首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Inter-annual variability of surface ozone (O3) and nitrogen dioxide (NO2) over Europe has been studied over the period 1958–2003 using a three-dimensional Chemistry-Transport Model coupled to meteorological data from the ERA40 data set produced at the European Centre of Medium-range Weather Forecasts (ECMWF). Emissions and boundary conditions were kept at present levels throughout the simulation period. It was found that the annual mean NO2 concentration varies between ±50% and the summer mean O3 concentration varies between −10 and +20 percent (%) compared to the 46-year average over the model domain. There is also variation in ozone and NO2 over longer time scales. The last 22 years display high concentrations of ozone in central and south-western Europe and low concentrations in north-eastern Europe. The first 22 years display very high concentrations of NO2 over the North Sea. There is indication of trends in ozone and nitrogen dioxide but this has to be investigated further. Such information is one factor that should be taken into account when considering future control strategies.  相似文献   

2.
Estimates of ozone concentration and deposition flux to coniferous and deciduous forest in the Czech Republic on a 1 × 1 km grid during growing season (April–September) of the year 2001 are presented. Ozone deposition flux was derived from ozone concentrations in the atmosphere and from its deposition velocities. To quantify the spatial pattern in surface concentrations at 1 km resolution incorporating topography, empirical methods are used. The procedure maps ozone concentrations from the period of the day when measurements are representative for the forest areas of countryside. The effects of boundary layer stability are quantified using the observed relationship between the diurnal variability of surface ozone concentration and altitude. Ozone deposition velocities were calculated according to a multiple resistance model incorporating aerodynamic resistance (R a ), laminar layer resistance (R b ) and surface resistance (R c ). Surface resistance (R c ) comprises stomatal resistance (R sto ). R sto was calculated with respect to global radiation, surface air temperature and land cover. Modelled total and stomatal ozone fluxes are compared with the maps describing equivalent values of AOT40 (accumulated exposure over threshold of 40 ppb). For forests, the critical level (9,000 ppbh May–July daylight hours) is exceeded over 50% of forested territory. This indicates the potential for effects on large areas of forest. There is significiant correspondence between the exposure index AOT40 and the total ozone flux, but the relation between the total ozone flux and AOT40 exposure index is not clear in all parts of the forest territory.  相似文献   

3.
The atmospheric deposition of reactive nitrogen on turf grassland in Tsukuba, central Japan, was investigated from July 2003 to December 2004. The target components were ammonium, nitrate, and nitrite ions for wet deposition and gaseous ammonia, nitric and nitrous acids, and particulate ammonium, nitrate, and nitrite for dry deposition. Organic nitrogen was also evaluated by subtracting the amount of inorganic nitrogen from total nitrogen. A wet-only sampler and filter holders were used to collect precipitation and the atmospheric components, respectively. An inferential method was applied to calculate the dry deposition velocity of gases and particles, which involved the effects of surface wetness and ammonia volatilization through stomata on the dry deposition velocity. The mean fraction of the monthly wet to total deposition was different among chemical species; 37, 77, and 1% for ammoniacal, nitrate-, and nitrite-nitrogen, respectively. The annual deposition of inorganic nitrogen in 2004 was 47 and 48 mmol m−2 yr−1 for wet and dry deposition, respectively; 51% of atmospheric deposition was contributed by dry deposition. The annual wet deposition in 2004 was 20, 27, and 0.07 mmol m−2 yr−1, and the annual dry deposition in 2004 was 35, 7.4, and 5.4 mmol m−2 yr−1 for ammoniacal, nitrate-, and nitrite-nitrogen, respectively. Ammoniacal nitrogen was the most important reactive nitrogen because of its remarkable contribution to both wet and dry deposition. The median ratio of the organic nitrogen concentration to total nitrogen was 9.8, 17, and 15% for precipitation, gases, and particles, respectively.  相似文献   

4.
A short and green method for the preparation of optically active aromatic polyamides (PAs) using tetrabutylammonium bromide (TBAB) as a molten ionic liquid is reported. Polycondensation reactions of amino acid containing diacid (2S)-5-(4-methyl-2-phthalimidylpentanoylamino)isophthalic acid with various commercially available diisocyanates in molten TBAB as a green medium or in N-methylpyrrolidone as common organic solvent with or without dibutyltin dilaurate as a catalyst under microwave irradiation were carried out. Various PAs were obtained with high yields and moderate inherent viscosities in the rang of 0.30–0.57 dL/g. The obtained polymers were characterized by FT-IR, specific rotation measurements, and representative of them by 1H NMR and elemental analysis techniques. Thermal properties of PAs were evaluated by thermogravimetric analysis and the results showed that the 10% weight loss temperature in a nitrogen atmosphere for four representative samples were more than 258 °C, which indicates that the resulting PAs have good thermal stability as well as excellent solubility.  相似文献   

5.
Concentrations of tropospheric ozone(O3) and exceedance of critical levels to vegetationhave been investigated and mapped for Ireland. Hourlyozone concentration data (1995–1997) at 7 sevenmonitoring stations and the CORINE landcover database,supported by a Geographical Information System, wereused. AOT40 (Accumulated exposure Over a Threshold of 40ppb) was calculated for daylight hours for each station,and mapped using surface interpolation. Average O3concentrations vary from year to year, and were estimatedto be 28 ppb, 26 ppb and 24 ppb for 1995, 1996 and 1997respectively. Ozone concentrations show a large diurnalvariation, with a maximum in the afternoon and a minimumat night-time. The critical level for crops and (semi-)natural vegetation was exceeded in all years examined.The highest exceedance occurred in 1995, where thecritical level was exceeded for almost 35% of the mappedarea. Approximately 15% and 1% of the mapped area wasexposed to exceedance levels during 1996 and 1997respectively. The maximum cumulative exposures (AOT40)were approximately 5000, 3890 and 3230 ppbh in 1995, 1996and 1997 respectively. The critical level for forests wasnot exceeded during the period of investigation.  相似文献   

6.
Detailed kinetic studies are presented for two reactions: the nitric oxide (NO) selective catalytic reduction (SCR) by propene over indium/alumina (In/Al2O3) and the nitrous oxide (N2O) reduction over ruthenium/alumina (Ru/Al2O3). Both reactions were studied in the presence of excess oxygen (O2) to simulate the composition of flue gases. Apparent activation energies and apparent orders of reaction were calculated in experiments performed under differential reaction conditions. We used our experimental results to propose the reaction mechanism that leads to nitrogen formation over the two catalysts. The NO reduction proceeds through the initial formation of C X H Y O Z N, a reaction intermediate that reacts with activated nitrogen oxides (NO X ). Nitrous oxide is catalytically decomposed to nitrogen (N2) over Ru/Al2O3.  相似文献   

7.
Delignification from the cell walls with a combination of ozone oxidation and dioxane–water extraction using thin sections of a softwood, Japanese cypress (Chamaecyparis obtusa Endl.), was studied to determine its suitability for the production of recyclable cellulose-based materials from wood waste. The visible-light absorption spectra of treated wood sections revealed that delignification from the cell walls with ozone increased with increasing ozonization time. Ozone delignification proceeded from the lumen side toward the middle lamella within the secondary wall of a cell, and it proceeded faster in early wood than in late wood within an annual ring. Mild ozonization for 10–30 min was sufficient for the removal of lignin from the cell walls when sections were extracted with dioxane after ozonization. The results obtained here demonstrate that microspectrometry coupled with the Wiesner reaction is useful for the quantitative analysis of lignin in cell walls.  相似文献   

8.
We used laboratory experiments to investigate surface resistance (R c) to dry deposition of ozone (O3) on different types of soil samples collected from the arid deserts and the Loess Plateau of northern China. Furthermore, we measured the factors that affected R c, which depends on the physical and chemical interaction between trace constituents and the deposition surface, and evaluated deposition velocity (V d). There was little influence of geometric surface area, soil weight, or O3 concentration on V d of O3. The effect of relative humidity (RH) (i.e. moisture content of the soil) on O3 uptake was in agreement with results reported in the literature: a distinct RH dependence of V d and little uptake under water-saturated conditions were observed. R c values for all the soil samples examined were in the range 0.21–3.3 s mm−1 and were exponentially related to the surface area of the particles and the organic carbon content of each soil sample at RH of both <10 and 60%.  相似文献   

9.
A lysimeter study was performed to monitor effects of elevated ozone on juvenile trees of Fagus sylvatica L. as well as on the plant–soil system. During a fumigation period over almost three growing seasons, parameters related to plant growth, phenological development and physiology as well as soil functions were studied. The data analyses identified elevated ozone to delay leaf phenology at early and to accelerate it at late developmental stages, to reduce growth, some leaf nutrients (Ca, K) as well as some soluble phenolics (hydroxycinnamic acid derivatives, total flavonol glycosides). No or very weak ozone effects were found in mobile carbon pools of leaves (starch, sucrose), and other phenolic compounds (flavans). Altered gene expression related to stress and carbon cycling corresponded well with findings from leaf phenology and chemical composition analyses indicating earlier senescence and oxidative stress in leaves under elevated ozone. Conversely in the soil system, no effects of ozone were detected on soil enzyme activities, rates of litter degradation and lysimeter water balances. Despite the fact that the three reported years 2003–2005 were climatically very contrasting including a hot and dry as well as an extremely wet summer, and also mild as well as cold winters, the influence of ozone on a number of plant parameters is remarkably consistent, further underlining the phytotoxic potential of elevated tropospheric ozone levels.  相似文献   

10.
Mechanism of nitrogen dioxide interaction with polymers containing amide and imide groups in the main or side chains of macromolecules (polycaproamide, polyvinylpyrrolidone, poly-m-phenylene isophthalamide and polypyromellitimide) is considered. The initiators of conversions of polymers of the given classes are not monoradicals of nitrogen dioxide rather than its equilibrium dimers in the form of nitrosyl nitrate. In primary oxidizing reaction of an electron transfer from donor groups of macromolecules to nitrosyl nitrate, radical cations, nitric oxide and nitrate anion are formed, which in the subsequent reactions give products of nitration and nitrosation. These products are precursors of stable acylalkylaminoxyl, acylarylaminoxyl, iminoxyl macroradicals. The specific interactions of nitrogen dioxide dimers with functional groups of macromolecules determine features of the mechanism of ion-radical conversions of the polymers and the composition of radical and molecular products. The direct detection of radical cations has been realized by ESR method for confirmation of the ion-radical initiation concept using model reaction of nitrogen dioxide with triphenylamine.  相似文献   

11.
The amounts of harmful gas emissions from the process of composting swine waste were determined using an experimental composting apparatus. Forced aeration (19.2–96.1 l/m3/min) was carried out continuously, and exhaust gases were collected and analyzed periodically. With weekly turning and the addition of a bulking agent in order to decrease the moisture content and increase air permeability, the temperature of most of the contents rose to 70°C and composting was complete within 3–5 weeks. NH3, CH4, and N2O emissions were high in the early stage of composting. About 10%–25% of the nitrogen in the raw material was lost as NH3 gas during composting. The emission rate of NH3 mainly depended on the aeration rate, so that as the aeration rate rose, the level of NH3 emissions increased. The CH4 and N2O emissions could be kept lower with adequate treatment at more than 40 l/m3/min aeration. N2O may be mainly the result of the denitrification of NO x -N in the additional matured compost used as a composting accelerator. Received: September 11, 1998 / Accepted: November 8, 1999  相似文献   

12.
Cameron Highlands is a mountainous region with steep slopes. Gradients exceeding 20 are common. The climate is favourable to the cultivation of tea, sub-tropical vegetables and flowers (under rain-shelter). Crop production is sustained by high fertiliser and manure applications. However, agriculture in this environment is characterised by high levels of soil erosion and environmental pollution. A study on the sustainability of these agro-ecosystems was conducted. Results indicated that soil loss was in the range of 24–42 ton/ha/yr under vegetables and 1.3 ton under rain-shelter. Sediment load in the vegetable sub-catchment reached 3.5 g/L, 50 times higher than that associated with flowers under rain-shelter and tea. The sediments contained high nutrient loads of up to 470 kg N/ha/yr. The N, P and K lost in runoff from cabbage farms was 154 kg/season/ha, whereas in chrysanthemum farms it was 5 kg. In cabbage farms, the N, P, and K lost through leaching was 193 kg/season/ha. The NO3–N concentration in the runoff from the cabbage farms reached 25 ppm but less than 10 ppm in runoff from rain-shelters. Inorganic pollution in the rivers was within the acceptable limit of 10 ppm. The sustainability of the agro-ecosystems is in the order of tea { > } rain–shelter ≫ vegetables.  相似文献   

13.
To assess the effect of changes in traffic density and fuels used for heating at the beginning of the 1990s, 1992–2005 monthly averages of PM10, SO2, NO2, NO, CO and O3 from Prague, the Czech capital, were analyzed together with long term trends in emissions of major pollutants, fuel consumption and number of vehicles registered in Prague. The data from all monitoring stations were retrieved from the database of the state automated monitoring system. Correlation coefficients between ambient monthly averaged temperature and all pollutants of concern showed distinct seasonal trends. The results showed that while SO2 and to some extent also CO concentrations dropped namely in the first half of the analyzed period (1992–1997) as a result decreased fossil fuel consumption for local heating, the behaviour of other pollutant concentrations followed a different pattern. PM10 concentrations decreased during the beginning of the 1990s but showed a sign of increase after 2000. Concentrations of ozone and NO2 did not reveal any significant change throughout the whole studied period. It can be concluded that during the studied period traditional urban sources of pollution, such as coal and oil combustion, lost their importance but were simultaneously substituted by pollutants from automotive transport (namely PM and NO2) making the problem of air quality even worse.  相似文献   

14.
Oil refining is among the industrial activities that emit considerable amounts of air pollutants into the atmosphere. Nitrogen oxides are important air pollutants that are emitted by oil refineries as products of combustion processes. The ambient air concentrations of nitrogen oxide (NO) and nitrogen dioxide (NO2) were monitored continuously at a site close to an oil refinery, near the city of Corinth in Greece, during autumn 1997 together with the main meteorological parameters. The contribution of the oil refinery to the measured atmospheric levels of nitrogen oxides was estimated. The ambient air concentration of nitrogen oxides in the area surrounding the oil refinery were generally lower than the ambient air concentrations in the urban area of Athens in Greece, and the NO2 levels were always below the existing air quality standards. The influence of the refinery emitted NOx in the photochemical production of ozone seems to be more important in terms of human and vegetation exposure given the high ozone backgrounds measured in the area.  相似文献   

15.
A 3-D biological model was developed and coupled to a hydrodynamic model, i.e., Princeton Ocean Model, to simulate the seasonal variation and budget of dissolved inorganic nitrogen, phosphate, and silicate in Jiaozhou Bay. The modeled nutrients distribution pattern is consistent with observation. Silicate, the most important limiting element for phytoplankton growth, is characterized by consumption in spring, increase in summer and autumn, and accumulation in winter, whereas dissolved inorganic nitrogen and phosphorous have increasing trend with low rates in spring, due to excessive river loads. Phytoplankton plays an important role in nutrient renewal by photosynthesis and respiration processes. During an annual cycle, 7.83 × 103 t N, 0.28 × 103 t P, and 3.93 × 103 t Si are transported to the bay’s outer sea, i.e., the Yellow Sea, suggesting that Jiaozhou Bay is a significant source of nutrients for the Yellow Sea. The spatial distribution of nutrients is characterized by vertically homogeneous profiles, with high concentration inside the bay and low concentration toward the bay channel. These features are mainly governed by strong turbulent mixing, fluvial influx, water exchange rate, and Yellow Sea water intrusion. Numerical experiments suggest that the government should pay enough attention to proper layout of sewage drainage.  相似文献   

16.
The odorous air emissions from confined animal feeding operations (CAFOs), such as swine, poultry and dairy farms, are increasingly raising community complaints. Odorous emissions can result in health damages, psychological discomforts and adverse aesthetic effects in the community. However, these emissions are not well characterized up to now due to the lack of legislation, the limitations in sampling and instrumentation techniques, and the complexity of the emissions themselves. This study is aimed at the development of a high volume sampler and sorbent assembly to identify the odor causing compounds from a diary CAFO. The sorbent was custom designed to target the potential compounds that may exist in a dairy farm and was validated in laboratory with a synthetic odor from the swine manure. The actual samples at the diary farm were collected in spring and summer of 2005. The sorbents were solvent extracted and individual odor compounds were identified using GC–MS (gas chromatography–mass spectroscopy). The data obtained indicated that high volume sampling can shorten the sampling time from days to within 4 h. Both volatile organic compounds (VOCs) and volatile fatty acids (VFAs) have been identified from the dairy farm, such as phenol, methylphenol, 4-ethyl phenol, indole, methyl indole, benzyl alcohol, hexanoic acid, valeric acid and iso-valeric acid, together with some nitrogen containing compounds that have not been reported before.  相似文献   

17.
Soybean polyols prepared by ring opening reactions of epoxidized soybean oil with hydrogen active compounds (water, alcohols, organic or inorganic acids, thiols, hydrogen etc.) have a low reactivity in the reaction with isocyanates because the hydroxyl groups are secondary. This paper presents a simple and convenient method to increase the reactivity of soybean polyols with secondary hydroxyl groups by ethoxylation reactions with the preservation of triglyceride ester bonds. The method uses mild reaction conditions: low alkoxylation temperature of 35–45 °C, low pressure of 0.1–0.2 MPa (15–30 p.s.i.) and a superacid as catalyst (HBF4). The new soybean polyols have a higher reactivity toward isocyanates in polyurethane formation due to the high percentage of primary hydroxyl groups. The primary hydroxyl content was determined by the second order kinetics of polyol reaction with phenyl isocyanate.  相似文献   

18.
Oxidation of methanol over V2O5 catalysts supported on anatase TiO2 that were prepared using sol-gel formation and impregnation procedures were investigated. The effects of incorporating Mg in sol-gel to influence the properties of the catalyst were also studied. The process provides an alternative low temperature reaction pathway for reducing emissions of hazardous air pollutant (HAPs) such as methanol and total reduced sulfur compounds (TRS) from pulp and paper mills. The bulk and surface composition of the catalysts were determined by XRD and SEM-EDAX, respectively. The X-ray diffraction patterns of the vanadia–titania catalysts showed mainly the anatase phase of TiO2. Temperature programmed desorption of methanol from the different catalyst showed that the α and β peaks differ significantly with V content and addition of Mg. The combination of gas phase and surface reactions on the V/TiO2 catalysts reduced the amount of ozone required for high degradation of methanol to mainly CO x with small quantities of methyl formate. In the absence of ozone the catalysts showed very low activity. It is hypothesized that the ozone is directly influencing the V4+ and V5+ redox cycle of the catalyst. Oxidation of methanol is influenced by the operation variables and catalyst properties. The results of this study revealed that the V content has significant influence on the catalyst activity, and the optimum vanadia loading of about 6 wt%. Higher turnover frequencies were observed over sol-gel catalysts than with catalysts prepared by the impregnation method.  相似文献   

19.
In this study, a synthetic filter material with nutrients (PVA/peat/KNO3 composite bead) was developed for biofilteration. The optimal preparing condition was each of the peat and PVA aqueous solutions mixed with 6.4 g KNO3, and the minimum nitrogen content in the boric and phosphate aqueous solutions was 3.94 and 1.52 g-N/l, respectively. The equilibrium amount of inorganic nitrogen extracted by leaching from the prepared composite bead was between 7.95 and 8.21 mg N/g dry solid. The path of inorganic nitrogen extracted by leaching was the inorganic nitrogen dispersed in the peat phase firstly diffused into the outer PVA phase and then it diffused out of the bead surface for the A-type bead; and that was the inorganic nitrogen dispersed in both the peat and PVA phases simultaneously diffuses into the outer PVA phase and out of the bead surface, respectively, for the H-type bead. The microbial growth rate k g of the H-type composite bead was higher than that of the A-type composite bead about 1.09–1.58 times, and the maximum value of k g was at the H-type composite bead immersed in 0.384 M KNO3 aqueous solution. The percentage of removed VOCs retained at more than 98% during the biofilter operating 230 days as the composite bead immersed in KNO3 aqueous solution before packing. This composite bead bed was without the further addition of nutrients during the operating period.  相似文献   

20.
Graft copolymerization of cellulosic biopolymers with synthetic polymers is of enormous interest because of its application in biofiltration, biosorption, biomedical, biocomposites and various other eco-friendly materials. Synthesis of graft copolymers of methyl acrylate onto mercerized Grewia optiva biofibers using ferrous ammonium sulfate–potassium per sulfate as redox initiator in air was carried out. Different reaction parameters such as amount of solvent, monomer concentration, initiator molar ratio, reaction time and reaction temperature were optimized to get the maximum percentage of grafting. The graft copolymers thus formed were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, differential thermal analysis and differential thermogravimetric techniques. A plausible mechanism for explanation of the graft copolymerization reactions pattern shown is offered. The effect of grafting percentage on the physico–chemical properties of raw as well as grafted Grewia optiva biofibers has also been investigated. The graft copolymers have been found to be more moisture resistant and also showed better chemical and thermal resistance. Green polymer composites were also successfully prepared through compression molding technique by using grafted Grewia optiva biofibers as reinforcement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号