首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
采用共沉淀法制备了复合光催化剂Fe_3O_4-xTiO_2。运用XRD、SEM、TEM和UV-Vis DRS等技术对光催化剂进行了表征,并考察了其在太阳光下对茜素红模拟染料废水的光催化降解活性。实验结果表明,当TiO_2与Fe_3O_4的质量比为0.75、初始溶液p H为3.0时,茜素红去除率最高,光催化反应120 min后,茜素红去除率为100%。表征结果显示,Fe_3O_4-0.75TiO_2复合光催化剂不是核壳结构,而是Fe_3O_4和TiO_2的聚集体。Fe_3O_4-0.75TiO_2复合光催化剂重复使用5次后茜素红去除率几乎没有下降,活性稳定性极佳。  相似文献   

2.
以钛酸四丁酯为钛源、膨胀石墨(EG)为载体,通过溶胶凝胶-浸渍法制备了Ag_6P_2W_(18)O_(62)/TiO_2/EG复合光催化剂。采用SEM,EDS,XRD,FTIR,UV-vis等技术对其进行表征,研究了该催化剂在紫外光及可见光下对甲基橙的降解性能。表征结果显示:Ag_6P_2W_(18)O_(62)被成功负载到TiO_2上且保持Dawson结构;经Ag_6P_2W_(18)O_(62)表面修饰后的复合光催化剂可见光吸收性能增强;EG提供的丰富孔道有利于有机污染物吸附去除。实验结果表明:在甲基橙质量浓度为20 mg/L、催化剂加入量为1.0 g/L、反应温度为25℃的条件下,n(Ag)∶n(Ti)=1∶16时的复合光催化剂(ATE-2)的紫外光、可见光催化活性最佳;紫外光下反应70 min时甲基橙去除率为96.5%,可见光下反应40 h时甲基橙去除率为83.5%;ATE-2使用5次后,反应70 min时,其甲基橙去除率仍为92.5%。  相似文献   

3.
采用浸渍法制备了四氨基酞菁钯(PdTAPc)/γ-Al_2O_3负载型光催化剂,采用UV-Vis,FTIR,XRD,SEM技术对其进行了表征,并将其用于罗丹明B的可见光催化降解,考察了光催化剂加入量、溶液pH、H_2O_2加入量、反应温度对罗丹明B降解效果的影响,并对光催化剂的稳定性进行了测试。表征结果显示,PdTAPc以圆片状负载于γ-Al_2O_3上,二者的结构均未发生明显变化。实验结果表明:在光催化剂加入量1.6 g/L、溶液pH 7.0、H_2O_2加入量12 mmol/L、反应温度20℃的优化条件下反应120 min,罗丹明B(质量浓度0.05 g/L)的降解率高达95%;光催化剂具有较高的稳定性,使用4次后罗丹明B的降解率仍高于85%。  相似文献   

4.
纳米二氧化钛改性聚醚砜超滤膜   总被引:1,自引:0,他引:1  
采用液-固相转化法,以聚醚砜(PES)、聚乙烯吡咯烷酮(PVP)和N,N-二甲基乙酰胺(DMAc)为原料制备PES超滤膜,并添加纳米TiO_2制备改性PES超滤膜.纳米TiO_2可降低制膜液的黏度,提高膜的亲水性能和抗污染性能.在PES质量分数为18%、PVP质量分数为12%、TiO_2质量分数为5.3%、DMAc质量分数为64.7%的条件下制备的改性PES超滤膜性能最佳,在24 ℃、0.2 Mpa操作条件下,膜的纯水通量为80.31 mL/ (cm~2·h), 截留率达99.16%.改性PES超滤膜过滤出水水质达到GB/T18920-2002<城市污水再生利用城市杂用水水质>标准.清洗后,未改性PES超滤膜的膜通量恢复率为68.08%,改性PES超滤膜的膜通量恢复率为85.31%.  相似文献   

5.
以氯化铜、纳米γ-Fe_2O_3和硫脲为原材料,乙二醇为溶剂,采用溶剂热法制备了磁性CuS/γ-Fe_2O_3复合光催化剂。考察了该光催化剂对刚果红染料废水的处理效果。在m(CuS)∶m(γ-Fe_2O_3)=2∶1、刚果红初始质量浓度为10 mg/L、光催化剂投加量为0.6 g/L的最佳工艺条件下,刚果红去除率达96.51%。阴离子Cl~-、NO_3~-及SO_4~(2-)对该光催化剂的催化活性具有促进作用,其中SO_4~(2-)的促进作用最显著。该光催化剂具有较好的活性稳定性,重复使用6次后刚果红去除率仍高达90.50%。  相似文献   

6.
日光辐照H_2O_2-草酸铁氧化法处理棉浆粕废水   总被引:1,自引:0,他引:1  
采用日光辐照H_2O_2-草酸铁氧化法处理棉浆粕废水.最佳工艺条件为:正午日光辐照10 min,废水pH5.00,废水体积150 mL,H_2O_2加入量2.0 mL,Fe_SO_4·7H_2O加入量0.600 0 g,K_2C_2O_4·H_2O加入量0.290 9 g.在此条件下COD由初始时的3 200 mg/L降至608 mg/L,COD去除率可达81.0%.采用气相色谱-质谱联用仪对处理前后的废水进行分析,实验结果表明该法可有效去除废水中大部分有机污染物.  相似文献   

7.
采用溶胶-凝胶水热法,以钛酸四正丁酯、正硅酸乙酯为前驱体,制备聚丙烯腈(PAN)纱线负载TiO_2-SiO_2光催化剂。X射线衍射和扫描电子显微镜分析结果表明,TiO_2晶体呈锐钛矿型,平均粒径约为3.5 nm。采用PAN纱线负载TiO_2-SiO_2光催化剂降解苯酚,在苯酚溶液初始质量浓度为8 mg/L、溶液pH为5.3、循环流量为300 mL/min的条件下,反应24 h后苯酚降解率达100%、TOC去除率达72%。  相似文献   

8.
王利文  罗学刚 《化工环保》2018,38(3):294-299
采用固相烧结法制备了NaCo_2O_4催化剂,构建了NaCo_2O_4-H_2O_2热催化体系降解亚甲基蓝(MB)。XRD和SEM表征结果显示,合成的NaCo_2O_4催化剂具有良好的稳定性。NaCo_2O_4对H_2O_2具有良好的热催化性能,反应温度越高,反应速率常数k越大,该催化反应符合一级动力学方程。NaCo_2O_4-H_2O_2体系对MB具有较好的降解效果,在反应温度为50℃、NaCo_2O_4加入量为50 mg、MB溶液加入量为100 mL、MB初始质量浓度为30 mg/L、H_2O_2加入量为1.00 mL的最优条件下,反应340 min时,MB降解率达87.00%;催化剂重复使用三次,MB降解率仍可达85%以上;经捕获剂效果对比实验发现,催化反应体系中存在h~+、·OH等催化活性物种。  相似文献   

9.
以Ti O_2为载体,采用浸渍法制备Ni或Co掺杂的Mn-Ce/Ti O_2催化剂,用于烟气的选择性催化还原法低温脱硝。考察Ni或Co的掺加对Mn-Ce/Ti O_2催化剂活性的影响,并对各催化剂进行了BET,XRD,H_2-TPR,XPS表征。实验结果表明:在NO,NH_3,O_2的体积分数分别为6×10~(-4),6×10~(-4),6×10~(-2),空速为16 000 h~(-1)的条件下,Mn-Ce/Ti O_2、Mn-Ce-Ni_(0.4)/Ti O_2和Mn-Ce-Co_(0.2)/Ti O_2催化剂的NO去除率在120℃时分别为38%,68%,74%,在150℃时分别为64%,92%,近100%,这表明掺加Ni或Co后Mn-Ce/Ti O_2催化剂的脱硝活性明显提高;在进气中加入体积分数为1×10~(-4)的SO_2后,Mn-Ce/Ti O_2催化剂的NO去除率在300 min内从98.2%下降至57.2%,而Mn-CeCo_(0.2)/Ti O_2和Mn-Ce-Ni_(0.4)/Ti O_2催化剂的NO去除率分别为73.9%和69.8%,这表明Ni或Co的掺加有助于提高催化剂的抗硫性能。表征结果表明:Ni或Co的掺加基本不影响Mn和Ce在载体Ti O_2上的分散;Ce元素以Ce~(3+)和Ce~(4+)价态存在,且主要为Ce~(4+);催化剂的比表面积变化不大;Mn O_x与Ce O_x的结晶度降低,催化剂的氧化还原能力增强。  相似文献   

10.
采用化学沉淀法(两步法)制备了TiO_2-Ag_3PO_4复合光催化剂,考察了该光催化剂紫外光催化降解阳离子染料番红花红T(简称ST)的性能。实验结果表明:在TiO_2-Ag_3PO_4投加量0.7 g/L,初始ST质量浓度70 mg/L、不调节溶液pH的条件下,紫外光照射35 min时的ST降解率高达97.9%;TiO_2-Ag_3PO_4复合光催化剂的光催化性能明显优于单一光催化剂Ag_3PO_4和TiO_2,同时也明显优于Ag-AgCl/Ag_3PO_4复合光催化剂;避光条件下反应40 min,TiO_2-Ag_3PO_4对ST的吸附量仅为2.3 mg/g;TiO_2-Ag_3PO_4在室内自然光下也具有一定的光催化活性;TiO_2-Ag_3PO_4的光催化活性在酸性条件下要优于碱性条件;TiO_2-Ag_3PO_4重复使用5次后,其光催化活性无明显下降,稳定性较好。  相似文献   

11.
活性炭/H2O2催化氧化-絮凝法预处理化工有机废水   总被引:5,自引:3,他引:2  
用活性炭作催化剂、H2O2作氧化剂催化氧化预处理高浓度化工有机废水,考察了各种因素对COD去除率的影响。实验结果表明,在H2O2加入量为0.8mL/L、活性炭与H2O2质量比为0.7、废水pH为4的条件下,反应120min后,调废水pH至8,加入絮凝剂聚合氯化铝进行絮凝沉淀,废水COD去除率达70%以上,色度去除率达80%以上。通过色谱-质谱仪对处理前后废水中的有机物进行分析,初步探讨了活性炭/H2O2催化氧化-絮凝法预处理化工有机废水的作用机理。  相似文献   

12.
氧化钆掺杂二氧化钛催化超声降解甲基橙的研究   总被引:16,自引:0,他引:16  
用实验室合成的Gd2O3掺杂TiO2为催化剂,以甲基橙超声降解反应为模型,研究了各种因素对Gd2O3掺杂TiO2催化超声降解甲基橙的影响。研究结果表明,Gd2O3掺杂TiO2催化超声降解甲基橙的效果明显优于非掺杂的锐钛矿型TiO2的情况;在甲基橙溶液pH1.0~3.0、甲基橙质量浓度20mg/L、溶液用量100mL、催化剂用量0.5~1.0g/L的条件下,用输出功率1.0W/cm^2和频率25kHz的超声波照射60min,甲基橙降解率可达98.6%,COD去除率可达99.0%。  相似文献   

13.
采用超声波氧化与催化氧化脱硫技术相结合,脱除废旧轮胎热裂解油中的硫,对脱硫工艺进行了研究.最佳操作条件为:超声波声强0.25 W/cm~2,超声时间10 min,V(H_2O_2)∶V(油)=0.04,V(CH_3COOH)∶V(H_2O_2)=0.5,V(FeSO_4·7H_2O) ∶ V(H_2O_2)=0.15.在上述最佳操作条件下,进行4次脱硫,可使热裂解油中硫质量分数降至0.21%,脱硫率达到72%.  相似文献   

14.
薄膜负载型TiO_2光催化降解乙酸   总被引:1,自引:0,他引:1  
利用TiCl_4水解法在玻璃表面制备纳米TiO_2光催化膜,考察了TiO_2光催化膜对乙酸光催化降解过程的影响因素.实验结果表明:使用活化温度为460℃、镀膜4次、表面积168 cm~2的TiO_2光催化膜处理500 mL0.667 mmoL/L的乙酸350 min时,乙酸降解率为80.0%,与等量TiO_2粉末相比光催化膜活性显著增加;当乙酸初始浓度c_0小于0.667 mmoL/L时,光催化降解过程可用Langmuir-Hinshelwood动力学方程来描述;TiO_2膜连续使用5次(30 h)时的光催化活性基本不变;用质量分数为5%的HCl溶液浸泡失去活性的光催化膜1 h,TiO_2光催化膜的活性可完全恢复.  相似文献   

15.
TiO_2/GeO_2复合膜光催化氧化处理活性蓝染料废水   总被引:4,自引:3,他引:1  
自制了一种新的TiO_2/GeO_2复合膜光催化氧化反应器,研究了该反应器对经臭氧氧化处理后的活性蓝染料废水的光催化氧化降解过程.在过氧化氢加入量为400 mg/L、光照120 min的条件下,COD去除率可达92.5%,处理后废水COD为39.4 mg/L,达到GB8978-1996<污水综合排放标准>.  相似文献   

16.
微波催化氧化法处理甲基橙废水   总被引:27,自引:1,他引:26  
采用微波催化氧化法处理模拟甲基橙废水,考察了微波功率、辐射时间、H2O2用量、活性炭用量对甲基橙去除率的影响。在微波功率630w、辐射时间9min、H2O2用量10mL/L,活性炭用量10g/L的条件下,甲基橙的去除率达到90%左右,并对实际染料废水、炼焦废水、炼油废水、餐饮废水进行了处理,取得了满意的结果。  相似文献   

17.
二氧化钛的改性及其对降解水中有机污染物的促进作用   总被引:5,自引:0,他引:5  
综述了TiO2光催化剂的改性方法及其对光催化降解水中有机污染物的促进作用,介绍了复合物、煅烧温度、掺杂量、掺杂金属离子的种类和浓度对TiO2光催化性能的影响。  相似文献   

18.
采用柠檬酸-硝酸盐燃烧法制备了光催化剂BiFeO3。采用SEM,XRD,FTIR等技术对光催化剂BiFeO3进行表征。表征结果显示,光催化剂BiFeO3晶相纯、粒径小、比表面积大,存在Fe#x02014;O的弯曲振动和伸缩振动。实验结果表明:通过鼓气及加入H2O2可有效提高BiFeO3对甲基紫可见光催化降解的效率;在300mL质量分数为1.5#x000d7;10-5的甲基紫溶液中加入0.9g光催化剂BiFeO3和0.1mL质量分数为30%的H2O2溶液,当反应时间为240min时,甲基紫去除率可达99%。  相似文献   

19.
超声波强化γ-Al_2O_3催化臭氧氧化法降解2,4-二硝基苯酚   总被引:1,自引:1,他引:0  
采用超声波强化γ-Al_2O_3催化臭氧氧化法降解模拟废水中的2,4-二硝基苯酚,考察了超声波对降解反应的强化作用及γ-Al_2O_3加入量、臭氧流量、超声波功率等对2,4-二硝基苯酚降解的影响.实验结果表明:2,4-二硝基苯酚在超声波强化γ-Al_2O_3催化臭氧氧化作用下的降解过程符合一级表观动力学;在2,4-二硝基苯酚质量浓度为20.00 mg/L、γ-Al_2O_3催化剂加入量为1.5g/L、臭氧流量为61 mg/min、超声波功率为300 W、反应时间为60 min时,2,4-二硝基苯酚的降解率达96.4%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号