首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
采用铜渣催化H2O2类Fenton氧化反应处理棉浆黑液,研究了酸析pH、H2O2投加量、铜渣投加量对棉浆黑液COD和TOC去除率及溶出Fe2+质量浓度的影响,考察了铜渣重复使用性能,讨论了铜渣催化作用机制.结果表明:在酸析pH为2、H2O2投加量为25 mmol/L、铜渣投加量为2.5 g/L条件下,反应180 min...  相似文献   

2.
以Bi(NO3)3和Na2WO4为原料,采用水热法合成了可见光催化剂Bi2WO6,并采用X射线衍射仪和BET法对其进行了表征。考察了合成温度、Bi2WO6加入量、邻氯苯酚(2-CP)浓度、溶液pH等对2-CP光催化降解效果的影响。实验结果表明:在加入140℃下合成的Bi2WO6催化剂1g/L、原始pH(pH=5.85)、可见光光照210min的条件下,对质量浓度为20mg/L的2-CP溶液进行处理,2-CP去除率最高为97.2%;添加少量H2O2对2-CP的降解有促进作用。  相似文献   

3.
微波-改性活性炭-Fenton试剂氧化法降解水中2,4-二氯酚   总被引:7,自引:2,他引:5  
以经Fe2(SO4)3溶液浸渍改性的活性炭作催化剂、Fenton试剂作氧化剂,采用微波-改性活性炭-Fenton试剂氧化法降解水中的2,4-二氯酚。考察了改性活性炭加入量、H2O2与Fe^2+摩尔比、Fenton试剂加入量、微波功率和2,4-二氯酚溶液初始pH对2,4-二氯酚降解效果的影响。在改性活性炭加入量1.0g/L、n(H2O2):n(Fe^2+)=16.7(H2O2加入量6.0mmol/L、Fe^2+加入量0.36mmol/L)、Fenton试剂加入量为6.36mmol/L、微波功率600W、微波辐射时间10min、2,4-二氯酚溶液初始pH为6.0的条件下,2,4-二氯酚降解率和TOC去除率分别可达98.7%和84.0%。  相似文献   

4.
采用Fenton试剂氧化—原水调节出水pH法预处理碱性印染废水,考察了n(H2O2):n(Fe2+)、Fenton试剂加入量、反应时间和原水与Fenton试剂氧化反应后出水体积比(配水比)对COD去除率及废水pH的影响.实验结果表明,在原水COD为986 mg/L、原水pH为9.31、Fe2+加入量为12 mmol/L、n(H2O2):n(Fe2+)为2、反应时间为30 min、配水比为2的最佳条件下,COD去除率为26.9%,出水pH为6.60.药剂成本较普通Fenton试剂氧化法减少70%.  相似文献   

5.
臭氧催化氧化法处理焦化废水中氰化物   总被引:1,自引:0,他引:1  
采用臭氧催化氧化法处理焦化废水中的氰化物,采用合理的试验设计方案,应用响应曲面法讨论了O3的投加量、催化剂加入量以及溶液初始p H值对总氰去除率影响,从而优化了总氰去除工艺条件。试验结果表明,O3投加量、催化剂用量和溶液初始p H值对总氰的去除率影响极为显著;回归分析和验证试验表明,应用响应曲面法优化试验合理可行;O3投加量为84.35 mg/L、催化剂用量为120 mg/L、p H值为9.26、总氰去除率为91.38%,此时溶液中残留的总氰浓度为0.884 mg/L,可以实现达标排放。  相似文献   

6.
环氧氯丙烷生产废水的资源化处理技术   总被引:1,自引:0,他引:1  
帅晓丹  曹国民  洪芳  盛梅 《化工环保》2013,33(6):518-522
采用催化湿式过氧化物氧化法(CWPO)处理环氧氯丙烷生产废水,考察了反应温度、反应时间、反应pH、双氧水和FeSO4#x000b7;7H2O加入量及投加方式等因素对TOC去除率的影响。实验结果表明:CWPO工艺适宜的反应条件为反应温度90℃,反应pH2.0~3.0,FeSO4#x000b7;7H2O2加入量7.50~8.75g/L,双氧水加入量75mL/L,反应时间100min;双氧水和Fe2+分多次投加时的TOC去除效果明显优于一次性投加;优化条件下,环氧氯丙烷废水经CWPO工艺处理后,TOC由1790mg/L降至138mg/L,符合氯碱厂隔膜电解槽进槽盐水的要求,可以资源化利用。  相似文献   

7.
采用Fenton氧化法对吸附处理染料废水后的饱和粉末活性炭(饱和炭)进行再生,考察了饱和炭的再生效果及其主要影响因素。实验结果表明:饱和炭的最佳再生条件为H2O2投加量6.5 mmol/g、再生p H 3.0、H2O2与Fe2+的摩尔比10、再生时间1 h;最佳条件下的再生率(再生粉末活性炭(再生炭)与新粉末活性炭对废水COD去除率的百分比)约为60%;使用最佳再生条件下得到的再生炭对废水进行吸附处理,废水的COD去除率和脱色率分别约为27%和67%。  相似文献   

8.
采用原位氧化沉淀法制备出仿酶型磁性Fe0-Fe_3O_4复合催化剂,并将其作为非均相类Fenton催化剂用于溶液中对硝基苯酚的降解;采用SEM和XRD等技术对催化剂进行了表征。表征结果显示,Fe_3O_4与Fe0结合牢固,有利于Fe0的分散。实验结果表明:Fe0-Fe_3O_4对对硝基苯酚的降解为拟一级反应;在Fe0与Fe_3O_4的质量比为0.75、Fe0-Fe_3O_4投加量为1.2 g/L、初始H_2O_2浓度为10 mmol/L、初始溶液p H为3、反应温度为30℃的条件下反应90min,反应速率常数为0.067 min-1,COD去除率为77.28%,Fe溶出量为2.12 mg/L;在对硝基苯酚的降解过程中,pH先增大后减小,Fe溶出量先降低后升高;Fe0-Fe_3O_4是一种稳定的催化剂,可再生使用。  相似文献   

9.
吸附-混凝-紫外光催化氧化法处理医药废水的研究   总被引:1,自引:1,他引:1  
采用吸附—混凝—紫外光催化氧化法对医药废水进行处理。在废水pH为6.8、聚合氯化铝(PAC)和阳离子聚丙烯酰胺(PAM)的和量分别为400和12mg/L条件下,废水COD、色度去除率分别为37.8%、72.7%;在废水(混凝处理后)pH为3、分3次加入H2O2(投加量为2.5g/L)条件下,紫外光照射6h后,废水COD、色度去除率分别为97.6%、100%。用该法处理后的医药废水,其COD、色度去除率分别为99.1%、100%,出水水质达到医药行业废水二级排放标准。  相似文献   

10.
包伟  黄勇  张宁博  王飞 《化工环保》2016,(5):537-542
采用三级厌氧柱串联形成的递进式强化厌氧处理工艺协同Fenton氧化工艺处理某印染厂的印染废水(COD 1 418 mg/L、色度400倍)。三级厌氧柱的运行参数为:以陶粒为填料,进水p H为7.0,3个厌氧柱的HRT均为16 h,柱温(33±2)℃。厌氧柱2的强化条件为投加280 mg/L钙离子和30 mg/L PAM,厌氧柱3的强化条件为投加350 mg/L煤质活性炭。三级厌氧柱强化前后的COD去除率分别为70.38%和84.13%,色度去除率分别为50.00%和62.50%。Fenton氧化处理的最佳条件为H2O2投加量450 mg/L、Fe SO4投加量450 mg/L、反应p H 3.5、反应时间0.5 h。整个工艺的总COD去除率达96.12%、总色度去除率达78.75%,处理后出水的COD为55 mg/L、色度为85倍,满足GB 4287—2012《纺织染整工业水污染物排放标准》中的直排标准。  相似文献   

11.
采用Fenton氧化法处理石化含油废水生化出水,通过正交实验和单因素实验优化了反应工艺条件。正交实验得到各因素对COD去除率的影响大小顺序为:溶液初始pHH_2O_2投加量n(H_2O_2)∶n(Fe~(2+))反应温度。实验最佳工艺条件为:初始溶液pH 4.0,H_2O_2投加量3.00 mL/L,n(H_2O_2)∶n(Fe~(2+))=10,反应温度35℃,反应时间60 min。在此最佳工艺条件下COD可降至60.33 mg/L,COD去除率达61.33%。在最佳工艺条件下,分别采用超声(US)-Fenton氧化和紫外光(UV)-Fenton氧化技术处理含油废水生化出水,COD去除率分别达76.77%和80.23%。但单一Fenton氧化、US-Fenton氧化和UV-Fenton氧化工艺对NH_3-N的去除效果均并不明显。  相似文献   

12.
分别以NaY、NH4Y和HY沸石为载体,以乙酰丙酮铁为铁源,采用固态反应法制备了铁负载量均为10%(w)的FeNaY-10、FeNH4Y-10和FeHY-10催化剂。考察了各催化剂对活性艳蓝(KN-R)的降解效果,其中FeHY-10的催化降解效果最佳。采用XRD和FTIR技术对FeHY-10催化剂进行表征。表征结果显示,FeHY催化剂晶体结构仍然保持了Y分子筛特有的孔道结构,铁物种在Y 分子筛表面高度分散。催化降解实验表明,催化降解KN-R的最佳工艺条件为KN-R溶液(质量浓度为300 mg/L)加入量为50 mL、溶液pH为2、催化剂FeHY-25(铁负载量为25%(w))加入量为0.281 3 g、H2O2质量浓度为6.356 g/L、降解温度为35 ℃、降解时间为140 min,在此工艺条件下FeHY催化剂对KN-R的降解率为97.4%。  相似文献   

13.
胡绍伟  王飞  陈鹏  王永  徐伟 《化工环保》2014,34(4):344-347
采用内电解—Fenton氧化—絮凝沉淀的化学集成技术预处理焦化废水,优化了各工段的运行参数。实验结果表明:在钢铁铁屑与活性炭的体积比为1∶1的条件下,内电解工段的优化参数为进水pH 2.6~3.1、HRT=1.0 h;Fenton氧化工段的优化参数为Fe2+加入量200 mg/L、H2O2加入量1 000 mg/L、进水pH 3.0左右、反应时间1.0 h;絮凝沉淀工段的设定参数为进水pH 9.5~10.0、聚丙烯酰胺加入量1 mg/L、静置沉降0.5 h。在上述工艺条件下,该集成技术对废水的总COD去除率大于55%,处理后的废水BOD5/COD大于0.28,不添加稀释新水即可进入后续生化处理系统。该工艺占地面积小、系统结构简单、易于工业化,废水预处理成本为4~5元/t。  相似文献   

14.
MCM-41分子筛负载铁铈催化降解甲基橙   总被引:1,自引:0,他引:1       下载免费PDF全文
采用等体积浸渍法制备了负载型有序介孔Fe-Ce/MCM-41催化剂。研究了该催化剂降解甲基橙的适宜工艺条件,并采用XPS,XRD,TEM技术对该催化剂进行了表征。实验结果表明,该催化剂Fenton氧化降解甲基橙的较适宜工艺条件为:溶液pH 5.0、甲基橙溶液初始质量浓度100 mg/L、催化剂加入量2.0 g/L、H_2O_2浓度20 mmol/L,在此适宜条件下反应120 min时,甲基橙去除率接近100%。表征结果显示:Fe-Ce/MCM-41催化剂主要由铁、铈、氧、碳4种元素组成;铁与铈的摩尔比接近3∶1;铁和铈主要以Fe_3O_4和CeO_2的形态存在于催化剂表面。  相似文献   

15.
采用溶胶-凝胶法制备了Mn掺杂钙钛矿型催化剂LaFexMn1-xO3,并以其为催化剂催化湿式双氧水氧化处理煤气化废水纳滤浓缩液。采用XRD,SEM,FTIR技术对催化剂进行了表征。表征结果显示:制备的催化剂均具有标准的钙钛矿型结构,其中,LaFe0.9Mn0.1O3的结构稳定,比表面积大。实验结果表明:制备的催化剂中LaFe0.9Mn0.1O3的催化活性最高,且稳定性好,连续使用5次后催化活性未见明显减弱;在H2O2投加量3.0 g/L、n(H2O2)∶n(LaFe0.9Mn0.1O3)=12∶1、反应温度160 ℃、反应压力1 MPa、浓缩液pH 3、反应时间60 min的最优条件下,COD、UV254和TOC的去除率分别达到80.9%、95.2%和68.0%,BOD5/COD由0.02提升至0.40,可生化性大幅提高。  相似文献   

16.
Ozonation, combined with the Fenton process (O(3)/H(2)O(2)/Fe(2+)), was used to treat matured landfill leachate. The effectiveness of the Fenton molar ratio, Fenton concentration, pH variance, and reaction time were evaluated under optimum operational conditions. The optimum removal values of chemical oxygen demand (COD), color, and NH(3)-N were found to be 65%, 98%, and 12%, respectively, for 90 min of ozonation using a Fenton molar ratio of 1 at a Fenton concentration of 0.05 mol L(-1) (1700 mg/L) H(2)O(2) and 0.05 mol L(-1) (2800 mg/L) Fe(2+) at pH 7. The maximum removal of NH(3)-N was 19% at 150 min. The ozone consumption for COD removal was 0.63 kg O(3)/kg COD. To evaluate the effectiveness, the results obtained in the treatment of stabilized leachate were compared with those obtained from other treatment processes, such as ozone alone, Fenton reaction alone, as well as combined Fenton and ozone. The combined method (i.e., O(3)/H(2)O(2)/Fe(2+)) achieved higher removal efficiencies for COD, color, and NH(3)-N compared with other studied applications.  相似文献   

17.
In this study, photochemical advanced oxidation processes (AOPs) utilizing the combinations of UV/H2O2 and the photo-Fenton reaction (UV + classical Fenton reaction) were investigated in lab-scale experiments for the degradation of p-chlorophenol. The study showed that the photo-Fenton process, (a mixture of hydrogen peroxide and ferrous or ferric ion), was the most effective treatment process under acidic conditions and produced a higher rate of degradation of p-chlorophenol at a very short radiation time. It accelerated the oxidation rate by 5-9 times the rate for the UV/H2O2 process. The reaction was found to follow the first order, the reaction was influenced by the pH, the input concentration of H2O2 and the amount of the iron catalyst and the type of iron salt. The experimental results showed that the optimum conditions were obtained at a pH value of 3, with 0.03 mol/l H2O2, and 1 mmol/l Fe(II) for the UV/H2O2/Fe(II) system and 0.01 mol/l H2O2 and, 0.4 mmol/l Fe(III) for the UV/H2O2/Fe(III) system. The reactions were accompanied by the generation of Cl- which reached its maximum value at a short reaction time when using the photo-Fenton process. Finally a rough comparison of the specific energy consumption shows that photo-Fenton process reduced the energy consumption by at least 73 to 83% compared with the UV/H2O2 process.  相似文献   

18.
采用大孔树脂吸附—Fenton试剂氧化法预处理含邻苯二甲酸二异丁酯(DIBP)废水。大孔树脂吸附工段的最佳实验条件为:以树脂NDA88为吸附剂,废水pH为2。NDA88经过10批次的连续使用,COD去除率基本稳定在58%左右,脱附率可达96%以上,吸附后废水COD为12 000 mg/L左右。Fenton试剂氧化工段的最佳实验条件为:H2O2加入量70 mL/L,n(H2O2):n(Fe2+)=4,废水pH 4。在此最佳条件下进行实验,Fenton试剂氧化工段COD去除率达65%,处理后废水COD为4 200 mg/L。  相似文献   

19.
将活性炭(AC)应用于烟气脱硝中,其自身损耗和脱硝效率是关注焦点。采用不同氧化剂(KMnO4、HNO3、(NH4)2S2O8和H2O2)对AC进行氧化改性,对所得催化剂进行了TG、FTIR、H2-TPR和XPS表征,并对其脱NO活性进行了评价。对AC进行浸渍回流处理,可使AC表面含氧官能团增加,尤其是羧基和羰基等酸性含氧官能团。TG分析结果表明:在没有O2存在时,催化剂表面的O会与NO发生反应,导致催化剂自身损耗;在O2存在时,NO主要与O2中的O反应,因而在一定温度范围内不会发生催化剂自身损耗;同时AC表面的含氧官能团能加速NO的化学吸附活化,从而提高催化剂的脱NO活性。KMnO4改性的AC在180 ℃具有高催化活性,这归因于催化剂表面丰富的含氧官能团以及高价态Mn的存在。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号