首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Surfactants and cosolvents are useful for enhancing the apparent solubility of dense nonaqueous‐phase liquid (DNAPL) compounds during surfactant‐enhanced aquifer remediation (SEAR). In situ chemical oxidation (ISCO) with permanganate, persulfate, and catalyzed hydrogen peroxide has proven to be a cost‐effective and viable remediation technology for the treatment of a wide range of organic contaminants. Coupling compatible remedial technologies either concurrently or sequentially in a treatment train is an emerging concept for more effective cleanup of DNAPL‐contaminated sites. Surfactants are effective for DNAPL mass removal but not useful for dissolved plume treatment. ISCO is effective for plume control and treatment but can be less effective in areas where large masses of DNAPL are present. Therefore, coupling SEAR with ISCO is a logical next step for source‐zone treatment. This article provides a critical review of peer‐reviewed scientific literature, nonreviewed professional journals, and conference proceedings where surfactants/cosolvents and oxidants have been utilized, either concurrently or sequentially, for DNAPL mass removal. © 2010 Wiley Periodicals, Inc.  相似文献   

2.
Soil contaminated with persistent pesticides, such as DDT, poses a serious risk to humans and to wildlife. A surfactant‐aided soil‐washing technique was studied as an alternative method for remediation of DDT‐contaminated soil. An ex situ soil washing method was investigated using nonionic and anionic surfactants due to the clayey structure of the contaminated soil. A mixture of 1 percent nonionic surfactant (Brij 35) and 1 percent anionic surfactant (SDBS) removed more than 50 percent of DDT from soil in a flow‐through system, whereas individual surfactants or other combinations of the surfactants had a lower removal efficiency. The soil‐washing technique was improved using a mixing system. The mixture of surfactants was optimized in the mixing system, and the combination of 2 percent Brij 35 and 0.1 percent SDBS was found to be optimum, removing 70 to 80 percent of DDT. Prewashing of the soil with tap water decreased the adsorption of surfactants to soil particles by 30 to 40 percent, and postwashing recovered 90 percent of the surfactants. © 2010 Wiley Periodicals, Inc.  相似文献   

3.
It is difficult to quantify the range in source strength reduction (MdR) that may be attainable from in situ remediation of a dense nonaqueous‐phase liquid (DNAPL) site given that available studies typically report only the median MdR without providing insights into site complexity, which is often a governing factor. An empirical study of the performance of in situ remediation at a wide range of DNAPL‐contaminated sites determined MdRs for in situ bioremediation (EISB), in situ chemical oxidation (ISCO), and thermal treatment remedies. Median MdR, geometric mean MdR, and lower/upper 95 percent confidence interval for the mean were: 49x, 105x, 20x/556x, respectively, for EISB; 9x, 21x, and 4x/110x for ISCO; and 19x, 31x, and 6x/150x for thermal treatment. Lower MdR values were determined for large, complex sites and for sites with DNAPL pool‐dominated source zones. A feasibility analysis of partial DNAPL depletion is described for a pool‐dominated source zone. Back‐diffusion from low‐hydraulic conductivity units within a pool‐dominated source zone is shown to potentially sustain a secondary source for more than 1,000 years, indicating that aggressive source treatment may not reduce the remediation timeframe. Estimated plume response demonstrates there may be no reduction in cost associated with aggressive treatment, and little difference in risk reduction associated with the various alternatives. Monitored natural attenuation (MNA) for the source zone is shown to be a reasonable alternative for the pool‐dominated source zone considered in this example. It is demonstrated that pool‐dominated source zones with a large range in initial DNAPL mass (250 to 1,500 kg) may correspond to a narrow range in source strength (20 to 30 kg/year). This demonstrates that measured source strength is nonunique with respect to DNAPL mass in the subsurface and, thus, source strength should not be used as the sole basis for predicting how much DNAPL mass remains or must be removed to achieve a target goal. If aggressive source zone treatment is to be implemented due to regulatory requirements, strategic pump‐and‐treat is shown to be most cost effective. These remedial decisions are shown to be insensitive to a range of possible DNAPL pool conditions. At sites with an existing pump‐and‐treat system, a significant increase in mass removal and source strength reduction may be achieved for a low incremental cost by strategic placement of extraction wells and pumping rate selection. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
Dense nonaqueous phase liquids (DNAPLs), in particular chlorinated solvents such as trichloroethene, pose groundwater contamination problems at hazardous waste sites across North America. The mobility of DNAPLs in the subsurface, their low aqueous solubility, and the heterogeneity of typical aquifer systems combine to create conditions that inhibit the rapid remediation of DNAPL sites by traditional pump-and-treat methods. Surfactant-enhanced methods for DNAPL-site remediation accelerate the pace of remediation in granular aquifer systems, e.g., alluvium and outwash. The importance of adequate hydraulic conductivity and aquitard conditions is stressed in the application of surfactant-enhanced aquifer remediation (SEAR).  相似文献   

5.
石油烃污染地下水原位修复技术研究进展   总被引:15,自引:2,他引:15  
王业耀  孟凡生 《化工环保》2005,25(2):117-120
概述了石油烃污染地下水原位修复技术的进展,包括原位化学氧化、原位电动修复、渗透反应格栅、冲洗、土壤气抽出、地下水曝气、生物修复,并对今后的研究发展趋势进行了展望。  相似文献   

6.
The migration of biogeochemical gradients is a useful framework for understanding the evolution of biogeochemical conditions in groundwater at waste sites contaminated with metals and radionuclides. This understanding is critical to selecting sustainable remedies and evaluating sites for monitored natural attenuation, because most attenuation mechanisms are sensitive to geochemical conditions, such as pH and redox potential. Knowledge of how gradients in these parameters evolve provides insights into the behavior of contaminants with time and guides characterization, remedy selection, and monitoring efforts. An example is a seepage basin site at the Savannah River Site in South Carolina where low‐level acidic waste has seeped into groundwater. The remediation of this site relies, in part, on restoring the natural pH of the aquifer by injecting alkaline solutions. The remediation will continue until the pH upflow of the treatment zone increases to an acceptable value. The time required to achieve this objective depends on the time it takes the trailing pH gradient, the gradient separating the plume from influxing natural groundwater, to reach the treatment zone. Predictions of this length of time will strongly influence long‐term remedial decisions. © 2008 Wiley Periodicals, Inc.  相似文献   

7.
The direct application of surfactants to petroleum-contaminated soil has been proposed as a mechanism to increase the bioavailability of insoluble compounds. Solubilization of hydrophobic compounds into the aqueous phase appears to be a significant rate limiting factor in petroleum biodegradation in soil. Nonionic surfactants have been developed to solubilize a variety of compounds, thus increasing the desorption of contaminants from the soil. In this study, laboratory scale land treatment scenarios were used to monitor the bioremediation of petroleum contaminated soils. In efforts to achieve the lowest levels of residual petroleum hydrocarbons in the soil following biotreatment, 0.5 and 1.0% (volume/weight) surfactant was blended into soils under treatment. Two soil types were studied, a high clay content soil and a sandy, silty soil. In both cases, the addition of surfactant (Adsee 799®, a blend of ethoxylated fatty acids, Witco Corporation) stimulated biological activity as indicated by increased heterotropbic colony forming units per gram of soil. However, the increased activity was not correlated with removal of petroleum hydrocarbons. The results suggest that the application of surfactants directly to the soil for the purpose of solubilizing hydropbobic compounds was not successful in achieving greater levels of petroleum hydrocarbon removal.  相似文献   

8.
Sites with dense nonaqueous‐phase liquid (DNAPL) contamination present significant remediation challenges in terms of technical practicability and cost. Remedial approaches to DNAPL sites often follow a management approach rather than removal or eradication approaches, particularly due to the uncertainties associated with the benefits of partial source mass removal, as complete source removal is unlikely. Mass‐removal technologies should be evaluated for all DNAPL sites, although implementation of recovery technologies will be limited to a few sites based upon site‐specific factors. Sitewide remedial strategies that employ source reduction, where applicable, and incorporate associated risk‐reduction technologies, including monitored natural attenuation, are advised. Creosote DNAPL sites are particularly challenging, as they are predominantly composed of low‐solubility polycyclic aromatic hydrocarbons that form long‐term continuing sources. Additionally, the physical properties of creosote DNAPL, including high viscosity and relatively low density, result in significant migration potential and considerable dissolved‐phase groundwater impacts. An innovative creosote DNAPL source recovery well design was developed to achieve separate‐phase removal of pooled creosote DNAPL. The design presented herein employs modified circulation‐well technology to mobilize DNAPL to the engineered recovery well, where it is gravity‐settled into a sump to permit separate‐phase mass removal of the emplaced DNAPL source without groundwater production or treatment. A discharge mass flux protocol was developed to verify dissolved‐phase plume stability and the benefit of the source mass removal. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
A field pilot test in which hydraulic fracturing was used to emplace granular remediation amendment (a mixture of zero‐valent iron [ZVI] and organic carbon) into fine‐grained sandstone to remediate dissolved trichloroethene (TCE)‐contaminated groundwater was performed at a former intercontinental ballistic missile site in Colorado. Hydraulic fracturing was used to enhance the permeability of the aquifer with concurrent emplacement of amendment that facilitates TCE degradation. Geophysical monitoring and inverse modeling show that the network of amendment‐filled fractures extends throughout the aquifer volume targeted in the pilot test zone. Two years of subsequent groundwater monitoring demonstrate that amendment addition resulted in development of geochemical conditions favorable to both abiotic and biological TCE degradation, that TCE concentrations were substantially reduced (i.e., greater than 90 percent reduction in TCE mass), and that the primary degradation processes are likely abiotic. The pilot‐test data aided in re‐evaluating the conceptual site model and in designing the full‐scale remedy to address a larger portion of the TCE‐contaminated groundwater plume. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
The combination of electrokinetic and zero‐valent iron (ZVI) treatments were used to treat soils contaminated with chlorinated solvents, including dense nonaqueous phase liquid (DNAPL), at an active industrial site in Ohio. The remediation systems were installed in tight clay soils under truck lots and entrances to loading docks without interruption to facility production. The electrokinetic system, called LasagnaTM, uses a direct current electrical field to mobilize contaminant via electroosmosis and soil heating. The contaminants are intercepted and reduced in situ using treatment zones containing ZVI. In moderately contaminated soils around the LasagnaTM‐treated source areas, a grid of ZVI filled boreholes were emplaced to passively treat residual contamination in decades instead of centuries. The remediation systems were installed below grade and did not interfere with truck traffic during the installation and three years of operation. The LasagnaTM systems removed 80 percent of the trichloroethylene (TCE) mass while the passive ZVI borings system has reduced the TCE by 40 percent. The remediation goals have been met and the site is now in monitoring‐only mode as natural attenuation takes over. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
The NanoRem European research project aims to support and develop the appropriate use of nanotechnology for contaminated land remediation by facilitating practical, economic, and exploitable nanotechnology for in situ remediation. This can only be achieved in parallel with a comprehensive understanding of the environmental risk‐benefit balance for the use of the nanoparticles (NPs) being investigated. While the NanoRem NPs could have a significant toxicity this is likely to be less potent than NPs currently being released into the environment, such as those from a variety of antibacterial products. The NanoRem NPs are likely to interact with the aquifer matrix, each other, and groundwater chemistry to rapidly cease to be mobile and are unlikely to penetrate into the aquifer more than a few meters from the point of injection. In terms of the source‐pathway‐receptor paradigm, the NanoRem NPs are cautiously presumed to represent a hazard (i.e., source). At least one receptor, in the form of not yet polluted groundwater, is present at all the NanoRem case study sites. While there are considerable uncertainties particularly with regards to the transport of NanoRem NPs, the ability of NPs to penetrate far into the formation is likely to be very limited. The relatively short travel distances reported in the literature for a variety of NP types and geological conditions suggest that the pathways are at best very limited in extent. Overall, this means that in many cases the level of risk renegade NPs can pose to the environment or human health is at most minimal. A qualitative protocol developed for the NanoRem field trials can demonstrate that injecting NanoRem NPs into contaminated groundwater poses a minimal level of risk due to the reduced pathway. ©2016 Wiley Periodicals, Inc.  相似文献   

12.
Quasi‐passive in situ remediation technologies, such as the use of permeable reactive barriers to treat contaminated groundwater or applications of granular activated carbon to treat polychlorinated biphenyl (PCB)‐contaminated, near‐surface sediments, are proven or promising technologies that may be limited in application due to the traditional construction techniques normally used for placement in the environment. High‐pressure waterjets have traditionally been used to excavate material during mining operations or to cut rock or other durable material. Waterjets have the potential to place amendments in the subsurface at depths greater than those that can be obtained using traditional construction techniques. Likewise, waterjets may have less negative impact on near‐surface utilities and/or sensitive ecological systems. Laboratory experiments were performed to characterize the placement of two solid amendments in a simulated saturated aquifer. A second set of experiments was performed to characterize the effectiveness of waterjets for placing a third amendment in simulated intertidal sediments. The laboratory work focused on characterizing the nature of the waterjet penetration of the aquifer matrix and the saturated sediments, as well as the corresponding waterjet parameters of pressure, nozzle size, and injection time. The laboratory results suggest that field trials may be appropriate for future investigations. © 2005 Wiley Periodicals, Inc.  相似文献   

13.
A three-dimensional, multiphase, multicomponent compositional simulator was employed to simulate nonaqueous phase liquid (NAPL) migration during surfactant-enhanced aquifer remediation (SEAR) in spatially correlated heterogeneous fields. Aquifer heterogeneity was accounted for by considering the permeability to be a spatially random variable, and a geostatistical method was used to generate random distributions of the permeability. Spatial distributions of saturations in the NAPL and temporal changes of organic recovery, effluent concentrations of organics and surfactant, and pressure drop at the injection well for heterogeneous aquifers were compared with those in a homogeneous aquifer to examine the effects of different levels of heterogeneity. Variations in permeability fields have a pronounced effect on the organic recovery efficiency due to the long-term persistence of nonaqueous phase liquid and additional dispersion. Permeability heterogeneity also leads to the tailing off of effluent organic concentrations and significant loss in injectivity over the remediation period. For a small slug of surfactant, surfactant-enhanced remediation resulted in a relatively small improvement in the recovery of NAPL, especially in highly heterogeneous aquifers. Migration of high-concentration organic plumes to other layers by crossflow was also found to have a significant influence on SEAR behavior.  相似文献   

14.
15.
Residual dense nonaqueous phase liquid (DNAPL) composed of trichloroethene (TCE) was identified in a deeper interval of an overburden groundwater system at a manufacturing facility located in northern New England. Site hydrostratigraphy is characterized by two laterally continuous and transmissive zones consisting of fully‐saturated fine sand with silt and clay. The primary DNAPL source was identified as a former dry well with secondary contributions from a proximal aboveground TCE storage tank. A single additive‐injection mobilization in 2001 utilizing a food‐grade injectate formulated with waste dairy product and inactive yeast enhanced residual TCE DNAPL destruction in situ by stimulating biotic reductive dechlorination. The baseline TCE concentration was detected up to 97,400 μg/L in the deeper interval of the overburden groundwater system, and enhanced reductive dechlorination (ERD) achieved >99 percent reduction in TCE concentrations in groundwater over nine years with no evidence of sustained rebound. TCE concentrations have remained nondetect below 2.0 μg/L for the last five consecutive sampling rounds between 2013 and 2015. ERD utilizing a food‐grade injectate is a green remediation technology that has destroyed residual DNAPL at the site and achieved similar results at other residual DNAPL sites during both pilot‐ and full‐scale applications. ©2016 Wiley Periodicals, Inc.  相似文献   

16.
A promising new technology for the detection of dense nonaqueous phase liquids, or DNAPLs, is cosolvent injection/extraction. Cosolvents, such as alcohols, are injected into the subsurface and interact with DNAPLs to increase their aqueous solubility, which increases recovery of the chemicals. A laboratory assessment was performed to determine if incorporating this technology with cone penetrometers could provide a useful sampling tool for DNAPL detection. A cone penetrometer was modeled in the laboratory by injecting and extracting small quantities of ethanol and propylene glycol at low concentrations into a homogeneous sand reactor contaminated with a residual saturation of tetrachloroethene (PCE). Experimental test results show that this technology is extremely sensitive to the vertical placement of the sampler, but is capable of enhancing PCE solubility while recovering most of the alcohol injected. Field testing of this technology will provide the next step in determining the feasibility of this technology for DNAPL detection.  相似文献   

17.
Over the past 10 years, there has been an increased recognition that matrix diffusion processes are a significant factor controlling the success of groundwater remediation. New field techniques and modeling tools have, consequently, been developed to understand how contaminants diffuse into and then out of low‐permeability (“low‐k”) zones and assess the resulting impact on groundwater quality. Matrix diffusion, in turn, is driven by one key factor: geologic heterogeneity. The importance of heterogeneity is being emphasized in the groundwater field by general rules of thumb such as “90% of the mass flux occurs in 10%‐20% of the cross‐sectional area” and conceptual models that show most of the groundwater flow occurs through the aquifer's “mobile porosity” which just a small fraction of commonly used effective porosity values (between 0.02 and 0.10 for mobile porosity vs. 0.25 for effective porosity). For this study, 141 boring logs from 43 groundwater remediation sites were evaluated to develop an empirically based estimate of the groundwater flow versus aquifer cross‐sectional area to confirm or reject the general flow versus area rules of thumb. This study indicated that at these 43 sites, an average of 30% of the cross‐sectional area carried 90% of the groundwater flow. Our flow‐only analysis does provide moderate (but not confirmatory) support for the “mobile porosity” concept with an estimated representative mobile porosity value of about 0.11 at the 43 sites.  相似文献   

18.
The partitioning tracer test (PTT) is a characterization tool that can be used to quantify the porespace saturation (SN) and spatial distribution of dense nonaqueous phase liquids (DNAPLs) in the subsurface. Because the method essentially eliminates data interpolation errors by directly measuring a relatively large subsurface volume, it offers significant promise as a remediation metric for DNAPL‐zone remediation efforts. This article presents, in detail, the design and results of field PTTs conducted before and after a DNAPL‐zone treatment at the Naval Amphibious Base Little Creek, Virginia Beach, Virginia. The results from different tracers yield a relatively large range in SN estimates, indicating notable uncertainty and presenting significant challenges for meaningful interpretation. Several potential interpretation methods are presented, resulting in an estimated DNAPL removal range of 15 to 109 L. While this range is large, it is consistent with the DNAPL removal (~30 L) determined from analysis of effluent concentration measurements collected during the remediation efforts. At this site, the initial and final SN values are low, and the relatively inconsistent performance of the various tracers indicates that these levels are near the lower practical quantification limit for these PTTs; however, the effective lower quantification limit for these tests is unknown. Generally, an understanding of lower quantification limits is particularly important for interpretation of post‐remediation PTTs because SN values are likely to be low (due to remediation efforts) and the SN estimated from the PTT may be used to predict long‐term dissolved plume behavior and assess associated environmental risk. Partitioning tracer test quantification limits are test‐specific, as they are dependent on a variety of factors including analytical uncertainty, tracer breakthrough characteristics, and tracer data integration techniques. The results of this case study indicate that methods for estimating lower quantification limits for field PTTs require further development. © 2004 Wiley Periodicals, Inc.  相似文献   

19.
Research and field experience from the past 15 years has allowed remediation professionals to purposefully design injection‐based remediation systems with a high potential for success. Industry professionals can now claim a number of achievements that were unthinkable just a few years ago: (1) we have demonstrated that maximum contaminant levels (MCLs) can be achieved for multiple contaminants; (2) we have successfully targeted dense nonaqueous‐phase liquid (DNAPL) source zones; (3) we have expanded our understanding of injection hydraulics to treat large plumes; and (4) we have collected sufficient data on rates of treatment to be more predictive regarding outcomes. The next decade will continue to evolve the design and execution of these types of systems for application to more complex problems. At this point on the timeline, questions regarding the mechanisms of treatment have largely been addressed, allowing a shift in focus to operational enhancements. Specific operational insights arising from the body of work to date that arguably will continue to shape and influence the design and execution of injection‐based remediation systems include: (1) the fact that delivery does not always equal distribution, (2) treatment optimization requires aquifer tuning, and (3) life‐cycle costs can be reduced with remedy‐optimized investigation. The number of examples that support these concepts and their ramifications to future technology refinement is already increasing, demonstrating how the refinements that can be made around these areas of focus will enhance our ability to effectively tackle larger and more complicated plumes, and do so with maximum efficiency. © 2011 Wiley Periodicals, Inc.  相似文献   

20.
The injection of remediation compounds has rapidly become a widely accepted approach for addressing contaminated sites. One of the most fundamental questions surrounding the use of in situ remediation has been “What compound are you injecting at your site?” With the advances in the industry's understanding and acceptance of the in situ remediation process remediation professionals are now asking a follow‐up question that has become equally important to the success of a project: “How are you injecting a compound at your site?” This article discusses advances in field applications for in situ remediation and injecting remediation compounds. © 2003 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号