首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The survival of aqueous suspensions of Penicillium chrysogenum, Stachybotrys chartarum, Aspergillus versicolor, and Cladosporium cladosporioides spores was evaluated using various combinations of hydrogen peroxide and Fe2+ as catalyst. Spore concentrations of 106–107 colony forming units per milliliter (CFU/mL) were suspended in water and treated with initial hydrogen peroxide and iron concentrations ranging from 0.05 to 10 percent and 100 to 200 ppm, respectively. After four hours of reaction time, samples were plated on agar plates, and the viable fraction of spores was determined by the number of colonies formed. Hydrogen peroxide concentrations above 50,000 ppm resulted in greater than 6‐log10 reduction of viable spores for both catalyzed and noncatalyzed reactions. Iron had a strong catalytic effect when added to solutions with hydrogen peroxide concentration above 5,000 ppm and resulted in two to three orders of magnitude greater reduction compared to hydrogen peroxide alone. Additional samples taken after 24 hours of reaction time showed that the effect of the addition of 100 and 200 ppm of Fe2+ catalyst was mostly kinetic, and noncatalyzed hydrogen peroxide had sporicidal effects similar to catalyzed hydrogen peroxide. This study identified initial reagent concentrations of hydrogen peroxide and Fe2+ that accomplish a 6‐log10 reduction of viable mold spores within reaction times of 4 and 24 hours. © 2007 Wiley Periodicals, Inc.  相似文献   

2.
The intentional dissemination of Bacillus anthracis (anthrax) spores at multiple locations in the United States in the fall of 2001 resulted not only in several deaths and illnesses (including psychological effects), but likely changed lifestyles and attitudes, and increased the public's awareness of individual vulnerability. While federal resources had previously been committed to preparing local public health agencies for counter‐terrorism activities and to enhance environmental and medical response, these release episodes have increased the consistency of environmental and medical response activities, and increased government resources for homeland security. This article abstracts current information from many sources that summarize the environmental responses to the anthrax releases. The article discusses the international agreements and the U.S. regulations concerning biological weapons, the characteristics of the anthrax organism, potential exposure pathways, adverse health conditions resulting from inhalation exposure, the environmental response to two specific release episodes, environmental sampling and analytical procedures, recommended personal protective equipment, and the subsequent federal efforts to improve response capabilities. © 2003 Wiley Periodicals, Inc.  相似文献   

3.
Surfactants and cosolvents are useful for enhancing the apparent solubility of dense nonaqueous‐phase liquid (DNAPL) compounds during surfactant‐enhanced aquifer remediation (SEAR). In situ chemical oxidation (ISCO) with permanganate, persulfate, and catalyzed hydrogen peroxide has proven to be a cost‐effective and viable remediation technology for the treatment of a wide range of organic contaminants. Coupling compatible remedial technologies either concurrently or sequentially in a treatment train is an emerging concept for more effective cleanup of DNAPL‐contaminated sites. Surfactants are effective for DNAPL mass removal but not useful for dissolved plume treatment. ISCO is effective for plume control and treatment but can be less effective in areas where large masses of DNAPL are present. Therefore, coupling SEAR with ISCO is a logical next step for source‐zone treatment. This article provides a critical review of peer‐reviewed scientific literature, nonreviewed professional journals, and conference proceedings where surfactants/cosolvents and oxidants have been utilized, either concurrently or sequentially, for DNAPL mass removal. © 2010 Wiley Periodicals, Inc.  相似文献   

4.
Remediation of a large separate‐phase hydrocarbon product and associated dissolved‐phase gasoline plume was accelerated by coupling multiphase extraction with in situ microbial stimulation. At the beginning of remediation activities, the separate‐phase hydrocarbon plume extended an estimated seven acres with product thickness measuring up to 2.1 feet thick. Within 18 months after beginning extraction, reduction of gasoline constituents in groundwater became asymptotic and measureable product disappeared from the upgradient source area. At that time, the remediation team initiated a program of limited in situ anaerobic bioremediation with the goal of stimulating production of natural surfactants from native microbes to release petroleum from the soil matrix. Groundwater concentrations of gasoline constituents increased gradually over the next three years, improving recovery without biofouling the pump‐and‐treat infrastructure. Using this approach, the groundwater component of the remedy was completed in less than five years, substantially less than the 10 years to 15 years predicted by modeling. This strategy demonstrated a more sustainable approach to remediation, reducing electrical usage by an estimated 800 megawatt hours, reducing infrastructure requirements, and preserving an estimated 150 million gallons of groundwater for this arid agricultural area. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
In situ remediation represents a series of challenges in interpreting the monitoring data on remedial progress. Among these challenges are problems in determining the progress of the remediation and the mechanisms responsible, so that the process can be optimized. The release of organic pollutants to groundwater systems and in situ remediation technologies alter the groundwater chemistry, but outside of natural attenuation studies using inorganic chemical analyses as indicators of intrinsic biodegradation, typically little attention has been paid to the changes in inorganic groundwater chemistry. Smith (2008) noted that during an electrical resistance heating remediation that took place at a confidential site in Chicago, a two‐orders‐of‐magnitude increase in chloride concentrations occurred during the remediation. This increase in chloride resulted in a corresponding increase in calcium as a result of what is known as the common ion effect. Carbon dioxide is the gas found in highest concentrations in natural groundwater (Stumm & Morgan, 1981), and its fugacity (partial pressure) corresponds directly with calcium concentrations. Carbon dioxide at supersaturation in groundwater is capable of dissolving organic compounds, such as trichloroethene, facilitating removal of nonaqueous‐phase liquids at temperatures below the boiling point of water. One means of diagnosing these reactions is through the use of compound‐specific isotopic analysis, which is capable of distinguishing between evaporation, biodegradation, and differences in sources. The appropriate diagnosis has the potential to optimize the benefits from these reactions, lower energy costs for removal of nonaqueous‐phase liquids, and direct treatment where it is needed most. © 2010 Wiley Periodicals, Inc.  相似文献   

6.
The cleaning robots, a vacuum‐based robot (R2) and a wetted‐wipe‐based robot (R4), were evaluated in this study to determine their effectiveness for sampling Bacillus atrophaeus spores. The tests were designed to evaluate the benefit of robot sampling on large areas with two different contamination scenarios: a high‐concentration, low spatial extent contamination (hot spot) and a low concentration, high spatial extent contamination (widely dispersed). The hot spot tests were conducted with the high spore contamination (approximately 107 colony forming units [CFUs]) on a limited area (30.5 cm × 30.5 cm), 2 percent of the entire test. The widely dispersed tests were conducted with approximately 0.1 CFUs/cm2 for floor laminate and approximately 10 CFUs/cm2 for carpet surfaces. The widely dispersed tests distributed spores across the test surface and covered approximately 40 percent of the entire test area. The test results showed that both robots successfully sampled a large quantity of spores from carpet and floor laminate surfaces for both test scenarios. Robot performance is discussed in the context of currently used surface sampling methods. © 2014 Wiley Periodicals, Inc.*  相似文献   

7.
Although known to be one of the most effective oxidants for treatment of organic contaminants, catalyzed hydrogen peroxide (CHP) is typically not used for soil mixing applications because of health and safety concerns related to vapor generation and very rapid rates of reaction in open excavations. In likely the first large‐scale in situ CHP soil mixing application, an enhanced CHP, modified Fenton's reagent (MFR), was applied during soil mixing at the Kearsarge Metallurgical Superfund Site in New Hampshire. An innovative rotating dual‐axis blender (DAB) technology was used to safely mix the MFR into low‐plasticity silt and clay soils to remediate residual 1,1,1‐trichloroethane (111TCA); 1,1‐dichloroethene (11DCE); and 1,4‐dioxane (14D). It was expected that the aggressive treatment approach using relatively “greener” hydrogen peroxide (HP) chemistry would effectively treat Site contaminants without significant byproduct impacts to groundwater or the adjacent pond. The remediation program was designed to treat approximately 3,000 cubic yards of residual source area soil in situ by aggressively mixing MFR into the soils. The subsurface interval treated was from 7 to 15 feet below ground surface. To accurately track the soil mixing process and MFR addition, the Site was divided into 109 10‐foot square treatment cells that were precisely located, dosed, and mixed using the DAB equipped with an on‐board GPS system. The use of stabilizing agents along with careful calculation of the peroxide dose helped to ensure vapor‐free conditions in the vicinity of the soil mixing operation. Real‐time sampling and monitoring were critical in identifying any posttreatment exceedences of the cleanup goals. This allowed retreatment and supplemental testing to occur without impacting the soil mixing/in situ chemical oxidation (ISCO) schedule. Posttreatment 24‐hr soil samples were collected from 56 random locations after ensuring that the HP had been completely consumed. The posttreatment test results showed that 111TCA and 11DCE concentrations were reduced to nondetect (ND) or below the cleanup goals of 150 μg/kg for 111TCA and 60 μg/kg for 11DCE. Supplemental posttreatment soil samples, collected six months after treatment, showed 100 percent compliance with the soil treatment goals. Groundwater samples collected one year after the MFR soil mixing treatment program showed either ND or low concentrations for 111TCA, 11DCE, and 14D. Successful stabilization and site restoration was performed after overcoming considerable challenges associated with loss of soil structure, high liquid content, and reduced bearing capacity of the blended soils.  相似文献   

8.
In response to an oxygenated gasoline release at a gas station site in New Hampshire, a temporary treatment system consisting of a single bedrock extraction well, a product recovery pump, an air stripper, and carbon polishing units was installed. However, this system was ineffective at removing tertiary butyl alcohol from groundwater. The subsequent remedial system design featured multiple bedrock extraction wells and an ex situ treatment system that included an air stripper, a fluidized bed bioreactor, and carbon polishing units. Treated effluent was initially discharged to surface water. Periodic evaluation of the remediation system performance led to system modifications, which included installing an additional extraction well to draw contaminated groundwater away from an on‐site water supply well, adding an iron and manganese pretreatment system, and discharge of treated effluent to an on‐site drywell. Later, the air stripper and carbon units were eliminated, and an infiltration gallery was installed to receive treated, oxygenated effluent in order to promote flushing of the smear zone and in situ bioremediation in the source area. This article discusses the design, operation, performance, and modifications to the remediation system over time, and provides recommendations for similar sites. © 2007 Wiley Periodicals, Inc.  相似文献   

9.
A dual isotope technology based on compound‐specific stable isotope analysis of carbon and hydrogen (2D‐CSIA) was recently developed to help identify sources and monitor in situ degradation of the contaminant 1,4‐dioxane (1,4‐D) in groundwater. Site investigation and optimized remediation have been the focus of thousands of CSIA applications completed for volatile organic contaminants (VOCs) worldwide. CSIA for the water miscible 1,4‐D, however, has been technically challenging. The most commercially available sample preparation settings “Purge and Trap” for VOC could not efficiently extract 1,4‐D out of water for a reliable CSIA measurement, especially when the concentration is below 100 μg/L. Such a high reporting limit has prevented CSIA from being used for effective site investigation and remediation monitoring at most 1,4‐D contaminated sites, where 1,4‐D is often present at very low ppb levels. This article outlines the recent breakthrough in 2D‐CSIA technology for 1,4‐D in water, reported down to ~1 μg/L for carbon, and ~10 μg/L to 20 μg/L for hydrogen using solid‐phase extraction based on EPA Method 522, and its benefit is highlighted through a case study at a 1,4‐D contaminated site. ©2016 Wiley Periodicals, Inc.  相似文献   

10.
Recent regulatory changes need more challenging treatment goals for 1,4‐dioxane. However, significant treatment limitations exist in part due to the high solubility and low Henry's law constant of 1,4‐dioxane. Two case studies are reported with substantial 1,4‐dioxane concentration reductions through in situ thermal remediation via electrical resistance heating (ERH). Concentration reductions greater than 99.8 percent of 1,4‐dioxane have been observed in the field using ERH. Concentrations of 1,4‐dioxane in air and steam extracted by an ERH vapor recovery system have also been evaluated. Laboratory studies were conducted to further understand the mechanisms that enable ERH remediation of 1,4‐dioxane. Vapor liquid equilibrium studies in water and soil were conducted and utilized to develop an ERH treatment cost model for 1,4‐dioxane. Existing field data were correlated to the 1,4‐dioxane treatment cost model. Field observations and laboratory testing indicate steam stripping that occurs through ERH remediation is an effective treatment method for 1,4‐dioxane. ©2015 Wiley Periodicals, Inc.  相似文献   

11.
Fenton's reagent in its conventional form, although effective for contaminant treatment, is impractical from an in‐situ field application perspective due to low pH requirements (i.e., pH 3‐4), and limited reagent mobility when introduced into the subsurface. Modified Fenton's processes that use chelated‐iron catalysts and stabilized hydrogen peroxide have been developed with the goal of promoting effective in‐situ field application under native pH conditions (i.e., pH 5‐7), while extending the longevity of hydrogen peroxide. Laboratory experiments conducted in soil columns packed with organic soil to compare modified Fenton's catalysts with conventional catalysts (acidified iron [II]) indicated superior mobility and sorption characteristics for modified Fenton's catalysts. Furthermore, the acidic pH of a conventional catalyst was buffered to the native soil range, leading to increased iron precipitation/adsorption following permeation through the soil column. The chelates present within the modified Fenton's catalyst showed greater affinity toward iron compared with the native soil and, hence, minimized iron loss through adsorption during the permeation process even at pH 5‐7. Field effectiveness of the modified Fenton's process was demonstrated at a former dry‐cleaning facility located in northeast Florida. Preliminary laboratory‐scale experiments were conducted on soil‐slurry and groundwater samples to test the process efficacy for remediation of chlorinated solvents. Based on successful experimental results that indicated a 94 percent (soil slurry) to 99 percent (groundwater) reduction of cis‐1,2‐DCE, PCE, and TCE, a field‐scale treatment program was initiated utilizing a plurality of dual‐zone direct push injection points installed in a grid fashion throughout the site. Results of treatment indicated a 72 percent reduction in total chlorinated contamination detected in the site groundwater following the first injection event; the reduction increased to 90 percent following the second injection event. © 2002 Wiley Periodicals Inc.  相似文献   

12.
Application of fungal‐based bioaugmentation was evaluated for the remediation of creosote‐contaminated soil at a wood‐preserving site in West Virginia. Soil at the site contained creosote‐range polycyclic aromatic hydrocarbons (PAHs) at concentrations in some areas that exceed industrial risk‐based levels. Two white‐rot fungi (Pleurotus ostreatus and Irpex lacteus) were evaluated for remediation effectiveness in a two‐month bench‐scale treatability test. Both fungi produced similar results, with up to 67.3 percent degradation of total PAHs in 56 days. Pilot‐scale testing was performed at the site using Pleurotus ostreatus grown on two local substrate mixtures. During the 276‐day field trial, total PAHs were degraded by up to 93.2 percent, with all individual PAHs except one achieving industrial risk‐based concentrations. It was recommended that fungal‐based remediation be applied to all contaminated soil at the site. © 2002 Wiley Periodicals, Inc.  相似文献   

13.
A bench‐scale treatability study was performed to evaluate the effectiveness of alkaline ozonation on removing per‐ and polyfluoroalkyl substances (PFAS) present in groundwater at a former industrial site in Michigan. The study involved testing the PFAS‐impacted groundwater under alkaline ozonating conditions under a range of experimental conditions, including modifying pH, hydrogen peroxide‐to‐ozone molar ratio doses, length of ozonation pretreatment times, and sampling techniques. PFAS‐spiked samples were used to determine if inorganic ions such as fluoride (F?), sulfate (SO42?), formate (HCOO?), acetate (CH3COO?), and trifluoroacetate (CF3COO?) were generated or if there were decreases in total organic fluorine resulting from PFAS treatment. The results from all tests indicate that decreases in PFAS concentrations were due to a combination of removal and destructive mechanisms with enhanced removal under acidic pH ozonation pretreatment conditions. Short‐chain PFAS concentrations increased during the experiments followed by an overall decrease in concentration under continuous alkaline ozonation conditions. Reductions in concentrations in perfluorooctane sulfonic acid of 75–97% were observed. Reductions in concentrations were also observed in other PFAS such as 6:2 FTS, PFHxS, PFOA, and PFNA. To our best knowledge, this is the first time that alkaline ozonation has been performed on PFAS‐impacted water while monitoring a larger suite of PFAS analytes in addition to destruction byproducts. Treatment of PFAS under the conditions discussed in this paper suggests that alkaline ozonation may be a viable remediation option for PFAS‐impacted waters.  相似文献   

14.
In situ remediation is inherently considered “green remediation.” The mechanisms of destruction by in situ technologies, however, are often unseen and not well understood. Further, physical effects of amendment application affect concentration data in an identical manner as the desired reactive mechanism. These uncertainties have led to the weight‐of‐evidence approach when proving viability: multiple rounds of data collection, bench studies, pilot studies, and so on. Skipping these steps has resulted in many failed in situ applications. Traditional assessment data are often tangential to the desired information (e.g., “Is contaminant being destroyed or just being pushed around and diluted?” and “What is the mechanism of the destruction and can it be monitored directly?”). An advanced site diagnostic tool, “Three‐Dimensional Compound Specific Stable Isotope Analysis” (3D‐CSIA), can assess the viability of in situ technologies by providing definitive data on contaminant destruction that are not concentration‐related. The 3D‐CSIA tool can also locate source zones and apportion remediation cost by identifying plumes of different isotope signatures and fractionation trends. Further, use of the 3D‐CSIA tool allows remediation professionals to evaluate effectiveness of treatment and make better decisions to expedite site closure and minimize costs. This article outlines the fundamentals of advanced site diagnostic tool 3D‐CSIA in detail, and its benefit is highlighted through a series of case studies at chlorinated solvent–contaminated sites. © 2010 Wiley Periodicals, Inc.  相似文献   

15.
The injection of remediation compounds has rapidly become a widely accepted approach for addressing contaminated sites. One of the most fundamental questions surrounding the use of in situ remediation has been “What compound are you injecting at your site?” With the advances in the industry's understanding and acceptance of the in situ remediation process remediation professionals are now asking a follow‐up question that has become equally important to the success of a project: “How are you injecting a compound at your site?” This article discusses advances in field applications for in situ remediation and injecting remediation compounds. © 2003 Wiley Periodicals, Inc.  相似文献   

16.
Remediation developed a Sustainable Remediation Panel in the Summer 2009 issue, which featured the Sustainable Remediation Forum White Paper. The panel is composed of leaders in the field of sustainable remediation who have volunteered to provide their opinions on difficult subjects related to the topic of how to integrate sustainability principles into the remediation practice. The panel's opinions are provided in a question‐and‐answer format, whereby selected experts provide an answer to a question. This issue's question is provided below, followed by opinions from five experts in the remediation field.
相似文献   

17.
Since the US Environmental Protection Agency (US EPA) launched its “green remediation” program and EU member states began to reassess their national regulations for environmental remediation in order to reach a Europe‐wide consensus on policy and standards, the need and interest for sustainable remediation of contaminants from brownfields has grown considerably. Concomitantly, the ability to calculate and assess the suitability as well as the environmental footprints and associated risks of a growing number of remediation techniques has become a priority. The authors quantitatively evaluate the differences between various remediation techniques, and for this purpose, a number of ex situ and in situ remediation techniques are adapted to model 21 remediation scenarios for two contaminated sites in the Gothenburg region of Sweden: the Bohus Varv site on the Göta älv river bank and the Hexion site in Mölndal. A wide range of quantitative results for these models are presented, compared, and analyzed. Based on the results from both projects, it is concluded that: (1) remediation techniques requiring long distance residual transportation have significant footprints, except the transportation of contaminated residuals by train due to Swedish energy production conditions; (2) residual transportation by ship results in much higher SOx, NOx, and particle releases compared to the other alternatives; and (3) residual transporation by truck results in high accident risks. Finally, activities powered by electricity result in a reduced footprint compared to activities powered by fossil fuels, considering Swedish energy production conditions. The authors conducted a cross‐benefit analysis of SiteWiseTM applications which recognizes its potential as a tool for presenting life cycle assessment analyses with appropriate system boundary definitions and an easy inventory analysis process. Results from this tool provide valuable support to decision makers aiming at more sustainable remediation. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
Contaminants from dry‐cleaning sites, primarily tetrachloroethene (PCE), trichloroethene (TCE), cis‐dichloroethene (cis‐DCE), and vinyl chloride (VC), have become a major concern because of the limited funds and regulatory programs to address them. Thus, natural attenuation and its effectiveness for these sites needs to be evaluated as it might provide a less costly alternative to other remediation methods. In this research, data from a site in Texas were analyzed and modeled using the Biochlor analytical model to evaluate remediation times using natural attenuation. It was determined that while biodegradation and source decay were occurring at the site, the resulting attenuation rates were not adequate to achieve cleanup in a reasonable time frame without additional source remediation or control strategies. Cleanup times exceeded 100 years for all constituents at the site boundary and 800 years at the source for PCE, assuming cleanup levels of 0.005 mg/L for PCE and TCE and 0.07 mg/L and 0.002 mg/L for cis‐DCE and VC, respectively. © 2005 Wiley Periodicals, Inc.  相似文献   

19.
Remediation of recalcitrant compounds at sites with high concentrations of volatile organic compounds (VOCs) or nonaqueous‐phase liquids (NAPLs) can present significant technical and financial (long‐term) risk for stakeholders. Until recently, however, sustainability has not been included as a significant factor to be considered in the feasibility and risk evaluation for remediation technologies. The authors present a framework for which sustainability can be incorporated into the remediation selection criteria focusing specifically on off‐gas treatment selection for soil vapor extraction (SVE) remediation technology. SVE is generally considered an old and standard approach to in situ remediation of soils at a contaminated site. The focus on off‐gas treatment technology selection in this article allows for more in‐depth analysis of the feasibility evaluation process and how sustainable practices might influence the process. SVE is more commonly employed for recovery of VOCs from soils than other technologies and generally employs granular activated carbon (GAC), catalytic, or thermal oxidation, or an emerging alternative technology known as cryogenic‐compression and condensation combined with regenerative adsorption (C3–Technology). Of particular challenge to the off‐gas treatment selection process is the potential variety of chemical constituents and concentrations changing over time. Guidance is available regarding selection of off‐gas treatment technology (Air Force Center for Environmental Excellence, 1996; U.S. Environmental Protection Agency, 2006). However, there are common shortcomings of off‐gas treatment technology guidance and applications; practitioners have rarely considered sustainability and environmental impact of off‐gas treatment technology selection. This evaluation includes consideration of environmental sustainability in the selection of off‐gas treatment technologies and a region‐specific (Los Angeles, California) cost per pound and time of remediation comparisons between GAC, thermal oxidation, and C3–Technology. © 2008 Wiley Periodicals, Inc.  相似文献   

20.
Leaking underground storage tank systems at service stations have resulted in tens of thousands of petroleum releases and associated groundwater chemical plumes often extending hundreds of feet off‐site. Technical and engineering approaches to assess and clean up releases from underground tanks, product lines, and dispensers using technologies such as soil vapor extraction, air sparging, biostimulation, and monitored natural attenuation are well understood and widely published throughout the literature. This article summarizes life‐cycle environmental response costs typically encountered using site‐specific cost estimation or metric‐based cost categories considering the overall complexity of site conditions: (1) simple sites where response actions require smaller scale assessments and/or remediation and have limited or no off‐site impacts; (2) average sites where response actions require larger scale assessments and/or remediation typical of petroleum releases; (3) complex sites where response actions require greater on‐site and/or off‐site remediation efforts; and (4) mega sites where petroleum plumes have impacted public or private water supplies or where petroleum vapors have migrated into occupied buildings. Associated cleanup cost estimates rely upon appropriate combinations of individual work elements and the duration of operation, maintenance, and monitoring activities. These cost estimates can be offset by state reimbursement funds, coverage in purchase agreements, and insurance policies. A case study involving a large service station site portfolio illustrates the range of site complexity and life‐cycle environmental response costs. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号