化剂投加量为0.6 g/L的最佳工艺条件下,刚果红去除率达96.51%。阴离子Cl-、NO3- 及SO42-对该光催化剂的催化活性具有促进作用,其中SO42–的促进作用最显著。该光催化剂具有较好的活性稳定性,重复使用6次后刚果红去除率仍高达90.50 %。  相似文献   

9.
制备了两种磁性碳基材料——磁性氧化石墨烯(MGO)和磁性竹炭(MBC),并将其用于模拟含Cr(Ⅵ)废水的吸附。采用SEM,BET,FTIR技术对吸附剂进行了表征。表征结果显示:MBC具有与MGO相似的薄片层结构,且MBC的BET比表面积更大(为32.872 6 m2/g),可为Cr(Ⅵ)提供大量的吸附位点。实验结果表明:向100 mL废水中加入20.0 mg吸附剂,在废水pH为1.0、吸附温度为30 ℃、初始Cr(Ⅵ)质量浓度为10.0 mg/L的条件下,MGO和MBC的平衡吸附时间分别为50,70 min,平衡吸附量分别为37.7,49.7 mg/g,吸附平衡时的Cr(Ⅵ)去除率分别为75.4%和99.4%;两种磁性材料对Cr(Ⅵ)的吸附均很好地符合Langmuir等温吸附模型;在酸性介质中,MGO和MBC的表面基团与HCr2O7-和Cr2O72-之间有氢键作用。  相似文献   

10.
以Ti3AlC2为原料,采用HF刻蚀工艺制备出12种Ti3C2纳米层状材料,对其形貌进行了表征,并考察了以其作为光催化剂对废水中Cr(Ⅵ)的处理效果。实验结果表明:HF体积分数为80%、刻蚀时间为48 h时得到的MX-80-48的形貌较好;MX-80-48具有类似石墨烯的二维层状结构,纳米层厚度约20~50 nm,孔径2~10 nm,比表面积14.8 m2/g,在400~700 nm可见光范围内表现出强烈的吸光性;当Cr(Ⅵ)的初始质量浓度为40.00 mg/L、MX-80-48投加量为200 mg/L、pH=2、反应时间4 h(暗反应1 h+光照3 h)时,Cr(Ⅵ)去除率可达100%。  相似文献   

11.
以Bi(NO3)3·5H2O和(NH4)6Mo7O24·4H2O为原料,采用超声辅助沉淀法制备了纳米可见光催化剂γ-Bi2Mo O6,用XRD,SEM,UV-Vis技术对其进行了表征,并以罗丹明B为目标降解物,考察了γ-Bi2Mo O6的可见光催化性能。表征结果显示,产物为高纯度正交结构的纳米γ-Bi2Mo O6,分散性良好。光催化实验结果表明:超声辅助沉淀法制备的γ-Bi2Mo O6的可见光催化活性优于普通沉淀法制备的产品;以超声辅助沉淀法制备的γ-Bi2Mo O6为光催化剂,在初始罗丹明B质量浓度为10 mg/L、初始溶液p H为7.2、γ-Bi2Mo O6加入量为10 g/L的最优条件下,反应180 min时的罗丹明B降解率达到97.48%。  相似文献   

12.
采用水洗再生、N_2及N_2+NH_3气氛下的热再生以及微波辐射再生的方式对饱和ZnFe_2O_4/活性炭(AC)脱硫剂进行再生,并通过SEM,XRD,TG等技术进行表征。实验结果表明:水洗温度为90℃时,第一次水洗后ZnFe_2O_4/AC脱硫剂对SO_2的吸附容量(硫容)为122.0 mg/g;N_2氛围下热再生的最佳温度为500℃,ZnFe_2O_4/AC脱硫剂的硫容可达97.2 mg/g;N_2+NH_3氛围下热再生的最佳温度为400℃,ZnFe_2O_4/AC脱硫剂的硫容达到101.2 mg/g;当微波功率为100 W时,ZnFe_2O_4/AC脱硫剂的硫容为87.2 mg/g。对比三种再生方式,一次水洗再生具有更好的再生效果。  相似文献   

13.
以Fe(NO3)3或FeCl3作为铁源,采用水热法制备了纳米FeVO4光催化剂,通过XRD、SEM、DRS等手段表征了所合成FeVO4的物相、表面形貌及光学性质,研究了其可见光下光催化降解甲苯的性能。表征结果显示:FeVO4平均晶粒尺寸约为75 nm,为棒状;FeVO4在可见光区域(λ400 nm)表现出较高的吸光性,其吸光区域可红移至约600 nm;以FeCl3为铁源,水热反应3 h制备的FeVO4的禁带宽度为2.1 e V;以Fe(NO3)3为铁源制备的FeVO4的比表面积(74.70 m2/g)大于以FeCl3为铁源制备的FeVO4的比表面积(67.72 m2/g)。在初始甲苯质量浓度为494 mg/L、FeVO4为光催化剂、反应4 h的条件下,甲苯降解率达62%。甲苯降解最终产物为CO2和H2O。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号