首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Beier  C.  Rasmussen  L.  Pilegaard  K.  Ambus  P.  Mikkelsen  T.  Jensen  N. O.  Kjøller  A.  Priemé  A.  Ladekarl  U. L. 《Water, Air, & Soil Pollution: Focus》2001,1(1-2):187-195
The fluxes of the major nitrogen compounds havebeen investigated in many ecosystem studies over the world.However, only in few studies has attention been drawn to theimportance of the fluxes of minor gaseous nitrogen compoundsto complete the nitrogen cycle. In Denmark a detailed study onthe nitrogen cycle in an old beech forest has been implementedin 1997 at Gyrstinge near Sorø, Zealand. The study includesthe fluxes of the gases NO, N2O and water mediatedtransport of NO3 - and NH4 +. Measurementsof the fluxes of the gaseous compounds are performed withmicro-meteorological methods (eddy-correlation and gradient)and with chambers. Water mediated fluxes encompass rain,throughfall, stem-flow and leaching from the root zone. Thehydrological model is verified by TDR measurements. The findings show that the total water mediated N input tothe forest floor with throughfall and stemflow was 25.6 kg Nha-1 yr -1, and open field wet deposition withprecipitation was 19.0 kg N ha-1 yr -1. The internalcycling of N in the ecosystem measured as turnover oflitterfall and plant uptake was 100 kg N ha-1 yr -1and 14 kg N ha-1 yr -1, respectively. The fluxes ofthe gaseous N compounds NO and N2O were of minorimportance for the total N turnover in the forest, NOxemission being <1 kg N ha-1 yr -1 and N2Oemission from the soil being 0.5 kg N ha-1 yr -1 withno significant difference between wet and dry soils.Concentrations of NO3 - and NH4 + in thesoil solution beneath the rooting zone are very small andconsequently the N leaching is almost negligible. It isconcluded that the nitrogen mass balance of this old beechforest ecosystem mainly is controlled by the input by dry andwet deposition and a large internal N cycle with a fast litterturnover. The nitrogen input tothe forest ecosystem which currently exceeds the critical loadby 5 kg N ha-1 yr -1is mainly accumulated in the soil and no significant nitrateleaching is occurring.  相似文献   

2.
Nitrate leaching was measured over seven years of nitrogen (N) addition in a paired-catchment experiment in Alptal, central Switzerland (altitude: 1200 m, bulk N deposition: 12 kg ha-1 a-1). Two forested catchments (1500 m2 each) dominated by Picea abies) were delimited by trenches in the Gleysols. NH4NO3 was added to one of the catchments using sprinklers. During the first year, the N addition was labelled with 15N. Additionally, soil N transformationswere studied in replicated plots. Pre-treatment NO3 --N leaching was 4 kg ha-1 a-1 from both catchments, and remained between 2.5 and 4.8 kg ha-1 a-1 in the control catchment. The first year of treatment induced an additional leaching of 3.1 kg ha-1, almost 90% of which was labelled with 15N, indicating that it did not cycle through the large N pools of the ecosystem (soil organic matter and plants). These losses partly correspond to NO3 - from precipitation bypassing the soil due to preferential flow. During rain or snowmelt events, NO3 - concentration peaks as the water table is rising, indicating flushing from the soil. Nitrification occurs temporarily along the water flow paths in the soil and can be the source of NO3 - flushing. Its isotopic signature however, shows that this release mainly affects recently applied N, stored only between runoff events or up to a few weeks. At first, the ecosystem retained 90% of the added N (2/3 in the soil), but NO3 - losses increased from 10 to 30% within 7 yr, indicating that the ecosystem became progressively N saturated.  相似文献   

3.
Two models, N_EXRET and INCA, were applied to the Simojoki river basin (3160 km2) in northern Finland in order to assess nitrogen retention in wetlands and lakes. N_EXRET is a spatial, export coefficient-based N export and retention model developed for large river basins. It utilizes remote sensing-based land use and forest classification, evaluated export coefficients, and data on areal N deposition and point sources of N. A new version (v1.7) of the Integrated Nitrogen in CAtchments model (INCA) is a semi-distributed, dynamic nitrogen process model, which simulates and predicts nitrogen transport and processes within catchments. Average retention of the gross total N load of 700 t a-1 to the river system was estimated using N_EXRET model as 17 t N a-1 to the wetlands and 77 t N a-1 to the lakes. A good fit was found between modeled and measured values along the river. Inorganic N fluxes simulated by the INCA model were compared with measured fluxes along the river Simojoki, with a good fit between modeled and measured NH4 +-N fluxes, and an adequate fit for NO3 --N fluxes. Both fluxes were overestimated at the first reach, below Lake Simojärvi. High percentage of peatlands led to high NH4 +-N/NO3 --N ratios derived from data, indicating negligible nitrification in large river subbasins and particularly in small research catchments.  相似文献   

4.
A continuous relaxed eddy accumulation system ispresented for the automated measurement of surface/atmosphere exchange fluxes of atmospheric ammonia (NH3) at a single height. The new system features sampling by parallel plate denuder inlets, online chemical analysis using the conductivity cell of a commercially available NH3 analyzer and online flux calculation. The effective detection limit of the system for air concentrations is 0.2 g m-3 and it is estimated to resolve fluxes > ± 20 ng m-2 s-1, depending on the NH3 concentration and turbulence. The performance of the system was tested in two measurement campaigns above agricultural grassland, in which it was compared with a 3-point continuous gradient system. During the first campaign, after urea application of 47 kg N ha-1 in autumn, the REA system derived fluxes which were on average twice as large as the gradient fluxes, while concentrations agreed closely (on average within 4%). Possible reasons include differences in the footprint and an over-correction of the gradient flux in stable conditions. Due to wet and cold conditions, only 0.3% of the fertilizer N was volatilized as NH3 during the first week. Results from the deployment of an improved system are presented for a summer day, 6 days after fertilization with calcium ammonium nitrate. The agreement of both concentrations (on average within 13%) and fluxes (26%) was very encouraging and similar to the agreement found between two state-of-the-art gradient systems with online analysis.  相似文献   

5.
Amounts of readily soluble nutrients on asphalt parking lot surfaceswere measured at four locations in metropolitan Phoenix, Arizona, U.S.A. Using a rainfall simulator, short intense rainfall events were generated to simulate `first flush' runoff. Samples were collected from 0.3 m2 sections of asphalt at 8 to 10 sites on each of four parkinglots, during the pre-monsoon season in June-July 1998 and analyzed for dissolved NO3 --N, NH4 +-N, soluble reactive phosphate (SRP), and dissolved organic carbon (DOC). Runoff concentrations varied considerably for NO3 --N and NH4 +-N (between 0.1 and 115.8 mg L-1) and DOC (26.1 to 295.7 mg L-1), but less so for SRP (0.1 to 1.0 mg L-1), representing average surface loadings of 191.3, 532.2, and 1.8 mg m-2 respectively. Compared with similar data collected from undeveloped desert soil surfaces outside the city, loadings of NO3 --N and NH4 +-N on asphalt surfaces were greater by factors of 91 and 13, respectively. In contrast, SRP loads showed little difference between asphalt and desert surfaces. Nutrient fluxes in runoff from a storm that occurred shortly after the experiments were used to estimate input-output budgets for 3 of the lots under study. Measured outputs of DOC and SRP were similar to those predicted using rainfall and experimentally determined surface loadings, but for NH4 +-N and particularly for NO3 --N, estimated rainfall inputs and surface runoff were significantly higher than exports in runoff. This suggests that parking lots may be important sites for nutrient accumulation and temporary storage in arid urban catchments.  相似文献   

6.
Year-to-year variation in SO4 2-,NO3 -, Ca2+, K+, and Mg2+concentrations in forest floor and mineral soil percolatefrom a forested, podzolic soil at the Turkey Lakes Watershedon the Precambrian Shield was assessed for monotonic trendsbetween 1986 and 1995. Our objective was to examine howrapidly ion concentrations in soil percolate equilibratedafter stabilization of SO4 2- concentrations inprecipitation. Significant negative trends were detected inmonthly Ca2+, and Mg2+ concentrations in forestfloor and SO4 2-, Ca2+, and Mg2+ inmineral soil percolate during the 10-year-period. Thedecline in Ca2+ and Mg2+ was greater than annualdecreases in SO4 2- and NO3 - in forestfloor percolate and proportional to the reduction inSO4 2- in mineral soil percolate. Response ofmineral soil percolate to a 15 molc L-1SO4 2- decrease in wet-only precipitation between1985 and 1986 was a gradual decline in SO4 2-concentration through 1995. The five-year meanSO4 2- concentration in bulk precipitation, forestfloor percolate, and mineral soil percolate decreased 8, 9and 18 molc L-1 from 1986–90 to 1991–95.Microbial (mineralization of organic S) and sorption(release from and/or retention in the pool of insolubleSO4 2-) processes in the soil were logicalexplanations for the observed changes in SO4 2- inmineral soil percolate.  相似文献   

7.
This paper reports data from a field study investigating the impacts of elevated ammonia (NH3) deposition on Calluna vulgaris growing on an ombrotrophic peat bog in S.E. Scotland. Shoot extension, foliar N concentrations, chlorophyll concentration and chlorophyll fluorescence were measured during the second growing season of exposure to a gradient of ammonia concentrations. Results indicate that NH3 increases growth between 150–200 kg N ha?1y?1 cumulative deposition. Foliar N content increased significantly in response to NH3 cumulative deposition up to 400 kg N ha?1 y?1 whereas chlorophyll a content significantly decreased. Measurements of Fv/Fm suggest that although NH3 exposure altered the growth and reduced chlorophyll a, the efficiency of photosystem II was insensitive to NH3–N deposition at this stage.  相似文献   

8.
The process-based INCA model was applied to Dalelva Brook (3.2 km2) and the Bjerkreim River (685 km2) including several subcatchments, in order to test the model's ability to simulate streamwater nitrate (NO3 -) dynamics and output fluxes under highly contrasting climatic conditions and nitrogen (N) loading. The simulated runoff volumes and mean NO3 - concentrations at Dalelva and Bjerkreimwere within +2 to +10% of the measured average during 1993–1995 (–19 to +31% within individual years). INCA to a great extent also reproduced the observed streamwater flow dynamics at both study sites (coefficient of determination, r 2 > 0.70). Temporal variation of streamwater NO3 - during 1993–1995 was captured quite well by the model, especially at small catchments with a distinct seasonal NO3 - pattern (r 2 = 0.46–0.68). At the Bjerkreim River outlet, the relationship were somewhat weaker (r 2 = 0.26, p < 0.01). Despite a few situations where the model failed to capturethe streamwater NO3 - dynamics, INCA proved to be a quite robust tool for simulating NO3 - dynamics and output fluxes in the two study catchments.  相似文献   

9.
This paper reports data from a field study investigating the impacts of elevated ammonia (NH3) deposition on Calluna vulgaris growing on an ombrotrophic peat bog in S.E. Scotland. Shoot extension, foliar N concentrations, chlorophyll concentration and chlorophyll fluorescence were measured during the second growing season of exposure to a gradient of ammonia concentrations. Results indicate that NH3 increases growth between 150–200 kg N ha–1y–1 cumulative deposition. Foliar N content increased significantly in response to NH3 cumulative deposition up to 400 kg N ha–1 y–1 whereas chlorophyll a content significantly decreased. Measurements of Fv/Fm suggest that although NH3 exposure altered the growth and reduced chlorophyll a, the efficiency of photosystem II was insensitive to NH3-N deposition at this stage.  相似文献   

10.
The effect of liming and ash treatment on pools, fluxes and concentrations of major solutes was investigated at two forestedsites (Norway spruce) in S. Sweden. One site was treated 15 yrprior to sampling (Hasslöv-Hs; dolomite: 3.45 and 8.75 t ha-1) and the other 4 yr before (Horröd-Hd; dolomite: 3.25 t ha-1; wood ash: 4.28 t ha-1). Effects of limingwere most pronounced in the O horizon solutions where higher pH,elevated Ca (120–700 M) and Mg (50–600 M) were observed as compared to control plots. The impact on the mineralsoil was more moderate. Soil solution concentrations were combined with modelled hydrological flow to calculate mass flows,which largely followed the trends of the solution composition. Liming also resulted in large increases of both exchangeable Caand Mg as well as effective cation exchange capacity (CECE;2–5 times the controls). The base saturation (BS%) was raised to 60–100% in the O horizon while in the mineral soil elevated values were only seen at the Hs site (20–60%; down to 10–15 cm depth for 8.75 t ha-1). Ash treatment did notaffect either the soil solution nor the exchangeable pool to thesame extent as lime. In general, the impact at the Hd site was less pronounced especially in the mineral soil, which might be due to shorter treatment time (4 vs. 15 yr) and also differentthickness of the O horizon. Budget calculations for Ca and Mg originating from the lime showed that a major part of the Ca (40–100%) was retained in the top 30 cm of the soil, of which30–95% was present in the O horizon. The mobility of Mg wasgreater and it was estimated that a significant part had been leached from the profile (30 and 50 cm depth) after 15 yr. Increased mass flows of NO3 - due to nitrification resulting from liming at the Hs site were calculated in the range120–350 mmol m-2 yr-1 (or 1.2–3.5 kmol ha-1 yr-1). There was significant leaching of Al (25–60 mmol m-2 yr-1), of which about 70% was inorganic, in thelower B horizon at both sites with no influence of liming.  相似文献   

11.
Total organic carbon (TOC) concentrations and fluxes in throughfall, forest floor leachate, soil solution (15 and 35 cm depths), and groundwater for coniferous forest sites in the boreal zone throughout Finland are described. Eight upland forest stands and one peatland forest stand are included in the study and the samples were collected during 1991–1997. Carbon (C) pools in the living tree biomass and soil compartments are presented, and the hydrophobic/hydrophilic and acidic components of dissolved organic carbon (DOC) in samples collected in autumn 1999 and spring 2000 from two of the sites are compared. Biomass (aboveground and belowground) pools of C averaged 88 Mg ha-1 and soil (humus layer + 20 cm soil layer) averaged 55 Mg ha-1. Stand throughfall TOC monthly mean concentrations ranged from 4.0 to 18.6 mg L-1 and annual fluxes averaged 4.0 g m-2 yr-1. TOC concentrations in the water passing through the forest floor and soil decreased with depth. Plot mean concentrations at 35 cm depth values ranged from 4.1 to 21.2 mg L-1 and fluxes averaged 3.7 g m-2 yr-1. Throughfall TOC concentrations were lowest during the winter, snowfall period and highest during the growing season. No monotonic trends in throughfall TOC concentrations over the 1991–1997 period were found. Soil solution TOC concentrations varied considerably, both within and between years. DOC in throughfall, forest floor, and soil solutions and in both autumn and spring seasons was dominated by hydrophobic fractions, particularly acids. Spruce canopies and litter appear to be important sources of soluble organic carbon, particularly acidic and hydrophobic compounds. Further studies on the nature and dynamics of organic carbon fluxing through coniferous, boreal forest ecosystems are needed.  相似文献   

12.
Regular additions of NH4NO3 (35–140 kg N ha−1 yr−1) and (NH4)2SO4 (140 kg N ha−1 yr−1) to a calcareous grassland in northern England over a period of 12 years have resulted in a decline in the frequency of the indigenous bryophyte species and the establishment of non-indigenous calcifuge species, with implications for the structure and composition of this calcareous bryophyte community. The lowest NH4NO3 additions of 35 kg N ha−1 yr−1 produced significant declines in frequency of Hypnum cupressiforme, Campylium chrysophyllum, and Calliergon cuspidatum. Significant reductions in frequency at higher NH4NO3 application rates were recorded for Pseudoscleropodium purum, Ctenidum molluscum, and Dicranum scoparium. The highest NH4NO3 and (NH4)2SO4 additions provided conditions conducive for the establishment of two typical calcifuges – Polytrichum spp. and Campylopus introflexus, respectively. Substrate-surface pH measurements showed a dose-related reduction in pH with increasing NH4NO3 deposition rates of 1.6 pH units between the control and highest deposition rate, and a further significant fall in pH, of >1 pH unit, between the NH4NO3 and (NH4)2SO4 treatments. These results suggest that indigenous bryophyte composition may be at risk from nitrogen deposition rates of 35 kg N ha−1 yr−1 or less. These effects are of particular concern for rare or endangered species of low frequency.  相似文献   

13.
Concentrations and isotopic compositions of NO3 - from the Oldman River (OMR) and some of its tributaries (Alberta, Canada) have been determined on a monthly basis since December 2000 to assess temporal and spatial variations of riverine NO3 - sources within the OMR basin. For the OMR sites, NO3 --N concentrations reached up to 0.34 mg L-1, δ15N-NO3 - values varied between –0.3 and +13.8‰, and δ18O-NO3 - values ranged from –10.0 to +5.7‰. For the tributary sites, NO3 --N concentrations were as high as 8.81 mg L-1, δ15N-NO3 - values varied between –2.5 and +23.4‰, and δ18O-NO3 - values ranged from –15.2 to +3.4‰. Tributaries in the western, relatively pristine forested part of the watershed add predominantlyNO3 - to the OMR with δ15N-NO3 - values near +2‰ indicative of soil nitrification. In contrast, tributariesin the eastern agriculturally-urban-industrially-used part of the basin contribute NO3 - with δ15N-NO3 - valuesof about +16‰ indicative of manure and/or sewage derived NO3 -. This difference in δ15N-NO3 - values of tributaries was found to be independent of the season, but rather indicates a spatial change in the NO3 - source, which correlates with land use changes within the OMR basin. As a consequence of tributary influx, δ15N-NO3 - values in the Oldman River increased from <+3‰ to >+6‰ in the downstream direction (W to E), although [NO3 --N] increased only moderately (generally <0.5 mg L-1). This study demonstrates the usefulness of δ15N-NO3 - and δ18O-NO3 - values in identifying the addition of anthropogenic NO3 - to riverine systems.  相似文献   

14.
Ammonia concentration gradients were measuredabove a grassland in an agricultural region fromJuly 1998 to July 2000 at the locationSchagerbrug in the Netherlands. They were used tocalculate the surface-atmosphere exchange ofammonia by means of the aerodynamic gradienttechnique. Measurements of the ammonia exchangewere also performed at a grass field that is partof a major wetland reserve in the centre of theNetherlands (Oostvaardersplassen), during theperiod June 1994–September 1995. At Schagerbrug,low net emissions or small depositions weremeasured during the winter months, and a netemission up to 5 kg NH3 ha-1 month-1 in summer. The net annual emission was 26 kgN ha-1, with manure application contributingabout 50% of this emission. AtOostvaardersplassen mainly deposition occurred,but large emissions were measured in autumn. Themeasured exchange fluxes are compared to modelevaluations that incorporate plant physiologicaldata, such as apoplastic NH4 +concentrations and pH. Results show a goodagreement between field observations and modelsimulations, although some improvements arenecessary during nighttime periods. Themeasurements are conducted within the GRAMINAEproject, a second tranche project of EC TERI.  相似文献   

15.
Soil solution samples were taken from two sites (Horröd and Hasslöv) in the south part of Sweden to evaluate how soil solution chemistry responded to different treatmentswith dolomite and wood ash. At Horröd, samples were taken four years after application of wood ash, 4.28 ton ha-1 and dolomite, 3.25 ton ha-1. At Hasslöv dolomite, 3.45 ton ha-1 and 8.75 ton ha-1 was applied and samples were taken 15 yr later. It was found that treatment with dolomite at one site (Hasslöv) resulted in higher pH values (<2 pH units) and higher nitrification. It was also found at this site that the total Al and the inorganic Al concentrations decreased with dolomite treatment. The Ca, Mg, DOC, Fe, SO4 2- and Cl- concentrations, mainly in the topsoil, were found to be higher at both sites, following dolomite treatment; Ca and Mg concentrations were 2–8 times higher (<820 M) than in controls (<70 M). Wood ash was found to have less impact. The PO4 concentration in the O2 horizon at Hasslöv decreased due to dolomite-treatment. ANOVA (Analyse of Variance) and PLS (Partial Least Square) were used to evaluate the data from the two sites.  相似文献   

16.
To study the effects of elevated inputs of acidity and nitrogen (N), 1000 mmol m-2 a-1 of ammonium sulphate (NH4NO3) equivalent to an input of potential acidity of 2000 mmol m-2 a-1 was applied annually for 11 yr between 1983 and 1993 in a beech forest at Solling, Germany. Most of the applied NH4 + was nitrified in the litter layer and in the upper mineral soil. N in soil leachate quickly responded to the elevated input, but most of the applied N was stored in the soil or left the ecosystem via pathways other than soil output. Leaching of N from the soil increased until the last year of N addition. After the last N application, N fluxes decreased rapidly to low values. The buffering of acidity produced by the nitrification of the applied NH4 + was caused mainly by three different processes: (i) sulphur (S) retention, (ii) release of aluminium, (iii) release of base cations. Retention of S took place mostly in the subsoil. 72% of the S input was recovered in output after 14 years of the experiment. Due to the increased fluxes of mobile anions with soil solution, outputs of cations increased drastically.  相似文献   

17.
The use of alkyl-Pb additives in gasoline during the 20th century resulted in widespread Pb pollution. The objective of this study was to determine the relative importance of atmospherically deposited Pb and Pb released through weathering to soil Pb pools at the Hubbard Brook Experimental Forest, New Hampshire. We employed a selective extraction method to estimate the amount of Pb that was: water-soluble + exchangeable (EX); inorganically bound (IB); organically bound (ORG); bound to amorphous oxides (AMOX); and bound in crystalline minerals (RES). After normalizing crystalline-Pb concentrations to the immobile element Ti, we estimated that 14.1 kg ha-1 of Pb has been weathered from Hubbard Brook soils in the 12,000–14,000 yr since deglaciation – a long-term average release of 1.0–1.2 g ha-1 a-1. Analysis of Ti-normalized total Pb concentrations indicated a net post-glacial decrease of 7.2 kg ha-1 in the total Pb pool – consisting of a net accumulation of 4.9 kg ha-1 in the O horizon, and a net loss of 12.1 kg ha-1 from mineral soil. Atmospheric deposition of Pb between 1926 and 1989 (estimated as 8.7 kg ha-1) was a major source of Pb in the post-glacial period. Together, long-term weathering release and 20th century atmospheric deposition could account for all of the Pb in the EX, IB, ORG, and AMOX fractions. Lead from gasoline appears to constitute a major fraction of the total Pb burden in Hubbard Brook soils. Periodic analysis of soil Pb fractions may be useful in monitoring the fate of Pb in forest soils.  相似文献   

18.
The lateral down-slope movement of water, NO3 -, NH4 +, SO4 2-, H+ and DOC through an ablation till was examined from 1987 to 1990 for a one hectaresoil catena on a steep hillslope with uniform forest cover at the Turkey Lakes Watershed (TLW), Ontario, Canada. Natural variation in the export of nutrients from the soil profile via soil water to Little Turkey Lake was assessed in relation to nutrient distribution in soil at different topographic positions.Subsurface throughflow exhibited dramatic differences in nutrientconcentrations and fluxes with slope position, largely reflectingthat of the soil horizons through which the water passed. GreaterNO3 -, SO4 2-, and DOC concentrations in subsurface water in the upper, well-drained hillslope were a reflection of enrichment by contact with more acidic, more developed podzols, and more favorable soil physical and biological conditions for NO3 - retention in solution.Nutrient inputs to the lake were strongly influenced by increaseddown-slope transport of water, and increased SO4 2-, N, and C retention in wetter, less-developed podzolic soils that characterize lower slope positions. An understanding of water movement and soil development variation withtopographic position was required to accurately estimate nutrient budgets for steep slopes at TLW.  相似文献   

19.
We reviewed the current methods for calculatingcritical loads of acidity for forest soils. The consequencesof four sets of assumptions concerning the soil modelstructure, parameter values and the critical loads criterionwere explored by comparing the values of the averageaccumulated exceedance (AAE) calculated for Finland withdeposition values for the year 1995. The AAE index is given inthe unit of deposition and is a measure of how far a region isfrom being protected in terms of fulfilling a certaincriterion, taking into account the size of the ecosystem areas.Using a critical limit for the molar ratio of theconcentrations of base cations to aluminium in soil solutiongave the lowest average accumulated exceedance. Assumingorgano-aluminium complexes and leaching of organic anions gaveAAE = 4 eq ha-1 a-1, which was close to the valueobtained with the standard approach used in Finland, assuminggibbsite equilibrium and no leaching of organic anions,yielding AAE = 5 eq ha-1 a-1. With a critical basesaturation limit, instead of the concentrations criterion, theAAE index was 17 eq ha-1 a-1. The highest averageaccumulated exceedance (AAE = 25 eq ha-1 a-1),corresponding to the lowest critical load, was obtained whenthe effects-based criterion (critical concentration or criticalbase saturation) was substituted with one restricting thedeterioration of the neutralizing capacity of the soil, ANC le(crit) = 0. These tests illustrate the variabilityof the critical load values for acidity that can be introducedby changing the criterion or by varying the calculation method,without, however, representing the extreme values of criticalloads that could be derived.  相似文献   

20.
The paired catchment study at the forested Bear Brook Watershed in Maine (BBWM) U.S.A. documents interactions among short- to long-term processes of acidification. In 1987–1989, runoff from the two catchments was nearly identical in quality and quantity. Ammonium sulfate has been added bi-monthly since 1989 to the West Bear catchment at 1800 eq ha-1 a-1; the East Bear reference catchment is responding to ambient conditions. Initially, the two catchments had nearly identical chemistry (e.g., Ca2+, Mg2+, SO4 2-, and alkalinity ≈82, 32, 100, and 5 μeq L-1, respectively). The manipulated catchment responded initially with increased export of base cations, lower pH and alkalinity, and increased dissolved Al,NO3 - and SO4 2-. Dissolved organic carbon and Si have remained relatively constant. After 7 yr of treatment, the chemical response of runoff switched to declining base cations, with the other analytes continuing their trends; the exports of dissolved and particulate Al, Fe, and P increased substantially as base cations declined. The reference catchment has slowly acidified under ambient conditions, caused by the base cation supply decreasing faster than the decrease of SO4 2, as pollution abates. Export of Al, Fe and, P is mimicking that of the manipulated watershed, but is lower in magnitude and lags in time. Probable increasing SO4 2- adsorption caused by acidification has moderated the longer-term trends of acidification of both watersheds. The trends of decreasing base cations were interrupted by the effects of several short-term events, including severe ice storm damage to the canopy, unusual snow pack conditions, snow melt and rain storms, and episodic input of marine aerosols. These episodic events alter alkalinity by5 to 15 μeq L-1 and make it more difficult to determine recovery from pollution abatement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号