首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Pekey B  Karakaş D  Ayberk S 《Chemosphere》2007,67(3):537-547
Wet deposition and dry deposition samples were collected in an urban/industrialized area of Izmit Bay, North-eastern Marmara Sea, Turkey, from September 2002 to July 2003. The samples were analyzed for sixteen polycyclic aromatic hydrocarbon (PAH) compounds by using HPLC-UV technique. Wet and dry deposition concentrations and fluxes of PAHs were determined. The results showed that PAH concentrations were high because of industrial processes, heavy traffic and residential areas next to the sampling site. Total dry deposition flux of the fifteen 3-6 ring PAHs was 8.30 microg m(-2)day(-1), with a range of 0.034-1.77 microg m(-2)day(-1). The total wet deposition flux of the fifteen 3-6 ring PAHs was 1716 microg m(-2) 11 month(-1), with a range of 10-440 microg m(-2) 11 month(-1). Significant seasonal differences were observed in both types of deposition samples. The winter fluxes of total PAHs were 1.5 and 2.5 times greater than those of the warm period for wet and dry deposition samples, respectively. Factor analysis of dry deposition samples and back trajectory analysis of wet deposition samples were also used to characterize and identify the PAH emission sources in this study.  相似文献   

2.
The origin of polycyclic aromatic hydrocarbons (PAH) contamination in bulk atmospheric deposition at two sites of the Seine estuary, one urban and one industrial, has been investigated. The PAH profiles indicate that PAHs mainly have a pyrolytic origin, both in urban and industrial areas. PAH sources vary during the year with an increase of high molecular weight PAH proportions (especially for carcinogenic PAHs) in winter, that means an increase of combustion processes such as domestic heating. Ratios of indicator PAHs (FTH/FTH+PYR and IcdP/IcdP+BghiP) confirm the pyrolytic origin of PAHs. In summer, ratios show the presence of industrial sources. In addition to these two methods, a factor analysis/multiple linear regression model was applied and gave an approximation of PAH source apportionment. PAH were found to be associated predominantly with emissions from road traffic (gasoline and diesel), that accounts for 17-34%. Domestic heating is a very important PAH source in urban areas and accounts for up to 85% of PAHs in winter. Industrial emissions (refineries...) account for 25% in the industrial area in summer. Each is an identified source category for the region and these results are consistent with fly-ashes identified by scanning electron microscopy. This study demonstrates that a combination of source identification methods is a far more efficient than one method alone.  相似文献   

3.
Polycyclic aromatic hydrocarbons (PAH) were analysed in 23 soil samples (0–10 cm layer) from the Swiss soil monitoring network (NABO) together with total organic carbon (TOC) and black carbon (BC) concentration, as well as some PAH source diagnostic ratios and molecular markers. The concentrations of the sum of 16 EPA priority PAHs ranged from 50 to 619 μg/kg dw. Concentrations increased from arable, permanent and pasture grassland, forest, to urban soils and were 21–89% lower than median numbers reported in the literature for similar Swiss and European soils. NABO soils contained BC in concentrations from 0.4 to 1.8 mg/g dw, except for two sites with markedly higher levels. These numbers corresponded to 1–6% of TOC and were comparable to the limited published BC data in soil and sediments obtained with comparable analytical methods. The various PAH ratios and molecular markers pointed to a domination of pyrogenically formed PAHs in Swiss soils. In concert, the gathered data suggest the following major findings: (1) gas phase PAHs (naphthalene to fluorene) were long-range transported, cold-condensated at higher altitudes, and approaching equilibrium with soil organic matter (OM); (2) (partially) particle-bound PAHs (phenanthrene to benzo[ghi]perylene) were mostly deposited regionally in urban areas, and not equilibrated with soil OM; (3) Diesel combustion appeared to be a major emission source of PAH and BC in urban areas; and (4) wood combustion might have contributed significantly to PAH burdens in some soils of remote/alpine (forest) sites.  相似文献   

4.
Spatial and temporal variation in the atmospheric deposition of PAHs to soil was examined by deploying experimental soils for approximately 165 days and conducting a survey of forest soils at several sites along an urban-rural transect extending from downtown Toronto to approximately 80 km north of the city. PAH concentrations decreased with distance from the urban centre-by a factor of 2 and 60 for the experimental and forest soils respectively. The large gradient for the forest soils is generally consistent with air concentrations of PAHs measured using high volume and passive air samplers. The smaller gradient for the experimental soils was due to kinetic limitations of PAH accumulation and the relatively short deployment period of approximately 165 days. Mean effective deposition velocities (gas+particle) for the full range of PAHs for the experimental soils at the urban, suburban, and the rural sites were 2, 31 and 26 cm s(-1), respectively. These were incorporated into a dynamic model that was used to assess the long-term uptake of PAHs in forest soils. Model results indicate that lower molecular weight PAHs may achieve equilibrium and become involved in soil-air exchange whereas higher molecular weight PAHs are accumulated for much longer time periods.  相似文献   

5.
Pollutants in Hong Kong soils: polycyclic aromatic hydrocarbons   总被引:4,自引:0,他引:4  
Chung MK  Hu R  Cheung KC  Wong MH 《Chemosphere》2007,67(3):464-473
An extensive soil survey was carried out to study the polycyclic aromatic hydrocarbon (PAH) contaminations in 138 soil samples collected throughout Hong Kong. Results demonstrated that there were low levels of PAH contaminations (median of summation operator 16US EPA PAHs=140 microg kg(-1)) for all land uses (urban park, greening area, country park, rural area, restored landfill, agricultural farmland, orchard farm, crematorium, industrial and near highway area). However, localized hotspots were identified with summation operator 16PAH concentrations as high as 19,500 microg kg(-1) in one urban park. These findings were also confirmed by multivariate analysis. Comparison of PAH profiles showed a widespread domination of its 4-ring member. The major contribution was vehicular emissions from petroleum, and however at the hotspots, the improper disposal of used motor oils. In general, the pollution levels for all the land uses were below the recommended values for residential and general purposes stated in soil quality guidelines such as Netherlands and Denmark except certain identified hotspots. The potential health hazards imposed by these hotspots were alarming, and their existence (3 out of 138 samples) suggested that sole monitoring of atmospheric PAHs may not adequately address the hidden risks to human in urban city.  相似文献   

6.
In this paper a new electronically controlled year-round wet-only sampler for wet deposition of trace organic compounds (e.g. airborne PAHs) is described. The sampler provides in situ filtration of the precipitation as well as preconcentration of nonpolar organic compounds by means of a C18-PAH modified silica gel cartridge. The whole assembly is insulated and equipped with heating elements which permit collection of wet deposition as ice or snow and insure correct function of the sampling system even during cold weather. Concurrent chemical analysis of both the particulate and the dissolved phases is performed by high resolution gas chromatography with flame ionization detection or HPLC with fluorescence detection. The reliability of the method was proved by analyzing PAH spiked water (simulated rain) and using NIST SRM 1649 ('urban dust') as certified material for particle-bound PAHs in precipitation. This study proved satisfactorily recoveries of as both particle-bound and unbound aqueous PAH, with only small losses to collector surfaces. It was proved that this new wet-only precipitation sampler can successfully be used for long-time monitoring of PAH in wet depositions in urban areas.  相似文献   

7.
Polycyclic aromatic hydrocarbon (PAH) measurements are essential for scientists and engineers who investigate these anthropogenic compounds. Diesel engines contribute to the problem, so analysts are measuring PAHs from these sources. However, diesel exhaust presents special problems for precise analytical measurements. The exhaust matrix is very complex; consequently, PAH detection sensitivity deteriorates, especially for trace PAHs in the exhaust. Yet, these are conditions and amounts that exist in real samples. Nonetheless, selected ion chromatogram (SIC) and tandem mass spectrometry (MS/MS) techniques improve trace PAH detection; ion trap technology makes both mass techniques possible. The purpose of this investigation was to evaluate SIC and MS/MS for applications to measure PAHs in diesel exhaust samples. The signal-to-noise ratio for accurate quantitation improves, relative to traditional mass techniques, because these techniques ignore or eliminate interfering components. On a VF-5MS chromatographic column, these techniques improve sensitivity and reproducibility. They produce a superior limit of detection in the useful range for PAH samples extracted from actual engine exhaust, 10-30 pg for the smaller PAHs and 1-6 ng for the larger PAHs. The results with SIC and MS/MS are reproducible, so analysts can report PAH amounts with defined statistical confidence intervals. SIC and MS/MS improve detection for trace PAHs in convoluted diesel exhaust samples.  相似文献   

8.
We determined the concentrations of 35 PCNs, 12 PCBs, and 20 PAHs in 49 urban topsoils under different land use (house garden, roadside grassland, alluvial grassland, park areas, industrial sites, agricultural sites) and in nine rural topsoils. The sums of concentrations of 35 PCNs (sigma35 PCNs) were <0.1-15.4 microg kg(-1) in urban soils and <0.1 to 0.82 microg kg(-1) in rural soils. The PCN, PCB, and PAH concentrations were highest at industrial sites and in house gardens. While rural soils receive PCNs, PCBs, and PAHs by common atmospheric deposition, there are site-specific sources of PCNs, PCBs, and PAHs for urban soils such as deposition of contaminated technogenic materials. The PCN, PCB, and PAH concentrations decreased from the central urban to the rural area. In the same order the contribution of lower chlorinated PCNs and PCBs increased because they are more volatile and subject to increased atmospheric transport. The PCNs 52+60, and 73 were more abundant in soil samples than in Halowax mixtures, indicating that combustion contributed to the PCN contamination of the soils.  相似文献   

9.
Polycyclic aromatic hydrocarbons in solid residues from waste incineration   总被引:1,自引:0,他引:1  
Wheatley AD  Sadhra S 《Chemosphere》2004,55(5):743-749
Polycyclic aromatic hydrocarbons (PAH) levels in solid residues from clinical waste incineration were measured using HPLC with fluorescence detection. PAH mass emission rates and emission rates as a function of waste burned are also reported. For bottom ash, PAH levels and physical properties were found to be quite consistent. Levels of high molecular mass PAHs were comparable to levels previously reported in the literature when adjusted for differences in sample preparation techniques. However, levels of low molecular mass PAHs were considerably elevated in this study. Possible reasons for this finding include the composition of the waste, combustion conditions and methods of sample preparation. In contrast, no PAHs were found in fly ash, an unexpected finding which is probably attributable to matrix effects resulting from a surfeit of lime in the fly ash. Factors effecting the partitioning of PAHs and their environmental fate are also discussed.  相似文献   

10.
Distributions and concentrations of PAHs in Hong Kong soils   总被引:19,自引:0,他引:19  
Surface soil (0-10 cm) samples from 53 sampling sites including rural and urban areas of Hong Kong were collected and analyzed for 16 EPA priority polycyclic aromatic hydrocarbons (PAHs). Total PAH concentrations were in the range of 7.0-410 microg kg(-1) (dry wt), with higher concentrations in urban soils than that in rural soils. The three predominant PAHs were Fluoranthene, Naphthalene and Pyrene in rural soils, while Fluoranthene, Naphthalene and Benzo(b + k)fluoranthene dominated the PAHs of urban soils. The values of PAHs isomer indicated that biomass burning might be the major origin of PAHs in rural soils, but vehicular emission around the heavy traffic roads might contribute to the soil PAHs in urban areas. A cluster analysis was performed and grouped the detectable PAHs under 4 clusters, which could be indicative of the PAHs with different origins and PAHs affected by soil organic carbon contents respectively.  相似文献   

11.
Total suspended particle (TSP) was collected and analyzed at rural and urban sites in Tianjin, China during the domestic heating season (from 15 November to 15 March) of 2003/4 for n-alkanes and 16 polycyclic aromatic hydrocarbons (PAHs). The normalized distribution of n-alkanes with the peak at C22, C23, C24 or C25 suggested that fossil fuel utilization was the major source of particulate n-alkanes at both sites. PAHs normalized distribution for each sample was similar and the higher molecular weight PAH dominated the profile (around 90%) indicating a stronger combustion source at both sites. Precipitation and wind were the most important meteorological factors influencing TSP and PAHs atmospheric concentrations. In the urban area the emission height had significant influence on PAHs levels at different heights under the relative stable atmospheric conditions. Coal combustion was the major source for TSP-bound PAHs at both sites based on some diagnostic ratios.  相似文献   

12.
Estimates of standing biomass and fluxes of biomass in a mixed-deciduous woodland were derived, and used with results for concentrations of seven polycyclic aromatic hydrocarbons (PAHs) in different compartments of the woodland system to quantitatively assess some of the key fluxes and burdens of PAHs in this complex system. We quantified PAH burdens in air, in leaves of three deciduous tree species, in leaf litter and in soil, and uptake of PAHs by the tree leaves; PAH fluxes in litterfall, and deposition to the litter layer on the woodland floor during winter were calculated from these data. Air burdens exhibited marked seasonal variations for all compounds, with lowest values in summer when combustion-related emissions were low. Leaves did not accumulate large burdens of PAHs while on the trees and consequently, litterfall-associated fluxes of PAHs were small, representing only a fraction of the burdens in the litter layer to which they were deposited. Higher PAH burdens in air in winter, combined with the organic-matter-rich nature of the litter layer, are thought to be responsible for fluxes of PAHs to the litter layer in winter being 20-170 times the peak litterfall fluxes. The soil compartment was calculated to contain 25 years' worth of deposition of benzo[ghi]perylene, the most recalcitrant PAH in this study. Storage quotients for fluoranthene, pyrene, benzo[k]fluoranthene and benzo[a]pyrene burdens in soil represented 7-10 years' worth of deposition, while fluorene and phenanthrene storage in soil approached unity with inputs (1 and 3 years' worth of deposition, respectively). The relative importance of storage and loss processes was therefore closely related to the physico-chemical properties of the PAH, and is discussed in relation to the cycling of carbon in the woodland.  相似文献   

13.
Wang Z  Chen J  Qiao X  Yang P  Tian F  Huang L 《Chemosphere》2007,68(5):965-971
To estimate the distribution and sources of soil polycyclic aromatic hydrocarbons (PAHs) in metropolitan and adjacent areas, soil samples were collected from urban, suburban and rural locations of Dalian, China, and concentrations of 14 PAHs were determined. The spatial PAH profiles were site-specific and determined by the sources close to the sampling sites. PAH concentrations decreased significantly along the urban-suburban-rural transect. The gradient implied that the fractionation effect influenced PAH distribution. Bivariate plots of selected diagnostic ratios showed general trends of co-variation and allowed to distinguish samples taken from different areas. An improved method, factor analysis (FA) with nonnegative constrains, was used to determine the primary sources and contributions of PAHs in soils. The FA model showed traffic average (74%) and coal related residential emission (26%) were two primary sources to Dalian soils. In addition, the FA model provided reasonable explanations for PAH contributions in soils from different sites. The results suggest that FA with nonnegative constraints is a promising tool for source apportionment of PAHs in soils.  相似文献   

14.
The analysis of material used in this study demonstrated that the amount of polycyclic aromatic hydrocarbons (PAHs) in smoked sprats varies from the level below the lowest detection limit in muscles up to 9.99 µg kg?1 of benzo[a]pyrene (BaP) in fish skin. Such a high level of PAHs in skin was reported only in one of six batches of sprats, while mean BaP level was at 1.69 µg kg?1. Regardless such a high BaP level in skin, its concentration in muscles did not exceed the maximum acceptable level. The study objective was to assess to what extent packaging materials adsorb PAH compounds from food. Changes in the PAH levels were monitored in fish during their storage in packages made of various materials. The storage time was from 0 to 168 hours. The obtained results varied considerably, therefore their scatter did not allow to confirm unequivocally the preliminary hypothesis about the reduction of PAHs due to their migration to packaging material. However, analysis of the packaging used in this study demonstrated a significant increase in the level of total 16 PAHs. When high-density polyethylene (HDPE) packaging was analysed, a six-fold increase in the total 16 PAHs was observed comparing to the blank sample.  相似文献   

15.
Analytical techniques used to assess the environmental risk of contamination from polycyclic aromatic hydrocarbons (PAHs) typically consider only abiotic sample parameters. Supercritical fluid extraction and sorption enthalpy experiments previously suggested slow desorption rates for PAH compounds in two coal-contaminated floodplain soils. In this study, the actual PAH availability for aerobic soil microorganisms was tested in two series of soil-slurry experiments. The experimental conditions supported microbial degradation of phenanthrene if it was weakly sorbed onto silica gel. Native coals and coal-derived particles in two soils effectively acted as very strong sorbents and prevented microbial PAH degradation. The long history of PAH exposure and degree of coal contamination apparently had no influence on the capability of the microbial soil community to overcome constraints of PAH availability. Within the context of the experimental conditions and the compounds chosen, our results confirm that coal-bound PAHs are not bioavailable and hence of low environmental concern.  相似文献   

16.
Abstract

Polycyclic aromatic hydrocarbon (PAH) measurements are essential for scientists and engineers who investigate these anthropogenic compounds. Diesel engines contribute to the problem, so analysts are measuring PAHs from these sources. However, diesel exhaust presents special problems for precise analytical measurements. The exhaust matrix is very complex; consequently, PAH detection sensitivity deteriorates, especially for trace PAHs in the exhaust. Yet, these are conditions and amounts that exist in real samples. Nonetheless, selected ion chromatogram (SIC) and tandem mass spectrometry (MS/MS) techniques improve trace PAH detection; ion trap technology makes both mass techniques possible. The purpose of this investigation was to evaluate SIC and MS/MS for applications to measure PAHs in diesel exhaust samples. The signal-to-noise ratio for accurate quantitation improves, relative to traditional mass techniques, because these techniques ignore or eliminate interfering components. On a VF-5MS chromatographic column, these techniques improve sensitivity and reproducibility. They produce a superior limit of detection in the useful range for PAH samples extracted from actual engine exhaust, 10–30 pg for the smaller PAHs and 1–6 ng for the larger PAHs. The results with SIC and MS/MS are reproducible, so analysts can report PAH amounts with defined statistical confidence intervals. SIC and MS/MS improve detection for trace PAHs in convoluted diesel exhaust samples.  相似文献   

17.
Ambient air samples from a traffic intersection, an urban site and a petrochemical-industrial site (PCI) were collected by using several dry deposition plates, two Microorifice uniform deposited impactors (MOUDIs), one Noll Rotary Impactor (NRI) and several PS-1 (General Metal Work) samplers from March 1994 to June 1995 in southern Taiwan, to characterize the atmospheric particle-bound PAH content of these three areas. Twenty-one individual polycyclic aromatic hydrocarbons (PAHs) were analyzed primarily by using a gas chromatograph/mass spectrometer (GC/MS). In general, the sub-micron particles have a higher PAH content. This is due to the fact that soot from combustion sources consists primarily of fine particles and has a high PAH content. In addition, a smaller particle has a higher specific surface area and therefore may contain more organic carbon, which allows for more PAH adsorption. For a particle size range between 0.31 and 3.2 microm, both Urban/Traffic and PCI/Traffic ratios of particle-bound total-PAH content have the lowest values, ranging from 0.25 to 0.28 (mean = 0.26) and from 0.07 to 0.13 (mean = 0.10), respectively. This indicates that, during the accumulation process, the PAH mass shifted from a particle phase to a gas phase, or the particles aggregated with lower PAH-content particles, resulting in a reduction in particle-bound PAH content. By using the particle size distribution data, the dry deposition model in this study can provide a good prediction for the PAH content of dry deposition materials. In general, lower molecular weight PAHs had a larger fraction of dry deposition flux contributed by the gas phase; for 2-ring PAH (50.4, 46.3 and 28.4%), 3-ring PAHs (15.2, 15.4 and 11.7%) and 4-ring PAHs (13.0, 3.60 and 5.01%) for the traffic intersection, urban and PCI sites, respectively. For higher molecular weight PAHs-5-ring, 6-ring and 7-ring PAHs-their cumulation fraction (F%) of dry deposition flux contributed by the gas phase was lower than 3.26%. At the traffic intersection, urban and PCI sites, the mass median diameter of dry deposition materials (MMD(F)) of individual PAHs was between 25.3 and 49.6 microm, between 27.6 and 43.9 microm, and between 19.1 and 41.9 microm, respectively. This is due to the fact that PAH dry-deposition primarily resulted from gravitational settling of the coarse particulates (> 10 microm).  相似文献   

18.
Polycyclic aromatic hydrocarbon emissions from clinical waste incineration   总被引:1,自引:0,他引:1  
Sadhra S  Wheatley AD 《Chemosphere》2007,66(11):2177-2184
Since the introduction of the Environmental Protection Act in the UK, there are few reports of PAH emissions from clinical waste incinerators (CWIs) operating to improved performance standards. The main aim of this study is to determine PAH emissions from a state-of-the-art CWI focusing on the effects of reactive gases and operating variables on emissions. This was carried out by collection of stack samples over three phases of operation.

At stack conditions, most PAHs are predicted to be in the vapour phase. Reactive losses of PAHs were closely correlated by rank with expected reactivities from laboratory studies. Estimates of emissions incorporating sampling losses were derived, although no correlation was found between PAH losses and the modest levels of reactive stack gases. PAH concentrations were one to two orders of magnitude lower than earlier reports from incinerators without effective air pollution control equipment (APCE). The low levels of carbon monoxide recorded were not correlated with any PAHs.

This study demonstrates the impact of efficient combustion conditions and APCE on PAH emissions from a CWI.  相似文献   


19.
Wu SP  Tao S  Liu WX 《Chemosphere》2006,62(3):357-367
The size distributions of 16 polycyclic aromatic hydrocarbons (PAHs) and particle mass less than 10 microm in aerodynamic diameter (Dp) were measured using a nine-stage low-volume cascade impactor at rural and urban sites in Tianjin, China in the winter of 2003-2004. The particles exhibited the trimodal distribution with the major peaks occurring at 0.43-2.1 and 9.0-10.0 microm for both urban and rural sites. The concentrations of the total PAH (sum of 16 PAH compound) at rural site were generally less than those of urban site. Mean fraction of 76.5% and 63.9% of the total PAH were associated with particles of 0.43-2.1 microm at rural and urban sites, respectively. Precipitation, temperature, wind speed and direction were the important meteorological factors influencing the concentration of PAHs in rural and urban sites. The distributions of PAHs concentration with respect to particle size were similar for rural and urban samples. The PAHs concentrations at the height of 40 m were higher than both of 20 and 60 m at urban site, but the mass median diameter (MMD) of total PAH increased with the increasing height. The mid-high molecular weight (278 >or= MW >or= 202) PAHs were mainly associated with fine particles (Dp or=MW >or=178) PAHs were distributed in both of fine and coarse particle. The fraction of PAHs associated with coarse particles (Dp>2.1 microm) decreased with increasing molecular weight. The relatively consistent distribution of PAHs seemed to indicate the similar combustion source of PAHs at both of rural and urban sites. The fine differences of concentration and distribution of PAHs at different levels at urban site suggested that the different source and transportation path of particulate PAHs.  相似文献   

20.
Fang GC  Chang KF  Lu C  Bai H 《Chemosphere》2004,55(6):787-796
The concentrations of polycyclic aromatic hydrocarbons (PAHs) in gas phase and particle bound were measured simultaneously at industrial (INDUSTRY), urban (URBAN), and rural areas (RURAL) in Taichung, Taiwan. And the PAH concentrations, size distributions, estimated PAHs dry deposition fluxes and health risk study of PAHs in the ambient air of central Taiwan were discussed in this study. Total PAH concentrations at INDUSTRY, URBAN, and RURAL sampling sites were found to be 1650 +/- 1240, 1220 +/- 520, and 831 +/- 427 ng/m3, respectively. The results indicated that PAH concentrations were higher at INDUSTRY and URBAN sampling sites than the RURAL sampling sites because of the more industrial processes, traffic exhausts and human activities. The estimation dry deposition and size distribution of PAHs were also studied. The results indicated that the estimated dry deposition fluxes of total PAHs were 58.5, 48.8, and 38.6 microg/m2/day at INDUSTRY, URBAN, and RURAL, respectively. The BaP equivalency results indicated that the health risk of gas phase PAHs were higher than the particle phase at three sampling sites of central Taiwan. However, compared with the BaP equivalency results to other studies conducted in factory, this study indicated the health risk of PAHs was acceptable in the ambient air of central Taiwan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号