首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
An integrated risk assessment study has been performed in an area within 5 km from a landfill that accepts non hazardous waste. The risk assessment was based on measured emissions and maximum chronic population exposure, for both children and adults, to contaminated air, some foods and soil. The toxic effects assessed were limited to the main known carcinogenic compounds emitted from landfills coming both from landfill gas torch combustion (e.g., dioxins, furans and polycyclic aromatic hydrocarbons, PAHs) and from diffusive emissions (vinyl chloride monomer, VCM). Risk assessment has been performed both for carcinogenic and non-carcinogenic effects. Results indicate that cancer and non-cancer effects risk (hazard index, HI) are largely below the values accepted from the main international agencies (e.g., WHO, US EPA) and national legislation (D.Lgs. 152/2006 and D.Lgs. 4/2008).  相似文献   

2.
A decision analysis based model (DAPS 1.0, Decision Analysis of Polluted Sites) has been developed to evaluate risks that polluted sites might pose to human health. Pollutants present in soils and sediments can potentially migrate from source to receptor(s), via different pathways. In the developed model, pathways are simulated via transport models (i.e. groundwater transport model, runoff-erosion model, air diffusion model, and sediment diffusion, and resuspension model in water bodies). Humans can be affected by pollutant migration through land and water use. Health risks can arise from ingestion of and dermal contact with polluted water and soil, as well as through inhalation of polluted air. Quantitative estimates of risks are calculated for both carcinogenic and non-carcinogenic pollutants. Being very heterogeneous, soil and sediment systems are characterized by uncertain parameters. Concepts of fuzzy set theory have been adopted to account for uncertainty in the input parameters which are represented by fuzzy numbers. An inference model using fuzzy logic has been constructed for reasoning in the decision analysis.  相似文献   

3.
This study analyzed the risk of exposure to volatile organic compounds (VOCs) through a study of activity patterns in the Korean industrial city, Ulsan. The daily life cycle patterns(LCPs) of 331 people in Ulsan were surveyed and the average LCPs in Ulsan were obtained by statistical analysis. Nine to twelve personal air samples of VOC exposure at the breathing zones were collected at each LCP. This included hours for sleeping,cooking and eating, going to and from work, working, participating in field or outdoor activities, reading, watchingTV, and shopping. The components and concentrations of the collected VOCs were identified by a Gas Chromatography-MassDetector (GC-MS). The overall reproducibility of all GC analytical procedures of the simultaneously collected duplicatesample pairs represented a mean of percent differences rangingfrom about 9 to 13%. For the general population of Ulsan, thecarcinogenic and non-carcinogenic risk of exposure to theVOCs during the LCPs was evaluated. The carcinogenic riskwas analyzed using both the chronic daily exposure orlifetime average daily exposure (CDI) and the cancerpotency factor. The non-carcinogenic risk was analyzedusing both the CDI and the chronic reference dose.The major chemical forms of the identified VOCs were oxidized forms (43%), aliphatic alkanes (29%) and aromatics (15%). Even though the highest total exposure strength per unit time of each activity was observed during shopping, the highest totalamount of exposure to VOCs was identified as the exposure duringwork. The total carcinogenic risk of exposure to the carcinogenicVOCs through daily life cycle in Ulsan was 2.0 × 10-4which is substantially exceeding the permissible carcinogenicrisk level, 10-5 10-6. The carcinogenic riskduring most of the life cycle activities, except forreading, mainly performed indoors, was higher than that ofthe activities performed outdoors. The carcinogenic risk bybenzene exposure was about 56% (time weighted average) ofthe total carcinogenic risk by the exposure to thecarcinogenic VOCs. During cooking and eating, shopping andout door activities, however, the carcinogenic risk by theexposure to chlorinated compounds like chloroform exceededthe exposure to benzene. The overall hazard index (non-carcinogenic risk) by a chronic exposure to carcinogenicand non-carcinogenic VOCs through daily life cycle in Ulsanwas evaluated as 3.91 × 10-1, which is much less than1.0 considered as a hazard level to human health, and thusit seems likely not to produce a severe health hazard.  相似文献   

4.
Fugitive pollutant emissions from municipal solid waste landfills have the potential to cause annoyance and health impacts in the surrounding residential areas. The overall objective of this research was to perform an assessment of fugitive pollutant emissions and a dispersion analysis downwind of a specific landfill site. The study was performed at the closed Ano Liosia landfill site which is located in the greater Athens area. The human exposure from priority to health-risk pollutants emitted from landfill, such as vinyl chloride and benzene, was estimated by the landfill gas emission LandGEM 2.01 software combined with the atmospheric long-term dispersion model ISC3-LT. The emission and meteorological conditions under which the models were applied referred to the worst-case scenario. This scenario was used for the evaluation of the maximum human exposure assessed beyond the Ano Liosia landfill towards the residential areas. The above scenario provides the minimum downwind distance of the health-risk zone which is calculated to be equal to 1.5 km from the landfill. Within this distance the assessed air pollutant concentration for several air pollutants was significantly above the World Health Organization reference lifetime exposure health criteria. Finally, the applied methodology was used in the Ano Liosia landfill, where atmospheric concentrations of pollutants measured in the field were compared with model predictions.  相似文献   

5.
The aim of the study was to determine the potential environmental contamination in a typical factory for recycling waste electrical and electronic equipment in Shanghai. Heavy metals (Cr, Ni, Cu, Zn, Cd, Pb) in the soil around the factory have been evaluated in this paper. Compared with the background value, the concentrations of six metals detected in all the samples were higher, which showed that toxic metals were released into soil around the factory. Compared with the Environmental Quality Standards for Soils, China grade III, all the six metals are under soil guidelines. The non-cancer risk in different directions from the factory was in the order of: the north > the west > the south > the east. For inhalation and ingestion, the non-cancer risk in the soil west of the factory was biggest. Nevertheless, the non-cancer risk in the soil north of the factory was the biggest for dermal contact. The trend of cancer risk was the west > the south > the north > the east. The non-cancer risk and the carcinogenic risk for Cr, Ni, and Cd were all below the limiting value. This study might provide a reference for the risk assessment involved in electronic waste management and recycling activities.  相似文献   

6.
7.
Two disposal methods for MSWI bottom ash were assessed in a new life cycle assessment (LCA) model for road construction and disposal of residues. The two scenarios evaluated in the model were: (i) landfilling of bottom ash in a coastal landfill in Denmark and (ii) recycling of bottom ash as subbase layer in an asphalted secondary road. The LCA included resource and energy consumption, and emissions associated with upgrading of bottom ash, transport, landfilling processes, incorporation of bottom ash in road, substitution of natural gravel as road construction material and leaching of heavy metals and salts from bottom ash in road as well as in landfill. Environmental impacts associated with emissions to air, fresh surface water, marine surface water, groundwater and soil were aggregated into 12 environmental impact categories: Global Warming, Photochemical Ozone Formation, Nutrient Enrichment, Acidification, Stratospheric Ozone Depletion, Human Toxicity via air/water/soil, Ecotoxicity in water/soil, and a new impact category, Stored Ecotoxicity to water/soil that accounts for the presence of heavy metals and very persistent organic compounds that in the long-term might leach. Leaching of heavy metals and salts from bottom ash was estimated from a series of laboratory leaching tests. For both scenarios, Ecotoxicity(water) was, when evaluated for the first 100 yr, the most important among the twelve impact categories involved in the assessment. Human Toxicity(soil) was also important, especially for the Road scenario. When the long-term leaching of heavy metals from bottom ash was evaluated, based on the total content of heavy metals in bottom ash, all impact categories became negligible compared to the potential Stored Ecotoxicity, which was two orders of magnitudes greater than Ecotoxicity(water). Copper was the constituent that gave the strongest contributions to the ecotoxicities. The most important resources consumed were clay as liner in landfill and the groundwater resource which was potentially spoiled due to leaching of salts from bottom ash in road. The difference in environmental impacts between landfilling and utilization of bottom ash in road was marginal when these alternatives were assessed in a life cycle perspective.  相似文献   

8.
Application of MSWI fly ash on acid soil and its effect on the environment   总被引:1,自引:0,他引:1  
This study evaluated the feasibility of using municipal solid waste incinerator (MSWI) fly ash as acid soil amendment. In particular, changes in soil physicochemical properties and the potential environmental problems caused by the application of MSWI fly ash were investigated. The results showed that application of MSWI fly ash to the acid soil could raise the soil pH. The contents of rapidly available P and K, and slowly available K in the amended soil had a linear relationship with the addition ratio of MSWI fly ash. An addition of less than 20% of MSWI could raise the soil respiratory intensity after incubation for 3-5 days. Application of MSWI fly ash to the soil increased its content of water soluble salts and heavy metals, which could cause phytotoxicity in the plants. Therefore, the addition of MSWI fly ash to the soil should not be excessive, and less than 5-10% is an advisable addition level depending on the acidity of the soil and the plants growing on it.  相似文献   

9.
The objective of this study was to determine whether the fear of dioxin/furan emissions from waste-to-energy plants was justified by the 2007 status of emissions of French municipal solid waste incinerators (MSWIs). All emissions were examined, plant by plant, but this paper focuses on the incinerator emission that is most frequently mentioned in the French media, toxic dioxins and furans. The study showed that there are 85 large MSWI that generate electricity or heat, i.e., waste-to-energy (WTE) plants, and 39 smaller MSW incinerators. The results showed that all French MSWI are operated well below the EU and French standard of 0.1 ng TEQ Nm?3 (toxic equivalent nanograms per standard cubic meter) and that their total dioxin/furan emissions decreased from 435 g TEQ in 1997 to only 1.2 g in 2008. All other industrial emissions of dioxins have also decreased and the major source is residential combustion of wood (320 g TEQ). It was extremely difficult to obtain MSWI emission data. This unwarranted lack of transparency has resulted in the public perception that MSWI plants are major contributors to dioxin emissions while in fact they have ceased to be so.  相似文献   

10.
Making remediation and risk management decisions for widely‐distributed chemicals is a challenging aspect of contaminated site management. The objective of this study is to present an initial evaluation of the ubiquitous, ambient environmental distribution of poly‐ and perfluoroalkyl substances (PFAS) within the context of environmental decision‐making at contaminated sites. PFAS are anthropogenic contaminants of emerging concern with a wide variety of consumer and industrial sources and uses that result in multiple exposure routes for humans. The combination of widespread prevalence and low screening levels introduces considerable uncertainty and potential costs in the environmental management of PFAS. PFAS are not naturally‐occurring, but are frequently detected in environmental media independent of site‐specific (i.e., point source) contamination. Information was collected on background and ambient levels of two predominant PFAS, perfluorooctane sulfonate and perfluorooctanoate, in North America in both abiotic media (soil, sediment, surface water, and public drinking water supplies) and selected biotic media (human tissues, fish, and shellfish). The background or ambient information was compiled from multiple published sources, organized by medium and concentration ranges, and evaluated for geographical trends and, when available, also compared to health‐based screening levels. Data coverage and quality varied from wide‐ranging and well‐documented for soil, surface water, and serum data to more localized and less well‐documented for sediment and fish and shellfish tissues and some uncertainties in the data were noted. Widespread ambient soil and sediment concentrations were noted but were well below human health‐protective thresholds for direct contact exposures. Surface water, drinking water supply waters (representing a combination of groundwater and surface water), fish and shellfish tissue, and human serum levels ranged from less than to greater than available health‐based threshold values. This evaluation highlights the need for incorporating literature‐based or site‐specific background into PFAS site evaluation and decision‐making, so that source identification, risk management, and remediation goals are properly focused and to also inform general policy development for PFAS management.  相似文献   

11.
The aim of the present work was to study if municipal solid waste incinerator (MSWI) residues and aggregates derived from contaminated soil washing could be used as alternative aggregates for concrete production.Initially, chemical, physical and geometric characteristics (according to UNI EN 12620) of municipal solid waste incineration bottom ashes and some contaminated soils were evaluated; moreover, the pollutants release was evaluated by means of leaching tests. The results showed that the reuse of pre-treated MSWI bottom ash and washed soil is possible, either from technical or environmental point of view, while it is not possible for the raw wastes.Then, the natural aggregate was partially and totally replaced with these recycled aggregates for the production of concrete mixtures that were characterized by conventional mechanical and leaching tests. Good results were obtained using the same dosage of a high resistance cement (42.5R calcareous Portland cement instead of 32.5R); the concrete mixture containing 400 kg/m3 of washed bottom ash and high resistance cement was classified as structural concrete (C25/30 class). Regarding the pollutants leaching, all concrete mixtures respected the limit values according to the Italian regulation.  相似文献   

12.
The type and amount of indoor air pollutants affects the comfort and quality of indoor environments. Therefore, indoor air quality is an important issue with different social, economic, and health aspects because people in developing countries spend most of their time indoors being exposed to different kinds of indoor pollutants. The indoor air quality can be assessed empirically by measuring the pollutant concentrations or can be predicted by means of mathematical models. An indoor aerosol model describes the dynamic behavior of indoor air pollutants. The basic concept of indoor air models is the mass-balance-conservation where several factors that govern the indoor particle concentrations can be described. These factors may include direct emissions from indoor sources, outdoor aerosol particles penetrating indoors as a result of the ventilation and filtration processes, deposition onto indoor surfaces, and removal from indoor air by means of ventilation. Here we present principles of indoor aerosol models and we also give examples of different kind of models.  相似文献   

13.
Accelerated Remediation Technologies LLC (ART) developed a proprietary (patent‐pending) effective remediation technology that is based on verified and established concepts. The ART technology combines in‐situ air stripping, air sparging, soil vapor extraction, enhanced bioremediation/oxidation, and Dynamic Subsurface CirculationTM in an innovative wellhead system. The system is designed to accommodate a 4‐inch well and is cost‐effective when compared with other remediation technologies. The air‐sparging component results in lifting the water table. This lifting of the water in the well causes a net reduction in head at the well location. Vacuum pressure (the vapor‐extraction component) is applied on top of the well point to extract vapor from the subsurface. The negative pressure from the vacuum extraction results in water suction that creates additional water lifting (mounding). A submersible pump is placed at the bottom of the well to recirculate water to the top for downward discharge through a spray head. The water cascades down the interior of the well similar to what occurs in an air‐stripping tower. Enhanced stripping via air sparging near the bottom of the well occurs simultaneously. In essence, the well acts as a subsurface air‐stripping tower. The pumped‐and‐stripped, highly oxygenated water flows down well annulus and over the “mounded” water back in to the aquifer, which creates a circulation zone around the well to further enhance cleanup. The ART technology has been implemented at several sites nationwide, including industrial laundry facilities, manufacturing plants, and service stations, and has achieved significant reductions in contaminant concentrations. Specifically, a concentration of tetrachloroethene (PCE) decreased from 2,700 to 240 μg/l, in 13 days. In less than three months, the concentrations dropped further to 79 μg/l, which is within the range of background levels. Other sites utilizing the technology have exhibited similar reduction trends in complex subsurface environments. © 2002 Wiley Periodicals, Inc.  相似文献   

14.
Municipal solid waste incineration (MSWI) fly ash is by-product and hazardous waste produced from MSWI plant. In the MSWI fly ash there are high contents heavy metals, among which cadmium (Cd) is more active and toxic. Although inorganic acid leaching is an effective way to remove heavy metals out from the MSWI fly ash and nitric acid has great efficiency for Cd removal, little literature reported the redistribution of remaining Cd in the MSWI fly ash. This investigation focused on the change of different factions (exchangeable, bound to carbonates, bound to Fe–Mn oxides, bound to organic matter and residual) of Cd in treated (i.e. washed with nitric acid) MSWI fly ash. Sequence extraction procedures (SEP) have been used to derive different fractions of Cd, results indicated that fractions of Cd have changed significantly after nitric acid washing procedures. Due to the changes of main compounds and microstructures stable Cd (bound to organic matter and residual) had opportunity to leach out, which resulted in a higher potential risk (or higher bioavailability index) for living creatures, although the total amount of Cd decreased. X-ray diffraction (XRD) and images of scanning electron microscope (SEM) proved these changes in washed MSWI fly ash.  相似文献   

15.
Vapor intrusion characterization and response efforts must consider four key interactive factors: background indoor air constituents, preferential vapor migration pathways, complex patterns of vapor distribution within buildings, and temporal concentration variability caused by pressure differentials within and exterior to structures. An additional challenge is found at sites contaminated by trichloroethylene (TCE), which in the United States has very low indoor air screening levels due to acute risk over short exposure durations for sensitive populations. Timely and accurate characterization of vapor intrusion has been constrained by traditional passive time‐averaging sampling methods. This article presents three case studies of a robust new methodology for vapor intrusion characterization particularly suited for sites where there is a critical need for rapid response to exposure exceedances to minimize health risks and liabilities. The new methodology comprises low‐detection‐level field analytical instrumentation with grab sample and continuous monitoring capabilities for key volatile constituents integrated with pressure differential measurements and web‐based reporting. The system also provides automated triggered alerts to project teams and capability for integration with engineered systems for vapor intrusion control. The three case studies illustrate key findings and lessons learned during system deployment at two sites undergoing characterization studies and one site undergoing thermal remediation of volatile contaminants.  相似文献   

16.
Determination of the amount of greenhouse gas (GHG) emitted during municipal solid waste incineration (MSWI) is complex because both contributions and savings of GHGs exist in the process. To identify the critical factors influencing GHG emissions from MSWI in China, a GHG accounting model was established and applied to six Chinese cities located in different regions. The results showed that MSWI in most of the cities was the source of GHGs, with emissions of 25–207 kg CO2-eq t?1 rw. Within all process stages, the emission of fossil CO2 from the combustion of MSW was the main contributor (111–254 kg CO2-eq t?1 rw), while the substitution of electricity reduced the GHG emissions by 150–247 kg CO2-eq t?1 rw. By affecting the fossil carbon content and the lower heating value of the waste, the contents of plastic and food waste in the MSW were the critical factors influencing GHG emissions of MSWI. Decreasing food waste content in MSW by half will significantly reduce the GHG emissions from MSWI, and such a reduction will convert MSWI in Urumqi and Tianjin from GHG sources to GHG sinks. Comparison of the GHG emissions in the six Chinese cities with those in European countries revealed that higher energy recovery efficiency in Europe induced much greater reductions in GHG emissions. Recovering the excess heat after generation of electricity would be a good measure to convert MSWI in all the six cities evaluated herein into sinks of GHGs.  相似文献   

17.
The amount of atmospheric pollutants emitted through the incineration of healthcare wastes can be estimated using emission factors. Emission factors have been published without including sufficient information about the types of wastes incinerated. This paper reports the first emission factors estimated for the incineration of wastes segregated into different types according to the Portuguese legislation. One controlled-air incinerator without air pollution control devices was used in the research. The main objectives of the study were: (i) to estimate the emission factors for particulate matter, dioxins, heavy metals and gaseous pollutants, according to the type of waste incinerated; (ii) to evaluate the quality of atmospheric emissions; and (iii) to define a methodology for the management of atmospheric emissions, evaluating the influence of type of waste incinerated and of the segregation method used on the emitted amounts. It was concluded that: (i) when emission factors are not associated with the type of incinerated mixture, the utility of the emission factors is highly doubtful; (ii) without appropriate equipment to control atmospheric pollution, incineration emissions exceed legal limits, neglecting the protection of human health (the legal limit for pollutant concentrations could only be met for NO(x), all other concentrations were higher than the maximum allowed: dioxins, 93-710 times; Hg, 1.3-226 times; CO, 11-24 times; SO(2), 2-5 times; and HCl, 9-200 times); (iii) rigorous segregation methodologies must be used to minimize atmospheric emissions, and incinerate only those wastes that should be incinerated according to the law. A rigorous segregation program can result in a reduction of the amount of waste that should be incinerated by 80%. A reduction in the quantity of waste incinerated results in a reduction on the amounts of pollutants emitted: particulate matter, 98%; dioxins, 99.5%; As, Cd, Cr, Mn and Ni, respectively, 90%, 92%, 84%, 77% and 92%; Hg and Pb, practically eliminated; SO(2) and NO(x), 93%; and CO and HCl, more than 99%.  相似文献   

18.
We have studied particulate matter (PM) concentrations,PM10 and PM2.5, measured in an urban air qualitymonitoring network in the Helsinki Metropolitan Area during1997–1999. The data includes PM10 concentrationsmeasured at five locations (two urban traffic, one suburbantraffic, one urban background and one regional backgroundsite) and PM2.5 concentrations measured at twolocations (urban traffic and urban background sites). Theconcentrations of PM10 show a clear diurnal variation,as well as a spatial variation within the area. Bycontrast, both the spatial and temporal variation of thePM2.5 concentrations was moderate. We have analysedthe evolution of urban PM concentrations in terms of therelevant meteorological parameters in the course of oneselected peak pollution episode during 21–31 March, 1998.The meteorological variables considered included wind speedand direction, ambient temperature, precipitation, relativehumidity, atmospheric pressure at the ground level,atmospheric stability and mixing height. The elevated PMconcentrations during the 1998 March episode were clearlyrelated to conditions of high atmospheric pressure,relatively low ambient temperatures and low wind speeds inpredominantly stable atmospheric conditions. The resultsprovide indirect evidence indicating that the PM10concentrations originate mainly from local vehiculartraffic (direct emissions and resuspension), while thePM2.5 concentrations are mostly of regionally andlong-range transported origin.  相似文献   

19.
Planning effective strategies to combat air pollution in amajor city such as London requires integration ofinformation on atmospheric concentrations and where theyexceed prescribed air quality standards, detailed data onemissions and potential measures to reduce them includingcosts, and a good understanding of the relativecontributions of different emission sources to pollutantconcentrations plus the remaining background. The UrbanScale Integrated Assessment Model (USIAM) is designed as atool to integrate such information, and to explore andassess a variety of potential strategies for improving airquality. It is based on the same principles as theAbatement Strategies Assessment Model (ASAM) that has beenused in the UN Economic Commission for Europe. To startwith the USIAM model is being developed with respect to theparticulate PM10 only, and in particular the primaryparticulate contribution. The secondary particulate istreated as part of the background superimposed on theprimary particulate concentrations; this may need to betreated more specifically at a later stage, particularlywith respect to nitrate formation over the city. The USIAMmodel therefore sets out to examine a selection of severeepisode conditions as well as long-term annual averageconcentrations, and aims to find strategies that aresuccessful in eliminating exceedance of the prescribedtarget concentrations. By ranking different options forabatement of emissions, for example in terms of cost orease of implementation, the USIAM model can also select andprioritise different potential strategies.  相似文献   

20.
Particulate matter (dust) from remediation and demolition sites may pose a potential risk to the nearby public due to the presence of various contaminants. Unfortunately, there are no good options for real‐time monitoring of metals, polychlorinated biphenyls, etc. in wind‐blown dust. A three‐tiered approach involving a combination of real‐time monitoring and off‐site analysis that has proved successful is described in this article. PM10 is used as a surrogate parameter for metals and other nonvolatile pollutants, and real‐time monitoring is used to guide dust control measures. If dust emissions are controlled, air emissions of metals and other nonvolatile pollutants also are controlled. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号