首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This article presents the results of a study that was conducted to determine the effectiveness of using alfalfa (Medicago sativa L.) to enhance the phytoremediation of three different types of chemical contaminants. The chemicals studied were trinitrotoluene (TNT), the polycyclic aromatic hydrocarbon (PAH) pyrene, and the polychlorinated biphenyl (PCB) Aroclor 1248. Experiments were conducted using soils that contained high and low organic matter content. The results indicated that recoveries of pyrene and TNT from soil were highly dependent on the soil organic matter content, while the recovery of PCB was not. Significantly low levels of pyrene and TNT were recovered from all treatments in the soil with 6.3 percent organic matter content compared to recovery levels found in soil with 2.6 percent organic matter. The presence of alfalfa plants had a significant effect on the transformation of TNT and PCB in the low organic matter content soil only and had no effect on the fate of pyrene. In the low organic matter soil, only 15 percent and 17 percent of the initial TNT and PCB levels, respectively, were transformed in the unplanted control soils compared to 66 percent and 77 percent in the alfalfa planted pots. In both soil types, pyrene dissipation could not be attributed to the presence of alfalfa plants. Overall, it was concluded that under high soil organic matter conditions, adsorption and covalent binding to the soil organic matter appeared to be the dominant force of pyrene and TNT removal. The effectiveness of using alfalfa to enhance PCB and TNT transformations was more significant in the lower organic matter soil; thus phytoremediation had a greater effect in soils with lower organic matter content. © 2001 John Wiley & Sons, Inc.  相似文献   

2.
Persistent organic pollutants (POPs) are a set of chemicals that are toxic, persist in the environment for long periods of time, and biomagnify as they move up through the food chain. The most widely used method of POP destruction is incineration, which is expensive and could result in undesirable by‐products. An alternative bioremediation technology, which is cheaper and environ‐mentally friendly, was tested during this experiment. Two different soil types containing high and low organic matter (OM) were spiked with 100 mg/kg each of pyrene and Aroclor 1248 and planted with three different species of grasses. The objective of the study was to determine residue recovery levels (availability) and potential effectiveness of these plant species for the remediation of POPs. The results showed that recovery levels were highly dependent on the soil organic matter content—very low in all treatments with the high OM content soil compared to recoveries in the low OM soil. This indicates that availability, and, hence, biodegradability of the contaminants is dependent on the organic matter content of the soil. Moreover, the degree of availability was also significantly different for the two classes of chemicals. The polyaromatic hydrocarbon (PAH) recovery (availability) was extremely low in the high organic matter content soil compared to that of the polychlorinated biphenyls (PCBs). In both soil types, all of the plant species treatments showed significantly greater PCB biodegradation compared to the unplanted controls. Planting did not have any significant effect on the transformation of the PAHs in both soil types; however, planting with switchgrass was the best remedial option for both soil types contaminated with PCB. © 2005 Wiley Periodicals, Inc.  相似文献   

3.
A series of laboratory batch leaching tests was conducted to evaluate the performance of different activated carbons in stabilizing mercury in soils. Based on the results of these experiments, an amendment application rate of 5 percent powdered activated carbon (PAC) was selected for in situ field application at a former industrial facility. A geochemical model was also developed to simulate the interactions between mercury and activated carbon in vadose‐zone soils. Modeling was used to (1) better understand possible mercury sequestration mechanisms and (2) predict the in situ performance of PAC. Model results indicate dissolved mercury concentrations observed in batch tests are consistent with equilibrium partitioning of mercury between dissolved organic matter, soil organic matter, and PAC. Activated carbon is predicted to reduce dissolved mercury concentrations via two mechanisms: (1) the formation of stable mercury complexes on PAC surfaces and (2) the direct adsorption of dissolved organic matter that would otherwise be available for mercury dissolution. Study results demonstrate PAC effectiveness for site soils with mercury concentrations below 200 mg/kg. © 2010 Wiley Periodicals, Inc.  相似文献   

4.
Forage crop species representing two biologically distinct families (legumes and grasses) were evaluated on soil spiked with 100 mg/kg of pyrene to determine the potential effectiveness of the rhizospheres of these plants for phytoremediation. In this experiment, pyrene dissipation could not be attributed to the presence of plants. Pyrene dissipation was also not related to rhizosphere biological activity, such as microbial counts and enzyme activity. Planting with reed canarygrass and switchgrass significantly increased the microbial counts in soil; however, the differences in the microbial counts were not correlated to the levels of pyrene dissipation. Reed canarygrass rhizosphere had significantly higher dehydrogenase activity compared to the switchgrass rhizosphere, but this difference in soil dehydrogenase activity was not related to pyrene dissipation. In general, the use of plants was not effective in causing pyrene transformation; however, the presence of vegetation on polycyclic aromatic hydrocarbon–contaminated soils could play a significant role in limiting the spread of contaminants (erosion, leaching) and enhancing ecosystem restoration. © 2004 Wiley Periodicals, Inc.  相似文献   

5.
15N-labeling and solid-state 13C and 15N nuclear magnetic resonance (NMR) spectroscopy was applied to study the immobilization of 2,4,6 trinitrotoluene (TNT) into soil organic matter (SOM). Uncontaminated soil from the Ap horizon of a Luvisol was mixed with 15N-TNT (enrichment: 99 atm%) and laid over an unspiked layer of the same material. The latter covered soil from the Bt horizon. The microcosms were aerobically incubated under laboratory conditions for up to 11 months. After 1 week, within the total microcosm approximately 90% of the added 15N (15Nadd) were recovered, mostly in the top layer (87%). After 11 months, this amount decreased to 71%, indicating losses due to denitration or transamination. Within two months, half of 15Nadd had been immobilized in the residues not extractable with organic solvents and water. The amount of the sequestered 15Nadd remained fairly constant until the end of the experiment pointing towards a high stability of TNT-SOM associates. Solid-state 15N NMR revealed their formation by covalent binding, most tentatively as amides. Complete reduction of TNT to triaminotoluene (TAT) was not prerequisite. The most pronounced downwards movement of 15N-TNT occurred during the first two months. The major part of it, however, experienced quick immobilization, leaving approximately 10% of 15Nadd recovered in the leachate at the end of the experiment. Calculations indicated contributions of inorganic 15Nadd. Approximately 25% of its organic 15Nadd originated from condensed N, suggesting that in soils the transport of partly reduced TNT is in close association with the organic matter of the soil solution to which they are covalently bound.  相似文献   

6.
The effect of co-compost application from sewage sludge and pruning waste, on quality and quantity of soil organic carbon (SOC) in four Mediterranean agricultural soils (South Spain), was studied in soil microcosm conditions. Control soil samples (no co-compost addition) and soils treated with co-composts to a rate equivalent of 140 Mg ha?1 were incubated for 90 days at two temperatures: 5 and 35 °C. The significances of incubation temperature and the addition of co-compost, on the evolution of the different fractions of SOC, were studied using a 23 factorial design. The co-compost amendment increased the amounts of humic fractions: humic acids (HA) (1.9 times), fulvic acids (FA) (3.3 times), humin (1.5 times), as well as the free organic matter (1.4 times) and free lipids (21.8 times). Incubation of the soils enhanced its biological activity mainly in the amended soils and at 35 °C, leading to progressive SOC mineralization and humification, concomitant to the preferential accumulation of HA. The incubation results show large differences depending on temperature and soil types. This fact allows us to select suitable organic amendment for the soil when a rapid increase in nutrients through mineralization is preferred, or in cases intending the stabilization and preservation of the SOC through a process of humification. In soils with HA of more than 5 E4/E6 ratio, the incubation temperature increased rates of mineralization and humification, whereas lower temperatures limited the extent of both processes. In these soils the addition of co-compost in spring or summer is the most recommendable. In soils with HA of lower E4/E6 ratio (<5), the higher temperature favoured mineralization but not humification, whereas the low temperature maintained the SOC levels and even increased the HA/FA ratio. In these soils the moment of addition of organic amendment should be decided depending on the effect intended. On the other hand, the lower the SOC content in the original soil, the greater are the changes observed in the SOC after amendment with co-compost. The results suggest that proper recommendations for optimum organic matter evolution after soil amendment is possible after considering a small set of characteristics of soil and the corresponding soil organic matter fractions, in particular HA.  相似文献   

7.
Polychlorinated biphenyls (PCBs) are a persistent environmental issue worldwide. This study summarizes the results obtained from a bench‐scale test of remediating PCB‐impacted soil. The research aimed to evaluate the effectiveness of extracting the PCB Aroclor 1260 from soil, transferring it to a liquid matrix, and then treating the PCB‐containing liquid using an Activated Metal Treatment System, a technology developed by NASA based on zero valent magnesium (ZVMg). The soil was from a former electrical plant area impacted by PCBs. The initial concentration of untreated soil contained an average of 4.7 ± 0.15 mg/kg of Aroclor 1260. The results showed that the mass transfer phenomena is possible using ethanol as a liquid matrix, reaching transfer results up to 93 percent. The ZVMg enabled the destruction of the Aroclor 1260, which reached 20 percent without any buildup of undesirable by‐products, such as less chlorinated PCBs.  ©2016 Wiley Periodicals, Inc.  相似文献   

8.
Although known to be one of the most effective oxidants for treatment of organic contaminants, catalyzed hydrogen peroxide (CHP) is typically not used for soil mixing applications because of health and safety concerns related to vapor generation and very rapid rates of reaction in open excavations. In likely the first large‐scale in situ CHP soil mixing application, an enhanced CHP, modified Fenton's reagent (MFR), was applied during soil mixing at the Kearsarge Metallurgical Superfund Site in New Hampshire. An innovative rotating dual‐axis blender (DAB) technology was used to safely mix the MFR into low‐plasticity silt and clay soils to remediate residual 1,1,1‐trichloroethane (111TCA); 1,1‐dichloroethene (11DCE); and 1,4‐dioxane (14D). It was expected that the aggressive treatment approach using relatively “greener” hydrogen peroxide (HP) chemistry would effectively treat Site contaminants without significant byproduct impacts to groundwater or the adjacent pond. The remediation program was designed to treat approximately 3,000 cubic yards of residual source area soil in situ by aggressively mixing MFR into the soils. The subsurface interval treated was from 7 to 15 feet below ground surface. To accurately track the soil mixing process and MFR addition, the Site was divided into 109 10‐foot square treatment cells that were precisely located, dosed, and mixed using the DAB equipped with an on‐board GPS system. The use of stabilizing agents along with careful calculation of the peroxide dose helped to ensure vapor‐free conditions in the vicinity of the soil mixing operation. Real‐time sampling and monitoring were critical in identifying any posttreatment exceedences of the cleanup goals. This allowed retreatment and supplemental testing to occur without impacting the soil mixing/in situ chemical oxidation (ISCO) schedule. Posttreatment 24‐hr soil samples were collected from 56 random locations after ensuring that the HP had been completely consumed. The posttreatment test results showed that 111TCA and 11DCE concentrations were reduced to nondetect (ND) or below the cleanup goals of 150 μg/kg for 111TCA and 60 μg/kg for 11DCE. Supplemental posttreatment soil samples, collected six months after treatment, showed 100 percent compliance with the soil treatment goals. Groundwater samples collected one year after the MFR soil mixing treatment program showed either ND or low concentrations for 111TCA, 11DCE, and 14D. Successful stabilization and site restoration was performed after overcoming considerable challenges associated with loss of soil structure, high liquid content, and reduced bearing capacity of the blended soils.  相似文献   

9.
Open-cast lignite mining in the Lusatian mining district resulted in rehabilitated mine soils containing up to four organic matter types: (1) recent plant litter, (2) lignite deposited by mining activity, (3) carbonaceous ash particles deposited during amelioration of the lignite-containing parent substrate and (4) airborne carbonaceous particles deposited during contamination. The influence of lignite-derived carbon types on the organic matter development and their role in the soil carbon cycle was unknown. This paper presents the findings obtained during a six year project concerning the impact of lignite on soil organic matter composition and the biogeochemical functioning of the ecosystem. The organic matter development after rehabilitation was followed in a chronosequence of rehabilitated mine soils afforested in 1966, 1981 and 1987. A differentiation of the organic matter types and an evaluation of their role within the ecosystem was achieved by the use of 14C activity measurements, 13C CPMAS NMR spectroscopy and wet chemical analysis of plant litter compounds. The results showed that the amount and degree of decomposition of the recent organic matter derived from plant material of the 30 year old mine soil was similar to natural uncontaminated forest soil which suggests complete rehabilitation of the ecosystem. The decomposition and humification processes were not influenced by the presence of lignite. On the other hand it was shown that lignite, which was thought to be recalcitrant because of its chemical structure, was part of the carbon cycle in these soils. This demonstrates the need to elucidate further the stabilisation mechanisms of organic matter in soils.  相似文献   

10.
An experiment was performed to examine the phytoremediation potential of Rhodes grass (Chloris gayana Kunth cv. ‘Pioneer’). The study sought to determine substrate tolerance, biomass production, and plant uptake of antimony (Sb), arsenic (As), cadmium (Cd), lead (Pb), silver (Ag), and zinc (Zn). The plants were grown on weight percent mixtures (5 percent, 15 percent, 25 percent, 35 percent, 50 percent) of a vertisol soil and base‐metal mine tailings (7–2,040 μg/g As, ≥ 30 μg/g Cd, 30–12,000 μg/g Pb, and 72–4,120 μg/g Zn). The 5 percent and 15 percent amendment of mine tailings increased the biomass production of Rhodes grass (from 0.1 g/plant to ≈ 3.5 g/plant) without appreciably elevating plant concentrations of the elements. Plant growth decreased by greater than 50 percent for the substrate containing greater than 25 percent tailings (3,023 μg/g Pb and 1,084 μg/g Zn). Reduced biomass production coincided with maximal Zn uptake by Rhodes grass (249.8 μg/g), indicating tailings induced phytotoxicity. The total concentrations of metals and metalloids tolerated by Rhodes grass in the plant‐growth medium indicated hypertolerance to elevated As, Pb, and Zn concentrations. Partial extraction of the plant‐growth medium determined that plant‐available Pb was ten times higher than Ag, As, Cd, and Zn availability. However, Rhodes grass accumulated low levels of Pb, in addition to As and Cd, over the experimental range, indicating low fodder toxicity risk to browsing livestock. This study concludes that if there are no invasive species issues associated with conservation land uses, Rhodes grass is well suited to metalliferous mined land revegetation and would therefore be highly effective for such programs in subtropical and tropical Australia. © 2005 Wiley Periodicals, Inc.  相似文献   

11.
Two different microbial communities able to degrade atrazine (atz) were inoculated in four different soils. The most critical factor affecting the success of inoculation was the soil pH and its organic matter (OM) content. In two alkaline soils (pH > 7), some inoculations led immediately to a strong increase of the biodegradation rate. In a third slightly acidic soil (pH = 6.1), only one inoculum could enhance atz degradation. In a soil amended with organic matter and straw (pH = 5.7, OM = 16.5%), inoculation had only little effect on atz dissipation on the short as well as on the long-term. Nine months after the microflora inoculations, atz was added again and rapid biodegradation in all alkaline inoculated soils was recorded, indicating the long-term efficiency of inoculation. In these soils, the number of atz degraders was estimated at between 6.5 × 103 and 1.5 × 106 (g of soil)-1, using the most probable number (MPN) method. Furthermore, the presence of the atz degraders was confirmed by the detection of the gene atzA in these soils. Denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rDNA genes indicated that the inoculated bacterial communities had little effect on the patterns of the indigenous soil microflora.  相似文献   

12.
Phytoremediation is an emerging technique that can be used to economically remediate sites contaminated with trace elements and/or man‐made organic contaminants. This technique was used on Pearl Harbor (Oahu, Hawaii) dredged material (PHDM) containing polycyclic aromatic hydrocarbons (PAHs) and some heavy metals. The dredged material was first amended with a high‐calcium soil (Waialua Mollisol) and a biosolids‐based compost at different proportions to yield varying salinity levels. A mixture that yielded an electrical conductivity (EC, a measure of salinity) of the saturated paste extract of 15 to 20 dS/m was identified and used to evaluate the salt tolerance of five plant species. Relative germination and one‐month‐old biomass indicated that common bermuda grass (Cynodon dactylon), seashore paspalum (Paspalum vaginatum), beach pea (Vigna marina), and cow pea (Vigna unguiculata) can produce at least 40 percent of biomass of the control at an EC of approximately 18 dS/m, suggesting the four plants are relatively salt tolerant. In contrast, Desmodium intortum either did not germinate or died within two weeks after germination at the same salinity level. A subsequent greenhouse experiment, using mixtures of the PHDM (0 or 25 percent dry weight), organic amendments (10 percent leucaena green manure or biosolids‐based compost), and a Mollisol (65 or 90 percent dry weight) in 6‐liter pots containing 4 kilograms of material yielded the following results: (1) A combination of transplanted seashore paspalum, seeded bermuda grass, and seeded beach pea was effective in taking up sodium (Na), thereby reducing salinity and making the medium more amenable to diversified microbes and plants, which may be effective PAH degraders; (2) total PAH concentration was reduced by about 30 percent after three months of active plant growth, but degradation of individual PAH members varied significantly, however; (3) leguminous green manure, as a soil amendment, was more effective than compost for use in bio‐ and/or phytoremediations; and (4) soil amendments, when applicable, could supplement living plants in reducing organic contaminants, such as PAHs. © 2002 Wiley Periodicals, Inc.  相似文献   

13.
Thermal remediation of contaminated soils and groundwater by injection of hot air and steam using large‐diameter auger in situ soil mixing effectively remediates volatile and semivolatile organic compounds. This technology removes large amounts of contamination during the early treatment stages, but extended treatment times are needed to achieve high removal percentages. Combining thermal treatment with another technology that can be injected and mixed into the soil, and that continues to operate after removal of the drilling equipment, improves removal efficiency, and reduces cost. Using field‐determined pseudo first‐order removal rates, the cost of the combined remediation of chlorinated volatile organic compounds (CVOCs) by thermal treatment followed by reductive dechlorination by iron powder has been estimated as 57 percent of the cost of thermal treatment alone. This analysis was applied to a case‐study remediation of 48,455 cubic yards, which confirmed the cost estimate of the combined approach and showed over 99.8 percent removal of trichloroethene and other chlorinated VOCs. © 2010 Wiley Periodicals, Inc.  相似文献   

14.
The application of organic materials to replenish soil organic matter and improve soil structure and fertility has become a common agronomic practice. This research deals with the effects of soil amendment with winery and distillery waste composts on organic carbon (C) mineralisation in two arable soils. A sandy-loam and clay-loam soil were treated and incubated with a number organic materials obtained from the co-composting of different proportions of grape stalk, grape marc, exhausted grape marc and vinasse, with sewage sludge or animal manure. Moreover, the effect of compost stability on C mineralisation dynamics was studied by applying organic materials from different stages of the composting process. The results obtained showed that the addition of exogenous organic matter stimulated microbial growth, enhanced soil respiration and increased water-extractable C contents in both soils, particularly in the days immediately following amendment. The initial composition of the different organic materials used, especially for the mature samples, and the texture of the receiving soil did not influence significantly the C mineralisation final values, with around 11–20% of the added organic C being mineralised over the first 140 days. However, the contribution of organic amendment to the labile organic C pool, maximum rates of soil respiration, as well as the extent of initial disturbance of the soil microbiota were all found to be related to the degree of organic matter stability. Moreover, irrespective of the type and stability of the organic amendment, the mineralogical composition of the receiving soil was found to significantly influence its resilience in such systems.  相似文献   

15.
A pollutant solid material called "alperujo" (AL), which is the main by-product from the Spanish olive oil industry, was composted with a cotton waste as bulking agent, and the compost obtained (ALC) was compared with a cattle manure (CM) and a sewage sludge compost (SSC) for use as organic amendment on a calcareous soil. The experiment was conducted with a commercial pepper crop in a greenhouse using fertigation. Composting AL involved a relatively low level of organic matter biodegradation, an increase in pH and clear decreases in the C/N and the fat, water-soluble organic carbon and phenol contents. The resulting compost, which was rich in organic matter and free of phytotoxicity, had a high potassium and organic nitrogen content but was low in phosphorus and micronutrients. The marketable yields of pepper obtained with all three organic amendments were similar, thus confirming the composting performance of the raw AL. When CM and SSC were used for soil amendment, the soil organic matter content was significantly reduced after cultivation, while it remained almost unchanged in the ALC-amended plots.  相似文献   

16.
A series of tests to burn mixtures of tar pond sludge and coal was carried out using a mini‐circulating fluidized bed combustor (mini‐CFBC). During the tests, carbon dioxide, oxygen, carbon monoxide, sulfur dioxide, and nitrogen oxides in the flue gas were monitored continuously. Stack gas sampling was carried out for hydrochloric acid, metals, particulate matter, volatile organic compounds (VOCs), total hydrocarbons, semivolatile organic compounds (SVOCs), dioxins and furans (PCDD/Fs), and polychlorinated biphenyls (PCBs). Results showed that hydrochloric acid, mercury, particulate matter, PCDD/F, and metal concentrations were all below both the current limits and the gas‐release limits to be implemented in 2008 in Canada. The new 2008 emissions limits will reduce the maximum allowable concentrations of most pollutants by half. Thus, the maximum concentration for particulate matter will be 5 mg/m3 (from the current maximum concentration of 10 mg/m3);the maximum concentration for hydrochloric acid will be 5 mg/m3 (from 10 mg/m3); and the‐maximum concentration for dioxins and furans will be 0.032 ng/m toxic equivalent (from 0.08 ng/mcurrently). Sulfur capture efficiency was 89–91 percent. The percentage of fuel nitrogen converted to nitrogen oxides was of the order of 4.7 to 6.1, which is significantly lower than that of conventional pulverized coal‐fired boilers and well within the normal range for fluidized bed combustors (FBCs). PCB and polycyclic aromatic hydrocarbon (PAH) emissions levels were comparable or lower than levels reported in the literature for industrial‐scale FBCs. VOC concentrations were low except for benzene, for which the concentration was higher than that reported for pulverized coal‐fired utility boilers. In addition, carbon monoxide concentration was high at 1,200 to 2,200 parts per million. However, these carbon monoxide concentrations are typical of the mini‐CFBC firing coal. The trials showed that for 10 percent by weight tar pond sludge mixed with 90 percent by weight coal, the combustion was both stable and efficient. The tests demonstrated that CFBC technology is an environmentally sound option for eliminating tar pond waste sludge. © 2005 Wiley Periodicals, Inc.  相似文献   

17.
Modification of soil humic matter after 4 years of compost application   总被引:2,自引:0,他引:2  
Two soil plots, 1 ha each, were amended yearly for 4 years, respectively, with 35.8 and 71.6 Mg ha(-1) yr(-1) of mature compost (CM) obtained from food and vegetable residues. The compost, amended soils, and a control soil plot after 4 years (S4), were analyzed for humin (HUC), humic acid (HAC), fulvic acid (FAC), and non-humic carbon (NHC) content. Compared to S4, the amended soil contained more humified C (HAC, FAC and HUC) and less NHC. Further evidence of the effect of compost on soil organic matter was obtained by the analysis of the humic acid (HA) fractions isolated from both the compost and the soils. These were characterized by elemental analyses and Diffuse Reflectance Infrared Fourier Transformed spectroscopy. The HAs isolated from CM and from S4 were significantly different. The HAs isolated from the amended plots were more similar to HA isolated from CM than to HA isolated from S4. The experimental data of this work indicate that the compost application may affect significantly the soil organic matter composition, and that the approach used in this work allows one to trace the fate of compost organic matter in soil.  相似文献   

18.
A pilot phytoremediation project was conducted at the Mukluk site in Sprague, Connecticut, formerly a private skeet shooting range. A series of experiments was conducted to investigate if any plants can be effective lead phytoextractors for this site that has very high soil lead concentrations and low soil pH. Greenhouse screening of plants for lead resistance and accumulation using field soil was implemented as the initial step before the field installation. Herbaceous plant species with known lead phytoextraction capabilities included Indian mustard and blue fescue; a few willow clones with purported heavy metal resistance were also tested. Based on the results of the greenhouse experiments, blue fescue appeared to be sensitive to high lead concentration in soil, and only willows and Indian mustard along with various soil amendments were selected for the field installation. Indian mustard grew poorly in most of the treatments at the site except in the compost and lime treatment. Lead accumulation by this species was low in all treatments. In contrast, willows showed tolerance to very high lead concentrations present in the soil and were able to uptake and translocate lead into aboveground tissues. However, lead content in aerial tissues was low, and no change in soil lead concentration at the site was recorded post‐harvest after one growing season. It appeared that highly unfavorable soil characteristics at the Mukluk site complicated the species selection, and no effective phytoextractors have been found for this location. These suggest that the feasibility of phytostabilization and possible production of biofuel from willow biomass on these types of sites should be further investigated. © 2010 Wiley Periodicals, Inc.  相似文献   

19.
A field study was conducted to compare the effectiveness of land treatment and mesophilic composting in removing aged polycyclic aromatic hydrocarbons (PAH) from soil. The soil composting treatment, which had 20 percent (w/w) fresh organic matter incorporated into the soil, reached mesophilic temperatures of 45 to 50°C at week 3–4 and was effective in reducing PAH from 2240 mg/kg to 120 mg/kg after 224 days of treatment. Conventional land treatment with and without added cow manure (5 percent w/w) was less effective in removing the PAH from the soil than was the mesophilic soil composting treatment. In a parallel laboratory trial, PAH concentrations were reduced below 500 mg/kg (the target cleanup concentration for the site) when the contaminated soil was amended with 20 to 30 percent (w/w) fresh organic matter after 186 days of treatment. PAH degradation was lower in the laboratory trial compared with the field trial and no self-heating of soil was demonstrated in the laboratory. Based on the relatively high total heterotrophic and naphthalene-degrading microbial populations in the nonsterile treatments, it was apparent that the absence of microorganisms was unlikely to have limited the biodegradation of PAH in the current study. Fresh organic matter amendments of green tree waste and cow manure, regular mixing of the compost, and maintenance of moisture by regular watering were critical factors in achieving the target PAH concentrations.  相似文献   

20.
Links between forest floor carbon:nitrogen (C:N) ratios, atmospheric N deposition and nitrate leaching into surface waters have been reported for forest ecosystems, but similar studies have not been reported previously for the equivalent compartments of moorland ecosystems in Great Britain, despite the importance of nitrate in contributing to the acidification of moorland streams and lakes in British uplands. In this paper, the relationships between the C:N ratio of moorland soil surface organic matter, N deposition, and nitrate leaching are explored for 13 soils in four moorland catchments. Although there is spatial variability in the C:N ratio of soils, major differences are apparent between soils and especially between catchments. The C:N ratio appears to be inversely related to modelled inorganic N deposition and, to a lesser degree, measured nitrate leaching, for three of the four catchments studied (Allt a'Mharcaidh, Afon Gwy, and Scoat Tarn). Nitrification may make an important contribution to nitrate leaching at the two higher deposition sites. At the fourth site, the heavily acidified River Etherow catchment, extremely high rates of nitrate leaching are not accompanied by low C:N ratios or high nitrification potentials in the upper soil horizons. Hence the C:N ratio of surface soil organic matter may have potential as an indicator of nitrogen saturation and leaching in some systems, but it is not universally applicable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号