首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To prevent acid mine drainage arising from oxygen and water penetration of sulphide-rich mine tailings, the tailings are covered with layers of dry sealing material. Plant roots have a great ability to penetrate dense materials, and if the roots are able to penetrate the sealing layer of a tailings deposit, its oxygen-shielding properties could be reduced. The objective of this study was to evaluate whether plant roots are able to penetrate sealing layers covering mine tailings deposits. Root penetration into layers of various sealing materials, such as clayey moraine (clay, 8-10%; silt, 22-37%; sand, 37-55%; gravel, 15-18%), moraine (unspecified), 6-mm bentonite (kaolin clay) fabric, lime and clay, Cefyll (mixture of pulverized coal fly ash, cement and water) and a mixture containing biosludge (30-35%) and bioashes (65-70%), was investigated. In the field, roots were studied by digging trenches alongside vegetation growing in 3- and 10-year-old mine sites. In the greenhouse root growth of Betula pendula, Pinus sylvestris, Poa pratensis and Salix viminalis were studied in compartments where the plants had been growing for 22 months. The results from the field experiment indicated that roots are able to penetrate both deep down in the cover layer (1.7 m) and also into the sealing layers of various materials, and even to penetrate hard Cefyll. The addition of nutrients in the top cover reduced deep root growth and thereby also penetration through the sealing layer. Low hydraulic conductivity of the sealing layer or a thick cover layer had less effect on root penetration. In the greenhouse experiment roots did not penetrate the thin bentonite fabric, due to low pH (2.1-2.7) that was created from the underlying weathered mine tailings. The clayey moraine was penetrated by all species used in the greenhouse experiment; Pinus sylvestris had the greatest ability to penetrate. To prevent root penetration of the other sealing layer, a suitable condition for the plants should be created in the upper part of the cover layer, namely a sufficient amount of plant nutrients. However, to define such a condition is difficult since different plant species have different requirements.  相似文献   

2.
Algae have considerable capability for absorbing heavy metals from wastewaters and are considered an effective treatment technology. Heavy metal absorption from coal mine water from the Bhowra Abandoned mine (open cast mine) and the Sudamdih Shaft mine (underground mine waters), both located in Dhanbad, India, by cells of Spirogyra was studied at different dilutions (100 percent, 80 percent, 60 percent, 40 percent, and 20 percent). In the present study, the following 18 metals were selected for analysis: aluminium (Al), arsenic (As), silver (Ag), barium (Ba), beryllium (Be), bismuth (Bi), cadmium (Cd), cobalt (Co), chromium (Cr), cesium (Cs), copper (Cu), iron (Fe), gallium (Ga), indium (In), potassium (K), manganese (Mn), nickel (Ni), and vanadium (V). Accordingly, Al and K were found to be higher in concentration with respect to selected metals for both mine waters. The biosorption study revealed that higher amounts of Al, Bi, Co, Cs, Fe, Ga, Mn, Ni, and V were absorbed by algal biomass at 100 percent concentration from both mine waters. The maximum uptake of Cu, As, and Cd was measured at 60 percent, 40 percent, and 20 percent, respectively, for the Bhowra Abandoned mine water. The biosorption equilibrium study revealed that Ag, Al, Ba, Be, Bi, Co, Cr, Cs, Fe, Ga, In, K, Mn, Ni, and V were maximally absorbed by algal biomass at 100 percent concentration from Bhowra mine water, while the maximum uptake by the algal biomass measured for the Sudamidh coal mine water was for Al, As, Bi, Cu, Fe, and Mn at 100 percent concentration. The different physicochemical characteristics of mine water and drinking water standards was also studied. Accordingly, total dissolved solid and chemical oxygen demand concentrations exceeded the drinking water standards for water samples collected from both mines.  相似文献   

3.
The use of soluble PO4(3-) and lime as a heavy metal chemical stabilization agent was evaluated for mine tailings from Leadville, Colorado. The tailings are from piles associated with the Wolftone and Maid of Erin mines; ore material that was originally mined around 1900, reprocessed in the 1940s, and now requires stabilization. The dominant minerals in the tailings are galena (PbS), cerrusite (PbCO3), pyromorphite (Pb5(PO4)3Cl), plumbojarosite (Pb0.5Fe3(SO4)2(OH)6), and chalcophanites ((Pb,Fe,Zn,Mn)Mn2O5 x 2H2O). The tailings were treated with soluble PO4(3-) and lime to convert soluble heavy metals (principally Pb, Zn, Cu, Cd) into insoluble metal phosphate precipitates. The treatment process caused bulk mineralogical transformations as well as the formation of a reaction rind around the particles dominated by Ca and P. Within the mineral grains, Fe-Pb phosphosulfates, Fe-Pb sulfates (plumbojarosite), and galena convert to Fe-Ca-Pb hydroxides. The Mn-Pb hydroxides and Mn-(+/-Fe)-Pb hydroxides (chalcophanites) undergo chemical alteration throughout the grains during treatment. Bulk and surface spectroscopies showed that the insoluble reaction products in the rind are tertiary metal phosphate (e.g. (Cu,Ca2)(PO4)2) and apatite (e.g. Pb5(PO4)3Cl) family minerals. pH-dependent leaching (pH 4,6,8) showed that the treatment was able to reduce equilibrium concentrations by factors of 3 to 150 for many metals; particularly Pb2+, Zn2+, Cd2+, and Cu2+. Geochemical thermodynamic equilibrium modeling showed that apatite family and tertiary metal phosphate phases act as controlling solids for the equilibrium concentrations of Ca2+, PO4(3-) Pb2+, Zn2+, Cd2+, and Cu2+ in the leachates during pH-dependent leaching. Both end members and ideal solid solutions were seen to be controlling solids.  相似文献   

4.
Cement was used to solidify/stabilize the abandoned mine tailings contaminated primarily with arsenic (up to 88 mg/kg) and lead (up to 35 mg/kg). Solidified/stabilized (s/s) forms with a range of cement contents, 5–30 wt%, were evaluated to determine the optimal binder content. Unconfined compression strength test (UCS), Korean standard leaching tests, toxicity characteristic leaching procedures (TCLP), and synthetic precipitation leaching procedure (SPLP) were used for physical and chemical characterization of the s/s forms. Addition of 5% cement was enough for the s/s forms to satisfy the UCS requirements (0.35 MPa). The addition of 7.5% cement remarkably reduced the leachability of arsenic in tailings. However, that of lead tends to increase slightly with increase of cement content due to its amphoteric nature. The discussions were made for determination of optimal binder content and for results from different evaluation procedures.  相似文献   

5.
The North Fork of Clear Creek (NFCC), Colorado, is an acid‐mine‐drainage‐impacted stream typical of many mountain surface waters affected by historic metal mining in the western United States. The stream is devoid of fish primarily because of high metal concentrations in the water (e.g., copper and zinc) and has large amounts of settled iron oxyhydroxide solids that coat the streambed. The NFCC is part of the Central City/Clear Creek Superfund site, and remediation plans are being implemented that include treatment of three of the main point‐source inputs and cleanup of some tailings and waste rock piles. This article examines dissolved (0.45‐μm filterable) concentrations of cadmium, copper, and zinc following several potential remediation scenarios, simulated using a reactive transport model (WASP4/META4). Results from modeling indicate that for cadmium, remediation of the primary point‐source adit discharges should be sufficient to achieve acute and chronic water‐quality standards under both high‐ and low‐flow conditions. To achieve standards for copper and zinc, however, the modeling scenarios suggest that it may be necessary to treat or remove contaminated streambed sediments in downstream reaches, as well as identify and treat nonpoint sources of metals. Recommendations for improvements to the model for metal transport in acid‐mine drainage impacted streams are made. These recommendations are being implemented by the U.S. Environmental Protection Agency. © 2009 Wiley Periodicals, Inc.  相似文献   

6.
An experiment was performed to examine the phytoremediation potential of Rhodes grass (Chloris gayana Kunth cv. ‘Pioneer’). The study sought to determine substrate tolerance, biomass production, and plant uptake of antimony (Sb), arsenic (As), cadmium (Cd), lead (Pb), silver (Ag), and zinc (Zn). The plants were grown on weight percent mixtures (5 percent, 15 percent, 25 percent, 35 percent, 50 percent) of a vertisol soil and base‐metal mine tailings (7–2,040 μg/g As, ≥ 30 μg/g Cd, 30–12,000 μg/g Pb, and 72–4,120 μg/g Zn). The 5 percent and 15 percent amendment of mine tailings increased the biomass production of Rhodes grass (from 0.1 g/plant to ≈ 3.5 g/plant) without appreciably elevating plant concentrations of the elements. Plant growth decreased by greater than 50 percent for the substrate containing greater than 25 percent tailings (3,023 μg/g Pb and 1,084 μg/g Zn). Reduced biomass production coincided with maximal Zn uptake by Rhodes grass (249.8 μg/g), indicating tailings induced phytotoxicity. The total concentrations of metals and metalloids tolerated by Rhodes grass in the plant‐growth medium indicated hypertolerance to elevated As, Pb, and Zn concentrations. Partial extraction of the plant‐growth medium determined that plant‐available Pb was ten times higher than Ag, As, Cd, and Zn availability. However, Rhodes grass accumulated low levels of Pb, in addition to As and Cd, over the experimental range, indicating low fodder toxicity risk to browsing livestock. This study concludes that if there are no invasive species issues associated with conservation land uses, Rhodes grass is well suited to metalliferous mined land revegetation and would therefore be highly effective for such programs in subtropical and tropical Australia. © 2005 Wiley Periodicals, Inc.  相似文献   

7.
Bauxite tailings are a major type of solid wastes generated in the flotation process. The waste by-products caused significant environmental impact. To lessen this hazardous effect from poisonous mine tailings, a feasible and cost-effective solution was conceived and implemented. Our approach focused on reutilization of the bauxite tailings by converting it to 4A zeolite for reuse in diverse applications. Three steps were involved in the bauxite conversion: wet-chemistry, alkali fusion, and crystallization to remove impurities and to prepare porous 4A zeolite. It was found that the cubic 4A zeolite was single phase, in high purity, with high crystallinity and well-defined structure. Importantly, the 4A zeolite displayed maximum calcium ion exchange capacity averaged at 296 mg CaCO3/g, comparable to commercially-available zeolite (310 mg CaCO3/g) exchange capacity. Base on the optimal synthesis condition, the reaction yield of zeolite 4A from bauxite tailings achieved to about 38.43%, hence, this study will provide a new paradigm for remediation of bauxite tailings, further mitigating the environmental and health care concerns, particularly in the mainland of PR China.  相似文献   

8.
采用改进的电动力技术去除铅锌矿尾砂中的Pb,Zn,Cu。研究了铅锌矿尾砂中重金属在改进电动力技术处理情况下的去除情况。实验结果表明,经过7d的电动力实验,Pb、Zn和Cu的总去除率分别为34%,33%,37%,其中酸溶态去除效果显著,分别达到66%,86%,81%。Pb和Cu的铁锰氧化物结合态去除率为39%和42%,其他形态去除率较低,在10%左右。  相似文献   

9.
The cycling of iron and sulfur in mine tailings depends on various chemical and microbial reactions. The present study was undertaken in order to assess the role played by populations of sulfate-reducing bacteria (SRB) on the fate of Fe and SO4 2- in Cu–Zn and Au tailings. Samples were taken along a 50-cm deep profile at all sites and analyzed for SRB populations, solid-phase mineralogy and porewater geochemistry. Results indicated that the Cu–Zn tailings were highly oxidized near the surface, as shown by the very low pH, high redox potential, large concentrations of soluble Cu, Zn and sulfate in the porewaters, and the depletion of pyrite. On the other hand, Au tailings were more pH neutral, slightly anoxic, and showed low concentrations of Fe and SO4 2- in the porewaters and very little pyrite oxidation. SRB populations in the Cu–Zn tailings increased with depth, just below the oxic/anoxic interface and were linked to a decline of sulfate and DOC concentrations around the same depths. However, large concentrations of dissolved Fe were also observed around the same depth intervals. Our results suggest that SRB could be involved in sulfate reduction in the Cu–Zn tailings, because the solubility of sulfate was not controlled by the precipitation of sulfate-rich minerals. However, the presence of soluble Fe in the reduced portion of the tailings was also indicative of the presence of iron reducing bacteria (IRB). These bacteria were not enumerated in the present study, but their co-occurrence with SRB has been reported in the past in similar mining environments. The decline of sulfate and the release of soluble iron into the porewaters were also paralleled by a pH increase and the generation of alkalinity. In the Au tailings, SRB populations were generally constant throughout the depth profile and could not be ascribed to sulfate reduction in the porewaters. The solubilities of sulfate and iron in these tailings were partially controlled by jarosite and Fe-oxide minerals. It is then clear that SRB populations could be recovered from various mining sites, but their activity cannot be ascertained based on microbial enumeration and geochemical data.  相似文献   

10.

To date, heavyweight concretes have been produced from various heavy aggregates as radiation insulation materials, and their gamma ray absorption levels have been investigated. Many of the studies have used heavy aggregates instead of cement or coarse aggregates from composite material components. The present study prepared lightweight concretes using copper mine tailings, clay brick dust, and fly ash instead of fine aggregates. Some mechanical tests (density, compressive strength, and ultrasonic pulse velocity) were performed on composite blocks with dimensions of 5*5*5 cm, and radiation interaction parameters [linear absorption coefficient (cm−1), mass attenuation coefficient (cm2/gr), HVL (half-value layer) (cm), MFP (cm), and permeability (%)] were measured. Radiation interaction parameters were obtained using a HPGe gamma detector. Radiation measurements were performed at five different photon energies: 583 keV (133Ba), 609 keV (133Ba), 662 keV (137Cs), 911 keV (133Ba), 1173 keV (60Co), and 1332 keV (60Co). Additionally, the compressive strength and UPV values of composite materials were associated with their gamma ray permeability. Tests revealed that samples with the addition of copper mine tailings yielded the best energy absorption at all energy levels and that absorption decreased as the energy level increased. For example, with the increasing of the energy level, mass attenuation coefficients decreased. The highest mass attenuation coefficients were obtained as 0.128 cm2/g at an energy level of 583 keV in composites produced from copper mine tailings. On the other hand, it was measured at the same energy level as 0.069 cm2/g (a 46% decrease) in the composites produced with fly ash. In addition, it was observed that fly ash used as a fine aggregate did not have a significant effect on mass attenuation coefficient and could be used as a gamma shield if the material thickness was increased to an average of 14 cm. This study revealed that tailings materials could be used as radiation shields. This study also demonstrated that not using heavy aggregates and producing lightweight concrete in radiation shield production significantly reduced shield production cost.

  相似文献   

11.
Modelling the biochemical degradation of solid waste in landfills   总被引:2,自引:0,他引:2  
This paper describes the concept of a generic spatially distributed numerical model that has been developed to contain and link sub-models of landfill processes in order to simulate solid waste degradation and gas generation in landfills. The model includes the simulation of the transport of leachate and gases, and the consolidation of the solid waste. The structure of the model consists of linked discrete constant volume elements. The paper outlines the theoretical background that provides the framework to contain the numerical procedures that make up the model. Details are also given of the approach to the modelling of the chemistry and microbiology of solid waste degradation.  相似文献   

12.
13.
One of the important sectors that contribute to the national economy is the mining sector. During the mining of minerals and ores, waste materials in the form of overburden are generated. As these are not useful to the mine owners, they may be inappropriately disposed of into the environment, posing serious threat to the environment in the form of land degradation, water and air pollution. The present paper discusses the existing status of waste generation, its characteristics and the disposal methods being adopted in India. Impacts associated with waste disposal practices together with preventive measures for waste disposal are also discussed. Finally, strategies for improvements in existing waste management and for incorporating the same in the overall development plan for the mines are suggested.  相似文献   

14.
Mine tailings are formed as an industrial waste during coal and ore mining and processing. In the investigated process, following the extraction of gold from the ore, the remaining tailings are subjected to a two-stage chemical treatment in order to destroy the free cyanide and to stabilize and coagulate heavy metals prior to discharge into the tailings pond. The aim of this study was the investigation of the feasibility of utilization of the tailings as an additive material in Portland cement production. For this purpose, the effects of the tailings on the compressive strength properties of the ordinary Portland cement were investigated. Chemical and physical properties, mineralogical composition, particle size distribution and microstructure of the tailings were determined by Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), particle size analyzer (Mastersizer) and scanning electron microscope (SEM). Following the characterization of the tailings, cement mortars were prepared by intergrinding Portland cement with dried tailings. Composition of the cement clinkers were adjusted to contain 5, 15, 25% (wt/wt) dried tailings and also silica fume and fly ash samples (C and F type) were added to clinker in different ratios. The mortars produced with different amounts of tailings, silica fume, fly ashes and also mixtures of them were tested for compressive strength values after 2, 7, 28 and 56 days according to the European Standard (EN 196-1). The results indicated that gold tailings up to 25% in clinker could be beneficially used as an additive in Portland cement production. It is suggested that the gold tailings used in the cement are blended with silica fume and C-type fly ash to obtain higher compressive strength values.  相似文献   

15.
Stormwater runoff from the University of California, Davis/U.S. Department of Energy Laboratory for Energy‐Related Health Research (UCD/US DOE LEHR) Superfund site located on the University of California campus in Davis, California, has been found to contain over 500 ng/L of total recoverable mercury, which is about ten times the California Toxics Rule criterion. This stormwater runoff is discharged to Putah Creek, which is Clean Water Act Section 303(d) listed as impaired for excessive mercury bioaccumulation in edible fish. A discussion is presented on the potential impact of the mercury in stormwater runoff from LEHR leading to excessive bioaccumulation of mercury in Putah Creek fish. The mercury in the stormwater runoff is derived from former flooding of the soils near the creek, which contains mercury derived from abandoned upstream mercury mines located in the Coast Range Vaca Hills to the west of LEHR. The implications of this situation for implementing a Total Maximum Daily Load (TMDL) to control mercury in stormwater runoff to Putah Creek are presented. © 2009 Wiley Periodicals, Inc.  相似文献   

16.
In situ bioremediation (ISB) melds an understanding of microbiology, chemistry, hydrogeology, and engineering into a strategy for planned and controlled microbial degradation of specific contaminants. ISB creates subsurface environmental conditions, typically through reduction oxidation manipulation, which induce the degradation of contaminants via microbial catalyzed biochemical reactions. In turn, the microbes produce enzymes that are utilized to derive energy and that are instrumental in the degradation of target chemicals. To accomplish this chain of events, the type of microorganisms, contaminant, and the geological conditions at the site must be considered. Since in situ conditions are manipulated by engineered means, the most important consideration is the ability to transmit and mix liquids in the subsurface. The Interstate Technology Regulatory Council (ITRC)–ISB Team has recently completed a guidance document that describes a systematic approach to ISB in groundwater. ITRC is a state‐led coalition of more than 40 states working together with industry and stakeholders to achieve regulatory acceptance of environmental technologies. © 2003 Wiley Periodicals, Inc.  相似文献   

17.
Acidic drainage and metal leaching are long-term environmental liabilities that can persist for many decades to millennia. One technique to improve the water chemistry and ecology of post-mining landscapes is to relocate and submerge net-acid-generating mine materials in a lake or water-retaining impoundment. One example of a carefully executed relocation of waste rock took place at the Eskay Creek Mine in Canada. Pre-relocation studies included an empirical relationship that related (1) the amount of acidity retained by the waste rock during past oxidation to (2) the amount of lime needed in each truckload for neutralization of the acidity and for suppression of metal release. During relocation, thousands of rinse pH measurements indicated net acidity varied significantly over short distances within the waste rock and that acidic rock could not be reliably segregated from near-netural rock. After relocation, water from the watershed continued to be acidic for a few years, then returned to near-neutral pH and near-background concentrations of metals. The chemistry of the lake where the waste rock was submerged remains near background conditions. Therefore, with careful planning and implementation, the relocation and submergence of net-acid-generating materials can greatly improve post-mining water chemistry.  相似文献   

18.
磁选柱在矿山磁选尾矿和硫铁矿烧渣处理中的应用   总被引:2,自引:0,他引:2  
介绍了磁选柱的结构、分选原理、分选过程及其在处理矿山磁选尾矿和硫铁矿烧渣方面的应用。用磁选柱精选磁铁矿尾矿,得到的精矿品位大于66%;用磁选柱精选硫铁矿烧渣,得到的精矿品位大于65%。硫的质量分数降至0.84%。  相似文献   

19.
Increasingly wetlands are used for treatment of metal-contaminated water or as a cover over metal-enriched mine tailings. Natural wetlands may also be contaminated with metals from anthropogenic sources. While wetland conditions tend to be favorable for immobilization of metals, wetland plants could influence metal mobility through redox and pH processes in the rhizosphere. Our current knowledge of these processes is reviewed, focusing on the question of whether the advantages of growing wetland plants in metal-contaminated sediments outweigh the disadvantages. Wetland plants alter the redox conditions, pH and organic matter content of sediments and so affect the chemical speciation and mobility of metals. Metals may be mobilized or immobilized, depending on the actual combination of factors, and it is extremely difficult to predict which effects plants will actually have on metal mobility under a given set of conditions. However, while the effects of plants can extend several tens of centimeters into the sediments, there are no reports suggesting large-scale mobilization of metals by wetland plants.  相似文献   

20.
包装垃圾是由废弃的包装物产生的固体垃圾,约占我国城市生活垃圾的1/3,虽然政府进行了必要回收,但仍有1/3以上的塑料、玻璃等包装物没能被有效回收利用,成了填埋场的主要填埋物,造成了环境污染和土地、石油等不可再生资源大量浪费。从回收利用和源头减量两方面提出包装垃圾的应对,一是对包装垃圾按来源、成分等进行详细分类,并建议回收处置方法;二是从制定行业政策方面来减少过度包装和扶持再生资源行业健康发展,有效处置包装垃圾等可再生资源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号