首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
In this paper chiral bioactive poly(amide–imide)s (PAI)s were synthesized from four different diacids containing chiral amino acids with 4,4′-methylene bis(3-chloro 2,6-diethylaniline) as a diamine via direct polycondensation reaction in a system of tetra-n-butylammonium bromide and triphenyl phosphite as a condensing agent. The structures of these polymers were confirmed by FT-IR, 1H-NMR, specific rotation, elemental and thermogravimetric analysis (TGA) techniques. TGA showed that the 10 % weight loss temperature in a nitrogen atmosphere was more than 378 °C, which indicates that the resulting PAIs have a good thermal stability. The biodegradability of the monomers and prepared polymers was investigated in culture media and soil burial test for assessment of the susceptibility of these compounds to microbial degradation. The results showed that the synthesized monomers and theirs derived polymers are biologically active and nontoxic to microbial growth.  相似文献   

2.
Ionic liquids (ILs) have been accepted as ‘green’ alternatives to the organic solvents in a range of synthesis, catalysis and electrochemistry, because of their distinctive chemical and physical properties. In this investigation, N,N′-(pyromellitoyl)-bis-l-tyrosine dimethyl ester as a chiral bioactive diphenolic monomer was prepared in three steps. The polycondensation of this monomer with various aromatic and aliphatic diisocyanates such as 4,4′-methylene-bis-(4-phenylisocyanate) (6a), toluylene-2,4-diisocyanate (6b), isophorone diisocyanate (6c) and hexamethylene diisocyanate (6d) were carried out in the presence of tetrabutylammonium bromide as a molten IL under microwave irradiation conditions and was compared with polymerization in traditional solvent like N-methyl-2-pyrrolidone. The results show that IL efficiently absorbs microwave energy, thus leading to a very high heating rate. Thus IL method is safe and green since toxic and volatile organic solvents were eliminated. All of the novel poly(urethane-imides) (PUIs) showed good solubility in various organic solvents. The obtained new polymers were characterized with FT-IR, 1H-NMR, elemental and thermogravimetric analysis techniques. Thermogravimetric analysis (TGA) of two representative PUIs demonstrated that they are rather thermally stable. In vitro toxicity studies showed that the synthetic materials are biologically active and they are nontoxic to microbial growth then could be classified as bioactive and biodegradable compounds.  相似文献   

3.
Biodegradable copolymers of l-lactide(l-LA) and p-dioxanone(PDO) were synthesized in supercritical carbon dioxide (scCO2) with stannous octoate as the ring-opening catalyst and a fluorocarbon polymer surfactant as an stabilizer. Fine powderous products were achieved when more than 90% (w/w) l-LA was fed. Scanning electron micrographic images and laser diffraction particle size analysis of the products showed the mean diameter of particles greatly increased as the content of PDO increased. The obtained polymers had the number-average molecular weights ranging from 15,000 to 26,000 g mol−1 (polydispersity index ranging from 1.3 to 2.1) according to the gel permeation chromatography measurements. The polymer structure was characterized by NMR spectroscopy, indicating the formation of copolymers. Thermal properties of the obtained polymers investigated using differential scanning calorimetry showed that the morphology of products was directly relevant to the crystallinity of the copolymers. The polymerization of l-LA and PDO copolymers in scCO2 is also proposed as a novel production technique for high-purity, biodegradable polymers.  相似文献   

4.
2-Methylene-1,3,6-trioxocane (MTC) was polymerized via ring-opening in the presence of a radical initiator and the obtained polyester was biodegradable. MTC could also copolymerize with various vinyl monomers such as styrene, vinyl acetate, methyl vinyl ketone, N-vinyl-2-pyrrolidone, N-isopropyl acrylamide, and maleic anhydride. By copolymerizing MTC with these vinyl monomers in the presence of a radical initiator, we could obtain various biodegradable polymers with ester group introduced into the backbone. In addition the obtained copolymers exhibit certain functionalities such as photolysis, water-solubility, thermosensitivity, detergent builder, and water-absorbability.  相似文献   

5.
Biodegradable nanocomposites comprising of biodegradable polymers and bioactive organically modified layered silicates commonly reveal extremely enhanced mechanical and various other properties when compared to those of virgin polymers. This work was undertaken with a view to preparation of polymer bionanocomposites consisting of biodegradable poly(vinyl alcohol) (PVA) and organo-nanoclay. Cloisite Na+ and ammonium salt of l-isoleucine amino acid was used for the preparation of the novel chiral organo-nanoclay via an intercalation reaction in an aqueous solution. PVA/organo-nanoclay bionanocomposites of various compositions were created through the solution intercalation method by ultrasound-assisted technique. The resulting novel materials were characterized by X-ray diffraction and Fourier transform infrared spectroscopy techniques. Thermogravimetric analysis (TGA) and UV/vis spectroscopy were applied to test the properties of PVA bionanocomposites. TGA indicate that the thermal stability is enhanced distinctly, without a sacrifice in optical clarity. The improvement of thermal properties was attributed to the homogeneous and good dispersion of organo-nanoclay in polymeric matrix and the strong hydrogen bonding between O?CH groups of PVA and the oxygen atoms of silicate layers or carbonyl group as well as OH group of intercalated amino acid. The morphology of the organo-nanoclay and PVA bionanocomposites was examined by scanning electron microscopy and transmission electron microscopy techniques. Uniform distribution of clay due to intimate interaction between clay and polymer appears to be the cause for improved properties.  相似文献   

6.
In this work, a major fatty acid from coconut oil was used as starting material in preparing biodegradable polymers. Thus, polyesters and polyamides from varying proportions of monomers, hydroxy- and amino- derivatives of lauric acid were synthesized. Initially, the derivatives were prepared by regioselective chlorination of lauric acid, in the presence of ferrous ions in strong acid medium. Subsequent hydroxylation and amination procedures yielded the hydroxy- and amino- derivatives of lauric acid. These monomers were polymerized in a reaction tube by simple polycondensation method at 220–230 °C for 6–8 h without catalyst. Molecular weight determination using –COOH by end group titration and gel permeation chromatography (GPC) gave an average molar mass of 3,000–5,000 g mol−1 with n = 15–25 monomer units. Thermal properties such as glass transition (Tg) and decomposition (Td) temperatures were obtained using differential scanning calorimetry (DSC). The same processes of synthesis and determinations above were applied to coconut fatty acids, derived from saponification of coconut oil, and resulted to very similar conclusions. A quick biodegradation assay against fungus Aspergillus niger UPCC 4219 showed that the polymers prepared are more biodegradable than conventional plastics such as polypropylene, poly(ethyleneterepthalate) and poly(tetrafluoroethylene) but not as biodegradable as cellulosic (newsprint) paper.  相似文献   

7.
We herein report the effects of the component ratio and method of blending on the synthesis of stereocomplex poly(lactic acid) (SC-PLA) based on poly(l-lactic acid) (PLLA) and poly(d-lactic acid) (PDLA) prepolymers. PLLA and PDLA were prepared by direct melt polycondensation of lactic acid (DMP). Combined with the dual catalyst system, PLA prepolymers with Mw more than 20,000 were prepared by DMP. PLLA was mixed by powder blending or melt blended with PDLA. It is revealed that melt-point and spherulite growth rate of SC-PLA is strongly dependent on the perfection of SC structure. The melt point of PLA can be increased by nearly 50 °C because of the particular strong intermolecular interaction between PLLA and PDLA chains. Solid-state polycondensation (SSP) is an efficient method to increase the molecular weight of SC-PLA, but it can have a negative effect on the regularity of linear chains of SC-PLA. Thermogravimetry analyzer (TGA) results show that SC structure cannot cause the delay reaction on the thermal degradation of PLA.  相似文献   

8.
The use of long-lasting polymers as packaging materials for short lived applications is not entirely justified. Plastic packaging materials are often soiled due to foodstuffs and other biological substances, making physical recycling of these materials impractical and normally unwanted. Hence, there is an increasing demand for biodegradable packaging materials which could be easily renewable. Use of biopolymer based packaging materials allows consideration of eliminating issues such as landfilling, sorting and reprocessing through taking advantage of their unique functionality, that is compostability. Composting allows disposal of biodegradable packages and is not as energy intensive compared to sorting and reprocessing for recycling, although it requires more energy than landfilling. The aim of this work was to study the degradation of three commercially available biodegradable packages made of poly (ld-lactide) (PLA) under real compost conditions and under ambient exposure by visual inspection, gel permeation chromatography, differential scanning calorimetry, and thermal gravimetric analysis. A novel technique to study the degradability of these packages and to track the degradation rate under real compost conditions was used. The packages were subjected to composting for 30 days, and the degradation of the physical properties was measured at 1, 2, 4, 6, 9, 15 and 30 days. PLA packages made of 96% l-lactide exhibited lower degradation than PLA packages made of 94% l-lactide, mainly due to their highly ordered structure, therefore, higher crystallinity. The degradation rate changed as the initial crystallinity and the l-lactide content of the packages varied. Temperature, relative humidity, and pH of the compost pile played an important role in the total degradation of the packages. A first order degradation of the molecular weight as a function of time was observed for the three packages.  相似文献   

9.
The synthesis and characterization of poly(lactic acid)-co-aspartic acid copolymers (PLA-co-Asp) were presented. Subsequently, the synthesized PLA-co-Asp copolymers were tested as biodegradable carriers in drug delivery systems. PLA-co-Asp copolymers were synthesized by solution polycondensation procedure, using different molar ratios PLA/l-aspartic acid (2.33/1, 1/1, 1/2.33), manganese acetate and phosphoric acid as catalysts and N,N′-dimethyl formamide (DMF)/toluene as solvent mixture. The copolymers were characterized by FT-IR and 1H-NMR spectroscopy, gel permeation chromatography (GPC), DSC and TG-DTG analyses. Diclofenac sodium, a non steroidal anti-inflammatory drug was subsequently loaded into PLA-co-Asp copolymers. The in vitro drug release experiments were done by dialysis of the copolymer/drug systems, in phosphate buffer solution (pH = 7.4, at 37 °C) and monitored by UV spectroscopy.  相似文献   

10.
Biodegradable copoly(amino acid)s based on 6-aminocaproic acid and l-leucine were prepared by melt condensation polymerization and characterized by Fourier transform infrared spectrometry (FTIR), proton nuclear magnetic resonance spectrometry (1H NMR), and X-ray diffraction (XRD). The intrinsic viscosity and the density of the copoly(amino acid)s were measured. Thermal properties of the copoly(amino acid)s were performed by differential scanning calorimetry (DSC). Results showed that by increasing leucine content of the comonomers, the intrinsic viscosity, melting point, and melting enthalpy of copoly(amino acid)s decrease while the density increases. The enzymatic degradation of the polymers films was tested using papain; results showed that the copoly(amino acid)s are degradable and the enzymatic degradation rate increases with increasing leucine content in the comonomers.  相似文献   

11.
Poly(hydroxyalkanoates) (PHAs) are a class of bacterially-derived polymers that are naturally biodegradable through the action of extracellular depolymerase enzymes secreted by a number of different bacteria and fungi. In this paper we describe the development of topographical imaging protocols (by both scanning electron microscopy; SEM, and confocal microscopy; CM) as a means of monitoring the biodegradation of solution cast films of poly(3-hydroxybutanoate-co-3-hydroxyhexanoate) (P3HB/3HHx) and medium-chain-length (mcl-) PHA. Pseudomonas lemoignei and Comamonas P37C were used as sources for PHA depolymerase enzymes as these bacteria are known to degrade at least one of the polymers in question. SEM revealed the bacterial colonization of the film surfaces while CM permitted the comparative assessment of the roughness of the film surfaces upon exposure to the two bacterial strains. By dividing the total surface area of the film (A′) by the total area of the scan (A) it was possible to monitor biodegradation by observing differences in the topography of the film surface. Prior to inoculation, P3HB/3HHx films had an A′/A ratio of 1.06. A 24-h incubation with P. lemoignei increased the A′/A ratio to 1.47 while a 48- and 120-h incubation with Comamonas resulted in A′/A ratios of 1.16 and 1.33, respectively. These increases in the A′/A ratios over time demonstrated an increase in the irregularity of the film surface, indicative of PHA polymer breakdown. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  相似文献   

12.
Ionic liquids (IL)s have been recognized as ‘green’ alternatives to the organic solvents in a range of synthesis, catalysis and electrochemistry due to their unique chemical and physical properties. In this investigation, a series of organosoluble, thermally stable and optically active hydroxyl-containing poly(amide–imide)s (PAI)s were prepared via polycondensation reaction of an aromatic diamine, 3,5-diamino-N-(4-hydroxyphenyl)benzamide (4), and different chiral amino acid-based diacids (3a–3e) in the presence of molten tetrabutylammonium bromide as a molten IL and triphenyl phosphite under classical heating method. This process is safe and green since toxic and volatile organic solvents such as N-methylpyrrolidone (NMP) and N,N′-dimethylacetamide (DMAc) were eliminated. The resulting new polymers were obtained in good yields with inherent viscosities ranging between 0.23 and 0.54 dL g?1 and were characterized by Fourier transform infrared spectroscopy, specific rotation, powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), thermogravimetric analysis, elemental analysis, and in some cases by 1H-NMR techniques. The FE-SEM micrographs and XRD showed that the synthesized PAIs were nanostructured and amorphous polymers. The effect of ultrasonic irradiation on the size of polymer particles was also investigated and the results showed that the size of polymer nanoparticles after ultrasonication became smaller than the size of them, before ultrasonic radiation. All of the polymers were readily soluble in many organic solvents such as N,N′-dimethyl sulfoxide, DMAc and NMP.  相似文献   

13.
Different synthesis methods were applied to determine optimal conditions for polymerization of (3S)-cis-3,6-dimethyl-1,4-dioxane-2,5-dione (l-lactide), in order to obtain poly(l-lactide) (PLLA). Bulk polymerizations (in vacuum sealed vessel, high pressure reactor and in microwave field) were performed with tin(II) 2-ethylhexanoate as the initiator. Synthesis in the vacuum sealed vessel was carried out at the temperature of 150 °C. To reduce the reaction time second polymerization process was carried out in the high pressure reactor at 100 °C and at the pressure of 138 kPa. The third type of rapid synthesis was done in the microwave reactor at 100 °C, using frequency of 2.45 GHz and power of 150 W at the temperature of 100 °C. The temperature in this method was controlled via infrared system for in-bulk measuring. The solution polymerization (with trifluoromethanesulfonic acid as initiator) was possible even at the temperature of 40 °C, yielding PLLA with narrow molecular weight distribution in a very short period of time (less than 6 h). The obtained polymers had the number-average molecular weights ranging from 43,000 to 178,000 g mol−1 (polydispersity index ranging from 1 to 3) according to the gel permeation chromatography measurements. The polymer structure was characterized by Fourier transform infrared and NMR spectroscopy. Thermal properties of the obtained polymers were investigated using thermogravimetry and differential scanning calorimetry.  相似文献   

14.
In this work was described poly(d,l-lactide) microwave synthesis using tin(II) 2-ethylhexanoate initiated ring-opening polymerization. Polymerization was performed at 100 °C with monomer to initiator molar ratio ([M]/[I]) of 5,000 in 30 min. The achieved number average molar mass of obtained polymers (determined by gel permeation chromatography) was 102,320 g/mol, with the polydispersion index, Q, 2.80. Structural characterization was performed by FT-IR spectroscopy followed characteristic bands. For applicative purposes the obtained polymer was purified during the procedure of microsphere preparation. Biodegradable microspheres prepared from poly(d,l-lactide) have been widely studied in recent years and have become well established controlled drug delivery systems. In this work microspheres were loaded with allyl thiosulfinate (allicin) and its transforments products (ajoene and vinyldithiine), as pharmacological active substances. The morphology of the microspheres was analyzed using a scanning electron microscope. Allicin was synthesized by acid oxidation of allyl disufide and purification of obtained products by liquid–liquid extraction with diethyl ether. Obtained allicin, purity 73%, was transformed using microwave in acetone solution, at solvent boiling temperature, for 5 min. For the quality and quantity analysis of allicin and its transformation process was used LC/MS chromatography. (E)- and (Z)-ajoene were detected at retention time 3.1 and 3.3 min, respectively, whence 3-vynil-4H-1,2-dithiine and 2-vynil-4H-1,3-dithiine were detected at 4.3 and 4.8 min, respectively. Retention time of allicin was 2.93 min, according to liquid chromatography results. HPLC method was used for assessment of pharmaceutical substances (alicine and alicine transforments) releasing from microspheres at room temperature in solutions with different pH (pH = 3 and pH = 8) for 24 h.  相似文献   

15.
Alginates, extracted from algae are linear unbranched polymers containing β-(1→4)-linked d-mannuronic acid (M) and α-(1→4)-linked l-guluronic acid (G) residues. The conversion of alginic acid into the metal alginate is confirmed using FTIR spectroscopy. Asymmetric and symmetric stretching of free carboxyl group present in metal alginate occurs almost at the same position in various solvent compositions. Total intrusion volume of metal alginate prepared in propanol (0.0742 mL/g) is greater compared to those in ethanol (0.0648 mL/g) and methanol (0.0393 mL/g) as solvent. Surface morphology as well as porosity and pore size distribution of metal alginate are greatly influenced by solvent. It can be seen from thermal analysis results that calcium alginate prepared using different solvent compositions started decomposing at 100 °C, but rapid degradation started around 200 °C. The results showed a stepwise weight loss during thermal sweep, indicating different types of reactions during degradation. First and second step of rapid degradation was situated around 200–300 and 300–550 °C, respectively; whereas the final step is situated around 550–650 °C. The trend of degradation was similar for all the solvents, although the amount of final residue varied from one solvent to another. At the same time, lower thermal stability was also observed with higher heating rates. Additionally, a kinetic analysis was performed to fit with TGA data, where the entire degradation process has been considered as three consecutive first order reactions.  相似文献   

16.
As an attempt to synthesize new biodegradable polymers from renewable cellulose resources, melt polycondensation of 5-hydroxylevulinic acid (5-HLA) was reported for the first time. The resulting product, poly(5-hydroxylevulinic acid) (PHLA), was synthesized and characterized with GPC, FTIR, 1H NMR and DSC. The in vitro degradation behaviors in phosphate-buffered saline (PBS) and in deionized water (DW) were also examined. The molecular weight of PHLA is not high (several 1,000s), but it possesses unordinary high glass transition temperature (as high as 120 °C). This is very different from existing aliphatic polyesters that usually have T gs lower than 60 °C. The high T g is attributed to the formation of inter- and/or intramolecular hydrogen bonds due to a characteristic keto–enol tautomerism equilibrium in the polymer structure. PHLA readily degraded hydrolytically in aqueous media.  相似文献   

17.
Poly (l-aspartic acid-citric acid) green copolymers were developed using thermal polymerization of aspartic acid (ASP) and citric acid (CA) followed by direct bulk melt condensation technique. Antibacterial properties of copolymer of aspartic acid based were investigated as a function of citric acid content. This study is focused on the microorganism inhibition performance of aspartic acid based copolymers. Results showed that inhibition properties increase with increasing citric acid content. Characterization of obtained copolymers was carried out with the help of infrared absorption spectra (FTIR), x-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA). The antibacterial activity of copolymers against bacteria like E-coli, Bacillus and pseudomonas was investigated. The copolymers showed excellent antimicrobial activities against three types of microorganisms. Overall studies indicated that the above copolymers possess a broad wound dressing activity against above three types of bacteria and may be useful as antibacterial agents.  相似文献   

18.
As one of the biodegradable polymers, the blend of poly(butylene succinate) and poly(butylene terephthalate) is dealt with in this study. In our previous work, it was demonstrated that PBS and PBT are immiscible not only from the changes of T g but also from logG–log G plots. It is expected that the biodegradability of the blends could be improved by enhancing the miscibility. We tried to induce the transesterification reaction between two polyesters with various time intervals to enhance the miscibility of the blends. The extent of transesterification reaction was examined by 1H-NMR. We utilized a dynamic mechanical thermal analyzer and a rotational rheometer to investigate the changes in miscibility. We also verified the biodegradability of PBS/PBT blends after the transesterification reaction by the composting method.  相似文献   

19.
The performance, the degradability in soil and the environmental impact of biodegradable starch-based soil mulching and low tunnel films were assessed by means of field and laboratory tests. The lifetime of the biodegradable mulches was 9 months and of the biodegradable low-tunnel films 6 months. The radiometric properties of the biodegradable films influenced positively the microclimate: air temperature under the biodegradable low tunnel films was 2 °C higher than under the low density polyethylene films, resulting in an up to 20% higher yield of strawberries. At the end of the cultivation period, the biodegradable mulches were broken up and buried in the field soil together with the plant residues. One year after burial, less than 4% of the initial weight of the biodegradable film was found in the soil. According to ecotoxicity tests, the kinetic luminescent bacteria test with Vibrio fischeri and the Enchytraeus albidus ISO/CD 16387 reproduction potential, there was no evidence of ecotoxicity in the soil during the biodegradation process. Furthermore, there was no change in the diversity of ammonia-oxidizing bacteria in the soil determined on the basis of the appearance of amoA gene diversity in denaturing gradient gel electrophoresis.  相似文献   

20.
Here, the influence of graphene as a coating on the biodegradation process for two different polymers is investigated, poly(butylene adipate-co-terephthalate) (PBAT) (biodegradable) and low-density polyethylene (LDPE) (non-biodegradable). Chemical vapor deposition graphene was transferred to the surface of two types of polymers using the Direct Dry Transfer technique. Polymer films, coated and uncoated with graphene, were buried in a maturated soil for up to 180 days. The films were analyzed before and after exposure to microorganisms in order to obtain information about the integrity of the graphene (Raman Spectroscopy), the biodegradation mechanism of the polymer (molecular weight and loss of weight), and surface changes of the films (atomic force microscopy and contact angle). The results prove that the graphene coating acted as a material to control the biodegradation process the PBAT underwent, while the LDPE covered by graphene only had changes in the surface properties of the film due to the accumulation of solid particles. Polymer films coated with graphene may allow the production of a material that can control the microbiological degradation, opening new possibilities in biodegradable polymer packaging. Regarding the possibility of graphene functionalization, the coating can also be selective for specific microorganisms attached to the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号