首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Anaerobic co-digestion of coffee waste and sewage sludge   总被引:1,自引:0,他引:1  
The feasibility of the anaerobic co-digestion of coffee solid waste and sewage sludge was assessed. Five different solid wastes with different chemical properties were studied in mesophilic batch assays, providing basic data on the methane production, reduction of total and volatile solids and hydrolysis rate constant. Most of the wastes had a methane yield of 0.24-0.28 m3 CH4(STP)/kg VS(initial) and 76-89% of the theoretical methane yield was achieved. Reduction of 50-73% in total solids and 75-80% in volatile solids were obtained and the hydrolysis rate constants were in the range of 0.035-0.063 d(-1). One of the solid wastes, composed of 100% barley, achieved a methane yield of 0.02 m3 CH4(STP)/kg VS(initial), reductions of 31% in total solids, 40% in volatile solids and achieved only 11% of the theoretical methane yield. However, this waste presented the highest hydrolysis rate constant. Considering all the wastes, an inverse linear correlation was obtained between methane yield and the hydrolysis rate constant, suggesting that hydrolysis was not the limiting factor in the anaerobic biodegradability of this type of waste.  相似文献   

2.
The optimization of anaerobic digestion aims to maximize organic waste stabilization after a short digestion period. This paper presents the optimization performance of the combined anaerobic digestion and sequential staging concept in a thermophilic, solid-state batch system as a treatment technology prior to landfill. The former involves enhanced pre-stage flushing with the addition of microaeration and inoculum in the methane phase. The latter involves leachate cross-recirculation between the mature and fresh waste reactors without conducting a pre-stage operation. The optimized process for combined anaerobic digestion showed that reducing the pre-stage operation with the maximum removal of organics from the waste bed is beneficial. Moreover, the sequential staging concept offers an improved process over the combined anaerobic digestion wherein the specific methane yield of 11.9 and 7.2 L CH4 kg(-1) volatile solids (VS) per day was achieved, respectively. After 28 days of operation, the sequential staging process showed an improved waste stabilization with 86 and 79% mass and volume reduction, respectively. A higher methane yield of 334 L CH4 kg(-1) VS with 86% VS reduction, which is equivalent to 84% process efficiency was obtained.  相似文献   

3.
In this study, a lab-scale thermophilic anaerobic digestion of food waste collected from G-district in Seoul was performed to assess its feasibility and applicability in field-scale biogas plants. Monitoring parameters included biogas production, methane composition, pH, alkalinity, and volatile fatty acid (VFA) concentrations. Accumulation of VFA caused successive depression in pH, which inhibited microbial activity of methane-forming microorganisms. Signals of biological instability and inhibition of methanogenesis suggest possible process failure, as indicated by reduction in methane production. Results revealed that modifications in certain conditions, such as decreased organic loading rate (OLR) or additional insertion of alkalinity, must be made for its application in industrial-scale biogas plants, and that thermophilic anaerobic digestion of food waste may not be feasible without any modification.  相似文献   

4.
Residues from forest-industry wastewater-treatment systems are treated as waste at many pulp and paper mills. These organic substances have previously been shown to have potential for production of large quantities of biogas. There is concern, however, that the process would require expensive equipment because of the slow degradation of these substances. Pure non-fibrous sludge from forest industry showed lower specific methane production during mesophilic digestion for 19 days, 53 ± 26 Nml/g of volatile solids as compared to municipal sewage sludge, 84 ± 24 Nml/g of volatile solids. This paper explores the possibility of using anaerobic co-digestion with municipal sewage sludge to enhance the potential of methane production from secondary sludge from a pulp and paper mill. It was seen in a batch anaerobic-digestion operation of 19 days that the specific methane production remained largely the same for municipal sewage sludge when up to 50% of the volatile solids were replaced with forest-industry secondary sludge. It was also shown that the solid residue from anaerobic digestion of the forest-industry sludge should be of suitable quality to use for improving soil quality on lands that are not used for food production.  相似文献   

5.
The objective of this work was to compare the performance of two laboratory-scale, mesophilic systems aiming at the anaerobic digestion of the organic fraction of municipal solid wastes (OFMSW). The first system consisted of two coupled reactors packed with OFMSW (PBR1.1-PBR1.2) and the second system consisted of an upflow anaerobic sludge bed reactor (UASB) coupled to a packed reactor (UASB2.1-PBR2.2). For the start-up phase, both reactors PBR 1.1 and the UASB 2.1 (also called leading reactors) were inoculated with a mixture of non-anaerobic inocula and worked with leachate and effluent full recirculation, respectively. Once a full methanogenic regime was achieved in the leading reactors, their effluents were fed to the fresh-packed reactors PBR1.2 and PBR2.2, respectively. The leading PBR 1.1 reached its full methanogenic regime after 118 days (Tm, time to achieve methanogenesis) whereas the other leading UASB 2.1 reactor reached its full methanogenesis regime after only 34 days. After coupling the leading reactors to the corresponding packed reactors, it was found that both coupled anaerobic systems showed similar performances regarding the degradation of the OFMSW. Removal efficiencies of volatile solids and cellulose and the methane pseudo-yield were 85.95%, 80.88% and 0.109 NL CH4 g(-1) VS(fed) in the PBR-PBR system; and 88.75%, 82.61% and 0.115 NL CH4 g(-1) VS(fed0 in the UASB-PBR system [NL, normalized litre (273 degrees K, 1 ata basis)]. Yet, the second system UASB-PBR system showed a faster overall start-up.  相似文献   

6.
The aim of this study is to characterize different types of source selected organic fraction of municipal solid waste (SS-OFMSW) in order to optimize the upgrade of a sewage sludge anaerobic digestion unit by codigestion. Various SS-OFMSW samples were collected from canteens, supermarkets, restaurants, households, fruit–vegetable markets and bakery shops. The substrates characterization was carried out getting traditional chemical–physical parameters, performing elemental analysis and measuring fundamental anaerobic digestion macromolecular compounds such as carbohydrates, proteins, lipids and volatile fatty acids. Biochemical methane potential (BMP) tests were conducted at mesophilic temperature both on single substrates and in codigestion regime with different substrates mixing ratios. The maximum methane yield was observed for restaurant (675 NmlCH4/gVS) and canteens organic wastes (571 and 645 NmlCH4/gVS). The best codigestion BMP test has highlighted an increase of 47% in methane production respect sewage sludge digestion.  相似文献   

7.
Fruit, vegetable, flower waste (FVFW), dairy products waste (DPW), meat waste (MW) and sugar waste (SW) obtained from a supermarket chain were anaerobically digested, in order to recover methane as a source of renewable energy. Batch mesophilic anaerobic reactors were run at total solids (TS) ratios of 5%, 8% and 10%. The highest methane yield of 0.44 L CH4/g VSadded was obtained from anaerobic digestion of wastes (FVFW + DPW + MW + SW) at 10% TS, with 66.4% of methane (CH4) composition in biogas. Anaerobic digestion of mixed wastes at 5% and 8% TS provided slightly lower methane yields of 0.41 and 0.40 L CH4/g VSadded, respectively. When the wastes were digested alone without co-substrate addition, the highest methane yield of 0.40 L CH4/g VSadded was obtained from FVFW at 5% TS. Generally, although the volatile solids (VS) conversion percentages seemed low during the experiments, higher methane yields could be obtained from anaerobic digestion of supermarket wastes. A suitable carbon/nitrogen (C/N) ratio, proper adjustment of the buffering capacity and the addition of essential trace nutrients (such as Ni) could improve VS conversion and biogas production yields significantly.  相似文献   

8.
This paper describes an experimental evaluation of anaerobic digestion technology as an option for the management of organic solid waste in developing countries. As raw material, a real and heterogeneous organic waste from urban solid wastes was used. In the first experimental phase, seed selection was achieved through an evaluation of three different anaerobic sludges coming from wastewater treatment plants. The methanization potential of these sludges was assessed in three different batch digesters of 500 mL, at two temperature levels. The results showed that by increasing the temperature to 15 degrees C above room temperature, the methane production increases to three times. So, the best results were obtained in the digester fed with a mixed sludge, working at mesophilic conditions (38-40 degrees C). Then, this selected seed was used at the next experimental phase, testing at different digestion times (DT) of 25, 20 and 18 days in a bigger batch digester of 20 L with a reaction volume of 13 L. The conversion rates were registered at the lowest DT (18 days), reaching 44.9 L/kg(-1) of wet wasteday(-1). Moreover, DT also has a strong influence over COD removal, because there is a direct relationship between solids removal inside the reactor and DT.  相似文献   

9.
The purpose of this study was to optimize the alkaline, ultrasonication, and thermal pretreatment in order to enhance the solubilization of food waste (FW) for the production of volatile fatty acids, hydrogen, and methane in thermophilic batch anaerobic digestion. Initially, the effect of pretreatment techniques in the acidogenic phase was studied, and the optimal combinations of different conditions were determined. It was found that each pretreatment technique affected food waste solubilization differently. Alkaline pretreatment increased hydrogen yield in the acidogenic sludge by four times over control. COD solubilization was increased by 47 % when FW pre-heated at 130 °C for 60 min. Ultrasonication at 20 kHz and 45 min reduced processing time to 38 h from the 60–80 h needed in normal operation. Response surface methodology (RSM) was used to optimize a combination of alkaline, ultrasonication, and thermal pretreatment. Optimized conditions were applied to methanogenic single-stage thermophilic AD process, and their impact on biogas production was monitored. Results showed that FW heated at 130 °C for 50 min geminates biogas production compared to control experiment. In conclusion, a short thermal pretreatment regime could significant affect biogas production in single-stage thermophilic AD.  相似文献   

10.
Small-scale experimental investigations were undertaken on the anaerobic digestion (AD) and codigestion of livestock waste and industrial biowastes. A simple procedure was developed to rapidly determine the suitability of wastes for digestion. The experiment was split into two phases; initially, the seed (digested brewery waste) was replaced by the test waste over a period of 5 days. During the second phase, the test waste was incubated and monitored for methanogenesis. Dairy cattle slurry was the most efficient co-substrate which, when codigested with pig slurry in an equal ratio achieved volatile solids destruction of 32%, CH(4) production rate of 97.4 ml d(-1), maximum CH(4) content of 61.6% and total gas yield of 2229 ml after 529 h. High fat content wastes were unsuitable for AD due to low pH value and because the dominant microbial reaction was fermentation. Codigestion was investigated to overcome any inhibitions; however, dairy cattle slurry, abattoir wastewater and NaOH additions did not lead to methanogenesis. Treating these wastes by AD is feasible but without CH(4) production.  相似文献   

11.
The paper reports the findings of a two-year pilot scale experimental trial for the mesophilic (35°C), thermophilic (55°C) and temperature phased (65+55°C) anaerobic digestion of waste activated sludge. During the mesophilic and thermophilic runs, the reactor operated at an organic loading rate of 2.2 kgVS/m(3)d and a hydraulic retention time of 20 days. In the temperature phased run, the first reactor operated at an organic loading rate of 15 kgVS/m(3)d and a hydraulic retention time of 2 days while the second reactor operated at an organic loading rate of 2.2 kgVS/m(3)d and a hydraulic retention time of 18 days (20 days for the whole temperature phased system). The performance of the reactor improved with increases in temperature. The COD removal increased from 35% in mesophilic conditions, to 45% in thermophilic conditions, and 55% in the two stage temperature phased system. As a consequence, the specific biogas production increased from 0.33 to 0.45 and to 0.49 m(3)/kgVS(fed) at 35, 55, and 65+55°C, respectively. The extreme thermophilic reactor working at 65°C showed a high hydrolytic capability and a specific yield of 0.33 g COD (soluble) per gVS(fed). The effluent of the extreme thermophilic reactor showed an average concentration of soluble COD and volatile fatty acids of 20 and 9 g/l, respectively. Acetic and propionic acids were the main compounds found in the acids mixture. Because of the improved digestion efficiency, organic nitrogen and phosphorus were solubilised in the bulk. Their concentration, however, did not increase as expected because of the formation of salts of hydroxyapatite and struvite inside the reactor.  相似文献   

12.
Effect of alkaline pretreatment on anaerobic digestion of solid wastes   总被引:2,自引:0,他引:2  
The introduction of the anaerobic digestion for the treatment of the organic fraction of municipal solid waste (OFMSW) is currently of special interest. The main difficulty in the treatment of this waste fraction is its biotransformation, due to the complexity of organic material. Therefore, the first step must be its physical, chemical and biological pretreatment for breaking complex molecules into simple monomers, to increase solubilization of organic material and improve the efficiency of the anaerobic treatment in the second step. This paper describes chemical pretreatment based on lime addition (Ca(OH)2), in order to enhance chemical oxygen demand (COD) solubilization, followed by anaerobic digestion of the OFMSW. Laboratory-scale experiments were carried out in completely mixed reactors, 1 L capacity. Optimal conditions for COD solubilization in the first step of pretreatment were 62.0 mEq Ca(OH)2/L for 6.0 h. Under these conditions, 11.5% of the COD was solubilized. The anaerobic digestion efficiency of the OFMSW, with and without pretreatment, was evaluated. The highest methane yield under anaerobic digestion of the pretreated waste was 0.15 m3CH4/kg volatile solids (VS), 172.0% of the control. Under that condition the soluble COD and VS removal were 93.0% and 94.0%, respectively. The results have shown that chemical pretreatment with lime, followed by anaerobic digestion, provides the best results for stabilizing the OFMSW.  相似文献   

13.
In this study, mono-digestion of rendering wastes and co-digestion of rendering wastes with potato pulp were studied for the first time in continuous stirred tank reactor (CSTR) experiments at 55 °C. Rendering wastes have high protein and lipid contents and are considered good substrates for methane production. However, accumulation of digestion intermediate products viz., volatile fatty acids (VFAs), long chain fatty acids (LCFAs) and ammonia nitrogen (NH4-N and/or free NH3) can cause process imbalance during the digestion. Mono-digestion of rendering wastes at an organic loading rate (OLR) of 1.5 kg volatile solids (VS)/m3 d and hydraulic retention time (HRT) of 50 d was unstable and resulted in methane yields of 450 dm3/kg VSfed. On the other hand, co-digestion of rendering wastes with potato pulp (60% wet weight, WW) at the same OLR and HRT improved the process stability and increased methane yields (500–680 dm3/kg VSfed). Thus, it can be concluded that co-digestion of rendering wastes with potato pulp could improve the process stability and methane yields from these difficult to treat industrial waste materials.  相似文献   

14.
Water hyacinth (Eichornia crassipes) is a fast growing aquatic plant which causes environmental problems in continental water bodies. Harvesting and handling this plant becomes an issue, and focus has been put on the research of treatment alternatives. Amongst others, energy production through biomethanation has been proposed. The aim of this study was to assess the anaerobic biodegradability of water hyacinth under mesophilic and thermophilic conditions. The effect of a thermal sludge pre-treatment at 80 °C was also evaluated. To this end, anaerobic biodegradability tests were carried out at 35 °C and 55 °C, with raw and pre-treated water hyacinth. According to the results, the thermal pre-treatment enhanced the solubilisation of water hyacinth (i.e. increase in the soluble to total chemical oxygen demand (COD)) from 4% to 12% after 30 min. However, no significant effect was observed on the methane yields (150–190 L CH4/kg volatile solids). Initial methane production rates for thermophilic treatments were two fold those of mesophilic ones (6–6.5 L vs. 3–3.5 L CH4/kg COD·day). Thus, higher methane production rates might be expected from thermophilic reactors working at short retention times. The study of longer low temperature pre-treatments or pre-treatments at elevated temperatures coupled to thermophilic reactors should be considered in the future.  相似文献   

15.
The effects of using untreated leachate for supplemental water addition and liquid recirculation on anaerobic digestion of food waste was evaluated by combining cyclic water recycle operations with batch mesophilic biochemical methane potential (BMP) assays. Cyclic BMP assays indicated that using an appropriate fraction of recycled leachate and fresh make up water can stimulate methanogenic activity and enhance biogas production. Conversely increasing the percentage of recycled leachate in the make up water eventually causes methanogenic inhibition and decrease in the rate of food waste stabilization. The decrease in activity is exacerbated as the number cycles increases. Inhibition is possibly attributed to accumulation and elevated concentrations of ammonia as well as other waste by products in the recycled leachate that inhibit methanogenesis.  相似文献   

16.
The effectiveness of methane fermentation treatment used in food waste processing is currently limited by solubilization and acidogenesis. In efforts to improve the treatment process, this study examined the effects of temperature on solubilization and acidogenesis. The solubilization rate of food waste, which was based on suspended solid removal, was 47.5%, 62.2%, 70.0%, 72.7%, 56.1% and 45.9% at 15 °C, 25 °C, 35 °C, 45 °C, 55 °C and 65 °C, respectively. Solubilization rate was accelerated from the middle to late experimental periods under mesophilic (35 °C and 45 °C) conditions. In contrast, overall solubilization rate was significantly lower under thermophilic (55 °C and 65 °C) conditions than under mesophilic conditions, although solubilization occurred rapidly in the early experimental period. The production of biogas was high under mesophilic conditions of 35 °C and 45 °C, at 64.7 and 62.7 mL/g-VS, respectively, while it was scarce under thermophilic conditions. Solubilization of food waste was accelerated under both mesophilic and thermophilic conditions; however, solubilization rate was observed to be particularly high under mesophilic conditions, and a shortening of the hydraulic retention time is expected under thermophilic conditions.  相似文献   

17.
In order to investigate the effect of feedstock ratios in biogas production, anaerobic co-digestions of rice straw with kitchen waste and pig manure were carried out. A series of single-stage batch mesophilic (37 ± 1 °C) anaerobic digestions were performed at a substrate concentration of 54 g/L based on volatile solids (VS). The results showed that the optimal ratio of kitchen waste, pig manure, and rice straw was 0.4:1.6:1, for which the C/N ratio was 21.7. The methane content was 45.9–70.0% and rate of VS reduction was 55.8%. The biogas yield of 674.4 L/kg VS was higher than that of the digestion of rice straw or pig manure alone by 71.67% and 10.41%, respectively. Inhibition of biogas production by volatile fatty acids (VFA) occurred when the addition of kitchen waste was greater than 26%. The VFA analysis showed that, in the reactors that successfully produced biogas, the dominant intermediate metabolites were propionate and acetate, while they were lactic acid, acetate, and propionate in the others.  相似文献   

18.
In this study, the effect of operational parameters, such as solids retention time (SRT), pH, and substrate total solids (TS) concentration, on acid fermentation efficiency was investigated. From batch tests, it was shown that the appropriate pH range for thermophilic acidogens was around 6–7 and that the optimum pH condition was 6. From the continuous experiment, pH and SRT were shown to be the most important operational parameters for solubilization and organic acid production. In contrast, TS concentration did not show any obvious effect on chromium chemical oxygen demand (CODcr) solubilization when TS was in the range 3.5%–10%. The optimum operational conditions for thermophilic acid fermentation were an SRT of 2 days and a pH of 6. This research was carried as a part of the CREST project of Japan Science and Technology Agency.  相似文献   

19.
In this study four diverse solid waste substrates (coal, Kraft pulp solids, chicken feathers and chicken processing waste) were thermally pre-treated (70, 140 and 200 °C), under an inert (nitrogen) or oxidative (oxygen) atmosphere, and then anaerobically digested. Membrane inlet mass spectrometry during the thermal and thermo-chemical reactions was successfully used to establish oxygen and carbon dioxide gas fluxes and product formation (acetic acid). There was significant solids hydrolysis pre-treatment at 200 °C under an oxidative atmosphere, as indicated by a decrease in the volatile suspended solids and an increase in dissolved organic carbon. Greater concentrations of volatile fatty acids were produced under oxidative conditions at higher temperatures. The methane yield more than tripled for feathers after pre-treatment at 140 °C (under both atmospheres), but decreased after oxidative pre-treatment at 200 °C, due to the destruction of available carbon by the thermo-chemical reaction. Methane yield more than doubled for the Kraft pulp solids with the 200 °C pre-treatment under oxidative conditions. This study illustrated the power of wet oxidation for solids destruction and its potential to improve methane yields generated during anaerobic digestion.  相似文献   

20.
A study of existing organic waste types in Malm?, Sweden was performed. The purpose was to gather information about organic waste types in the city to be able to estimate the potential for anaerobic treatment in existing digesters at the wastewater treatment plan (WWTP). The urban organic waste types that could have a significant potential for anaerobic digestion amount to about 50 000 tonnes year(-1) (sludge excluded). Some of the waste types were further evaluated by methane potential tests and continuous pilot-scale digestion. Single-substrate digestion and co-digestion of pre-treated, source-sorted organic fraction of municipal solid waste, wastewater sludge, sludge from grease traps and fruit and vegetable waste were carried out. The experiments showed that codigestion of grease sludge and WWTP sludge was a better way of making use of the methane potential in the grease trap sludge than single-substrate digestion. Another way of increasing the methane production in sludge digesters is to add source-sorted organic fraction of municipal solid waste (SSOFMSW). Adding SSOFMSW (20% of the total volatile solids) gave a 10-15% higher yield than could be expected by comparison with separate digestion of sludge respective SSOFMSW. Co-digestion of sludge and organic waste is beneficial not just for increasing gas production but also for stabilizing the digestion process. This was seen when co-digesting fruit and vegetable waste and sludge. When co-digested with sludge, this waste gave a better result than the separate digestion of fruit and vegetable waste. Considering single-substrate digestion, SSOFMSW is the only waste in the study which makes up a sufficient quantity to be suitable as the base substrate in a full-scale digester that is separated from the sludge digestion. The two types of SSOFMSW tested in the pilot-scale digestion were operated successfully at mesophilic temperature. By adding SSOFMSW, grease trap sludge and fruit and vegetables waste to sludge digesters at the wastewater treatment plant, the yearly energy production from methane could be expected to increase from 24 to 43 GWh.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号