首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ti/MnO2/PbO2电极的制备及电催化降解罗丹明B   总被引:3,自引:2,他引:1  
采用电沉积法制备了Ti/MnO2/PbO2电极,并用其对质量浓度为20mg/L的罗丹明B模拟废水进行了电催化降解实验。实验结果表明:原水pH为4.95,无须调节废水的pH;最佳电解实验条件为:支持电解质NazSO4浓度0.09mol/L,电解电流密度40mA/cm^2,处理时间40min,在此条件下罗丹明B的去除率接近100%。  相似文献   

2.
采用聚丙烯腈基石墨毡电极,以NaCl为电解质,在恒流电解的条件下,对质量浓度为1 000 mg/L、COD=3 672 mg/L的模拟邻甲酚废水进行预处理。研究了电解时间、初始废水pH、NaCl加入量、电流密度对邻甲酚去除率的影响,考察了废水的COD变化,并探讨了反应机理。实验结果表明:石墨毡电极具有较好的导电性、吸附性,对邻甲酚具有较好的电化学氧化性能;常温常压下,初始废水pH为6~7、电流密度为90 A/m2、向300 mL废水中加入0.5 g NaCl时,经4 h电解,邻甲酚的去除率达到97.1%,COD的去除率达到47.3%;处理后废水的BOD5/COD由0.04提高至0.33,可不经稀释直接进行生物处理。  相似文献   

3.
Ti_5O_9-Ti_4O_7电极电化学处理2,4,6-三硝基苯酚废水   总被引:1,自引:0,他引:1       下载免费PDF全文
采用压片-烧结法制备了Ti5O9-Ti4O7电极,采用XRD和SEM技术对Ti5O9-Ti4O7电极进行了表征。以自制的Ti5O9-Ti4O7电极为阳极,电解处理含2,4,6-三硝基苯酚(TNP)的模拟废水,考察了电流密度、电解质质量浓度、废水p H、废水温度和反应时间等因素对废水COD去除率和TNP降解率的影响。表征结果显示:该电极的主要成分为Ti5O9,并含有部分Ti4O7;该电极的比表面积较大。Ti5O9-Ti4O7电极电解处理含TNP废水的最佳实验条件为:电流密度20 m A/cm2、电解质Na2SO4质量浓度6.0 g/L、废水p H为7、废水温度30℃。在此最佳条件下电解反应180 min后,COD去除率为90.6%,TNP降解率为93.9%,表明Ti5O9-Ti4O7电极具有较高的催化能力和电流效率。  相似文献   

4.
通过涂覆—热分解法与电沉积法制备了β-PbO_2/α-PbO_2/SnO_2-Sb2O3/Ti复合电极(PbO_2复合电极),采用X射线衍射(XRD)、扫描电子显微镜(SEM)、循环伏安法(CV)、线性极化法(LSV)和加速寿命试验对电极进行表征。将PbO_2复合电极用于处理甲苯二胺(TDA)废水,考察了电解质浓度、电流密度对TDA降解效果的影响。实验结果表明:α-PbO_2呈梭状,β-PbO_2呈花菜状,多层结构的PbO_2电极利于提高电极的稳定性和活性;PbO_2复合电极的析氧电位(1.9 V)明显高于TDA的氧化电位(1.28 V),其使用寿命长达486 d;在电流密度为60 m A/cm2、Na2SO4质量浓度为10 g/L、电解时间为240 min的条件下,对COD为4 791.74 mg/L、TDA质量浓度为486.4mg/L的废水进行处理,TDA去除率高达97.3%,COD去除率可达88.1%。  相似文献   

5.
采用电解法产生活性氯,降解废水中的有机物。考察了活性氯产生量的影响因素,并对Ti/RuO2-IrO2-TiO2电极电解实际含氯废水的处理效果进行了研究。实验结果表明:通过增加Cl-浓度和电流密度、减少SO42-浓度和极板间距、降低电解温度的方法能够提高活性氯产生量,从而提高电极降解有机物的效果;对于Cl-浓度为0.005 mol/L、COD为49 mg/L的废水,使用Ti/RuO2-IrO2-TiO2电极,在极板间距为0.5 cm、电解温度为20 ℃、电流密度为20 mA/cm2、初始pH为8.0的条件下电解处理60 min,废水BOD5/COD值由0.04提高到0.25,COD降至24 mg/L,达到DB 11/307—2013《水污染综合排放标准》中排入地表水体污染物B类排放限值(COD≤30 mg/L)的要求。  相似文献   

6.
采用水热合成—高温碳化—涂饰的方法制备了介孔碳修饰石墨电极,并将其用于模拟硝基苯废水的电化学处理,考察了废水pH、电流密度、电解质投加量对处理效果的影响。表征结果显示,修饰电极表面具有丰富的介孔结构,因而比石墨电极具有更高的硝基苯去除率和苯胺生成量。实验结果表明,在废水pH为7.0、电流密度为15 mA/cm~2、电解质硫酸钠投加量为1.775 g/L的条件下处理初始硝基苯质量浓度为100 mg/L的模拟废水,电解3.0 h时的硝基苯去除率高达99.6%,苯胺生成量最高达45.54 mg/L。  相似文献   

7.
用复极固定床电解槽处理硝基苯废水   总被引:3,自引:0,他引:3  
用复极固定床电解槽处理模拟硝基苯废水,考察了电解电压、N2SO4质量浓度、pH、硝基苯的初始质量浓度等条件对电解效果的影响。在Na2SO4质量浓度为1000mg/t、电解电压为40V、初始pH为10的条件下,复极固定床电解槽对硝基苯初始质量浓度为120mg/L的废水有较好的处理效果,硝基苯去除率可达到82.8%。探讨了复极固定床电解槽电化学降解硝基苯的机理。  相似文献   

8.
采用阳膜电解法处理低浓度含镍废水。考察了电解质种类及其加入量、电解电流、电流密度、搅拌转速、电解温度和电解时间等对电解效果的影响。实验结果表明,在电解质NaCl加入量为2.5 g/L、电解电流为0.10A、电流密度为150 A/m~2、搅拌转速为800 r/min、电解温度为35℃、电解时间为8 h的最佳条件下,处理Ni2+质量浓度为2 g/L的含镍废水,镍析出率达到95.16%,电流效率为86.87%,单位质量能耗为5 254 k W·h/t。  相似文献   

9.
采用溶胶-凝胶法制备泡沫镍负载TiO2电极,并用场发射扫描电子显微镜和XRD仪对其表面形貌、颗粒大小和晶体结构进行表征.以紫外灯为光源,负载TiO2的泡沫镍电极为阳极,Pt电极为阴极,建立光电催化体系,对废水中的农药敌百虫进行降解.当采用浓度0.02 mol/L的NaCl溶液为电解质溶液、初始废水pH为6.0、电流密度为2.5 mA/cm2、降解时间为120 min时进行光电催化反应,模拟敌百虫废水COD的去除率达到81.8%.  相似文献   

10.
电化学法处理高盐苯酚废水的研究   总被引:9,自引:0,他引:9  
对在氯盐电解质中用电化学方法处理含酚废水进行了研究,着重探讨了盐的种类与浓度、反应温度与溶液:pH、电流密度、苯酚初始浓度及阴阳极转换频率对苯酚去除率的影响。在Na2SO4的浓度为0.2mol/L,NaCl的浓度为0.1mol/L、苯酚初始质量浓度为200mg/L、电流密度为0.04A/cm^2、温度为35℃、pH为12.5、阴阳极转换频率为5min/次及反应时间为200min的条件下,苯酚的去除率为99.5%,COD去除率为5%,CIO^-把苯酚氧化成了其他有机化合物。  相似文献   

11.
钛基IrO2-RuO2阳极电解处理亚甲基蓝溶液   总被引:1,自引:0,他引:1       下载免费PDF全文
宋冠军  杨坚  李文祥 《化工环保》2012,32(3):205-208
采用钛基IrO2-RuO2为阳极材料,不锈钢为阴极材料,NaCl质量浓度为10 g/L的溶液为电解液,对亚甲基蓝溶液进行电化学处理。实验结果表明:处理初始质量浓度为25 mg/L的亚甲基蓝溶液,电解电流0.050 A,电解20 min后亚甲基蓝去除率达95%;处理初始质量浓度为100 mg/L的亚甲基蓝溶液,电解电流0.100 A,电解30 min后亚甲基蓝去除率达98%。随着电解时间和电解电流的增加,亚甲基蓝去除率均增大。  相似文献   

12.
以钛涂钌电极为阳极、自制蒽醌修饰石墨毡电极为阴极,对头孢合成废水(COD=25 000~30 000 mg/L、ρ(NH3-N)=850~1 300 mg/L、色度为2 300~2 680度)进行了电化学氧化预处理,优化了电解条件,并对电化学体系的动力学和稳定性进行了分析。实验结果表明:蒽醌的存在可改善电化学氧化降解效果;在电解时间50 min、电流密度0.14 A/cm2、Na2SO4浓度0.1 mol/L、极板间距2 cm、初始废水p H 7.0的条件下,废水的COD、色度、NH3-N的去除率分别可达45.3%,66.9%,33.6%;BOD5/COD由处理前的0.27增至0.40,可生化性得到改善;COD、色度、NH3-N的电化学氧化降解过程均近似符合一级动力学方程;且该电化学体系的应用稳定性良好。  相似文献   

13.
采用自制改性高分子絮凝剂巯基乙酰聚乙烯亚胺处理含Hg2+废水。实验结果表明:当Hg2+的质量浓度100 mg/L、絮凝剂的加入量3.7 mg/L、废水pH=5.0、浊度为0时,Hg2+的去除率达到88%;Hg2+和悬浮物在废水中共存时,当Hg2+的质量浓度100 mg/L、浊度127 NTU时,Hg2+和悬浮物可相互促进彼此的去除,浊度的去除率由40%左右增至95%以上;用该絮凝剂处理实际废水(Hg2+的质量浓度 20~25 mg/L、浊度126 NTU、pH=3.5),当絮凝剂加入量为4.2 mg/L时,Hg2+的去除率为84%,浊度的去除率为97%,且处理效果明显优于相同条件下的传统絮凝剂。  相似文献   

14.
铱涂层钛电极电催化氧化降解喹啉   总被引:2,自引:1,他引:1  
采用电催化氧化降解模拟焦化废水中的喹啉,研究了电极种类、废水初始质量浓度、废水pH、极板间距和电流密度对喹啉去除率的影响.实验结果表明,在以铱涂层钛电极为阳极、废水中喹啉初始质量浓度为100 mg/L、废水pH为9、电流密度为20 mA/cm2、极板间距为1 cm、反应时间为720 min时,喹啉去除率达88.1%.并...  相似文献   

15.
电解法处理采油废水的研究   总被引:1,自引:0,他引:1  
以提高电解处理工艺的效率、降低处理成本、易于实现工业化为目标,筛选出适合处理采油废水的高效电极材料,考察了电解法处理采油废水的各种影响因素,确定实验室电解氧化法处理采油废水的适宜条件.研究结果表明:以析氯阳极 铁阴极作为试验电极材料,在电流密度为15 mA/cm2,电解时间为80min,水板比约0.10 cm2/cm3,弱碱性,极板间距为10mm的条件下对采油废水进行电解处理,COD去除率可达到73.0%,NH3-N去除率可达到98.5%.  相似文献   

16.
光电催化氧化法脱色处理刚果红染料废水   总被引:2,自引:0,他引:2       下载免费PDF全文
方涛  徐霞  邓丽娟  曲美洁  吴君  李鑫 《化工环保》2014,34(6):515-519
采用阴极还原法制备了泡沫镍负载纳米ZnO(ZnO/Ni)电极,采用SEM和XRD技术对ZnO/Ni电极进行了表征。以高压汞灯为光源,ZnO/Ni电极为阳极,铂电极为阴极,对模拟刚果红染料废水进行了光电催化脱色处理。考察了催化工艺、电解质种类及浓度、初始废水pH和反应温度等因素对刚果红降解率的影响。表征结果显示, 制备的纳米ZnO呈六方晶系结构,平均粒径为23.6 nm。实验结果表明,当外加电流为1.0 mA时,在初始刚果红质量浓度为30 mg/L、电解质Na2SO4浓度为0.050 mol/L、初始废水pH为5、反应温度为50 ℃的条件下,光电催化反应60 min后,刚果红降解率为86.36%,COD和色度的去除率分别达到70.56%和92.86%。  相似文献   

17.
正该专利涉及一种采用三维电极处理苯酚废水的方法。包括如下步骤:1)取250 mL质量浓度为500mg/L的苯酚废水置于三维电极反应器中,通电,采用电化学氧化法处理苯酚废水;2)向苯酚废水中加入质量浓度为1~10 g/L的电解质,曝气,使苯酚废水与电解质充分混合,加入纯碱调节苯酚废水的pH为2~6,在电极电压为5~8 V条件下电解120 min。  相似文献   

18.
采用掺硼金刚石(BDD)电极电化学氧化法降解模拟焦化废水中的喹啉,并通过GC-MS技术分析了喹啉的降解机理及途径。实验结果表明:在常温、初始喹啉质量浓度为50.0 mg/L、电解质Na2SO4浓度为0.05 mol/L、模拟废水pH为7、电解时间为2.5 h、电流密度为30 mA/cm2、极板总面积与模拟废水体积的比为160 cm2/cm3的条件下,喹啉降解率接近100%;TOC由初始时的29.43 mg/L降至5.76 mg/L,TOC去除率达80%;COD由初始时的95.25 mg/L降至20.65 mg/L,COD去除率达78%;在降解过程中,首先在喹啉苯环的5位和8位发生羟基化反应,然后苯环发生断裂,形成带有吡啶环的中间产物及羧酸类产物,最后氮杂环开环,生成二氧化碳和水。  相似文献   

19.
钛基锡锑电极电催化氧化处理硝基苯废水   总被引:1,自引:0,他引:1  
采用钛基锡锑(Sn-Sb/Ti)电极作为氧化阳极,不锈钢为阴极,电催化氧化降解废水中硝基苯。实验结果表明,处理硝基苯废水的最佳条件为:电流密度25 mA/cm~2;Na_2SO_4作为电解质,加入量15g/L;极板间距2 cm;溶液初始pH 6。在此最佳条件下,硝基苯去除率大于95%,TOC去除率大于80%,表明Sn-Sb/Ti阳极能有效去除废水中有机污染物。  相似文献   

20.
核桃壳吸附剂对水中Pb2+的吸附   总被引:1,自引:0,他引:1       下载免费PDF全文
采用自制核桃壳吸附剂,利用静态吸附法,处理模拟含Pb2+废水。实验结果表明:当初始Pb2+的质量浓度20.00 mg/L、初始废水pH=5.5、吸附剂加入量12 g/L、吸附剂粒径1.60~2.50 mm、吸附时间120 min时,核桃壳吸附剂对Pb2+的去除率为91.7%;吸附剂对Pb2+的吸附行为满足拟二级吸附动力学方程,吸附等温线满足Langmuir等温方程,饱和吸附量达到3.903 mg/g;吸附饱和的吸附剂可用浓度 0.1 mol/L的硝酸解吸,经解吸后的吸附剂可重复利用3次。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号