首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
椰壳基活性炭负载过渡金属催化臭氧氧化降解对氯苯甲酸   总被引:1,自引:0,他引:1  
以椰壳基活性炭(AC)负载过渡金属制备催化剂,考察了该催化剂催化臭氧氧化对氯苯甲酸(p-CBA)的性能。当Ni(NO3)2浓度为0.050mol/L、臭氧加入量为50mg/h时,制备的Ni/AC催化剂催化臭氧氧化p-CBA的效果最佳,反应30min时,p-CBA被完全去除。Ni/AC催化剂重复使用6次后仍具有较好的活性,p-CBA去除率为99%,TOC去除率为90%~94%。这表明Ni/AC催化剂具有较高的稳定性。  相似文献   

2.
以椰壳基活性炭为催化剂,采用催化臭氧氧化工艺降解诺氟沙星(NF),优化了工艺条件,评价了催化活性,并对反应机理进行了探讨。实验结果表明:活性炭催化臭氧氧化工艺的优化条件为臭氧通量80 mg/h、初始NF质量浓度15.0 mg/L、反应温度25℃、初始NF溶液p H 5.0;在该优化条件下反应60 min时,TOC去除率达51.5%,较单独臭氧氧化的32.5%和单独活性炭吸附的11.5%有明显改善;在活性炭催化臭氧氧化工艺中臭氧氧化与活性炭吸附之间存在一定的协同作用,活性炭具有较好的催化活性;活性炭催化臭氧氧化工艺对NF的去除主要是基于臭氧的直接氧化作用。  相似文献   

3.
仇欢  李杰  张鹏  刘福强 《化工环保》2019,39(6):628-633
系统深入地分析了Fe-Ce/AC催化臭氧氧化对化工园区污水厂生化尾水中典型有机物的去除特性。与单独臭氧氧化相比,催化臭氧氧化可将TOC去除率从7.89%大幅提升至17.54%。120 min时UV_(254)和特征紫外吸光度(SUVA)的去除率分别高达66.80%和59.73%,证明了催化臭氧氧化可有效去除含共轭结构或芳环结构的不饱和有机物。催化臭氧氧化对生化尾水中腐殖酸类(HA)、溶解性微生物产物类(SMP)和疏水性腐殖酸类(HOA)3种荧光组分的去除过程均符合一级动力学模型,且由一级动力学速率常数可知,与生化尾水色度直接相关的HA和HOA被优先去除。40 min时HA、SMP和HOA的去除率即高达95.24%、93.21%和92.96%。  相似文献   

4.
采用缺氧—好氧—催化臭氧氧化工艺处理某石化厂的含盐废水。实验结果表明:在进水COD为200~350mg/L的条件下,经生化处理后的出水COD稳定在50~60 mg/L,COD去除率稳定在75%左右;在臭氧投加量为4.5g/L、V(催化剂Ⅱ)∶V(废水)=1.5∶1的条件下,进行连续催化臭氧氧化后出水COD稳定在20 mg/L以下,COD去除率大于70%,满足DB 61/224—2011《黄河流域(陕西段)污水综合排放标准》。表征结果显示,催化剂表面含有铜元素,比表面积为250.815 m2/g,吸水率为60.9%,经过滤可去除废水中残留的催化剂。  相似文献   

5.
李楠  王鹏  宋伦  邵泽伟  赵海勃 《化工环保》2018,38(3):300-304
以颗粒活性炭(GAC)为载体、铜为活性组分、铈为助剂组分、草酸钠为沉淀剂,采用浸渍焙烧法制得CuO_x-CeO_2/GAC催化剂。以H_2O_2为氧化剂,微波强化催化湿式过氧化氢氧化(CWPO)处理二甲亚砜(DMSO)初始质量浓度为1 000 mg/L的废水,处理3 min后DMSO去除率达93.8%。催化剂第7次使用时DMSO去除率仍保持在75%以上。初始废水pH在3~9范围内,DMSO去除率均在85%以上。助剂Ce的加入提高了催化剂表面活性组分的分散性和稳定性,使催化剂的活性稳定性和使用寿命显著提高。  相似文献   

6.
以凹凸棒土为载体、MnO_2为活性组分,制备了MnO_2陶粒臭氧氧化催化剂,并以草酸为模拟污染物,采用响应面法对催化剂的制备条件进行了优化。实验结果表明:各因素对草酸去除率影响的显著性顺序为MnO_2投加量盐酸溶液质量分数煅烧时间煅烧温度。催化剂的最佳制备条件为:MnO_2投加量200 mg/g,盐酸溶液质量分数20%,煅烧时间2 h,煅烧温度400℃。在初始草酸质量浓度150 mg/L、溶液pH 3.11、臭氧投加量8.10 mg/min、臭氧-氧气曝气量400 m L/min的条件下,最佳条件制备的催化剂在反应30 min时的草酸去除率达66.99%。催化剂具有良好的活性稳定性,且催化过程中Mn~(2+)溶出量低。催化剂具有较大的比表面积,负载的MnO_2类型为α-MnO_2和β-MnO_2。  相似文献   

7.
纪荣昌 《化工环保》2015,35(6):588-592
通过掺杂Si提高FeOOH的机械强度,制备无定型Si-FeOOH,并用于催化臭氧氧化降解苯胺。考察了n(Si)∶n(Fe)、Si-FeOOH加入量、溶液p H、初始苯胺质量浓度等因素对苯胺去除率的影响,并研究了SiFeOOH的重复利用效果与铁离子的溶出情况。实验结果表明:Si-FeOOH对臭氧氧化降解苯胺具有明显的催化作用,Si-FeOOH催化臭氧氧化对苯胺的降解效果明显高于单独臭氧氧化和FeOOH催化臭氧氧化;在溶液p H为11、Si-FeOOH加入量为1.0 g/L、n(Si)∶n(Fe)=0.55的最佳降解条件下处理初始苯胺质量浓度为300 mg/L的苯胺溶液,降解10 min后,苯胺去除率可达100%;Si-FeOOH催化剂经5次重复使用后,苯胺的去除率仍高达97.8%,且铁离子的溶出量明显低于FeOOH。  相似文献   

8.
采用催化臭氧氧化—生物活性炭吸附组合工艺处理反渗透(RO)浓水,比较了4种催化剂催化臭氧氧化的性能,优化了初始RO浓水pH、臭氧氧化时间、生物活性炭柱空床停留时间(EBRT)等工艺条件。实验结果表明:以WP-01为催化剂催化臭氧氧化RO浓水时无需调节废水pH;臭氧氧化反应5 min时RO浓水的BOD5/COD达0.28,可生化性得到显著改善;WP-01催化剂重复使用30次其催化活性没有明显下降;生物活性炭吸附单元的EBRT控制在30 min左右,可确保出水COD稳定在50 mg/L以下,符合GB 18918—2002《城镇污水处理厂污染物排放标准》的一级A标准;催化臭氧单元处理每吨RO浓水的电费约为1.22元。  相似文献   

9.
采用缺氧—好氧—催化臭氧氧化工艺处理某石化厂的含盐废水。实验结果表明:在进水COD为200~350 mg/L的条件下,经生化处理后的出水COD稳定在50~60 mg/L,COD去除率稳定在75%左右;在臭氧投加量为4.5 g/L、V(催化剂Ⅱ)∶V(废水)=1.5∶1的条件下,进行连续催化臭氧氧化后出水COD稳定在20 mg/L以下,COD去除率大于70%,满足DB 61/224—2011《黄河流域(陕西段)污水综合排放标准》。表征结果显示,催化剂表面含有铜元素,比表面积为250.815 m2/g,吸水率为60.9%,经过滤可去除废水中残留的催化剂。  相似文献   

10.
通过浸渍法制备了钕铁硼磁性活性炭(Nd Fe B/AC),采用SEM和VSM技术对其进行了表征,并将其作为非均相催化剂用于臭氧氧化降解水中甲基橙(MO)。表征结果显示:Nd Fe B/AC具有硬磁特性;当m(Nd Fe B)∶m(AC)=1∶2时,其比饱和磁化强度和比剩余磁化强度分别为15.9 A·m2/kg和6.0 A·m2/kg,矫顽力可达104.5k A/m。实验结果表明:在Nd Fe B/AC投加量为3.0 g/L、初始溶液p H为5.0、初始MO质量浓度为20 mg/L、臭氧质量浓度为15.0 mg/L、室温的条件下反应40 min,MO降解率达93.9%,显著优于投加AC的64.4%;AC和Nd Fe B/AC催化臭氧氧化降解MO的反应过程均遵循一级动力学规律,且Nd Fe B/AC的反应速率常数为AC的近3倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号