首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
针对现有污泥固化技术存在的固化养护时间长、低温条件下固化效能低等问题。研究提出污泥快速(3d)固化技术,采用响应曲面分析方法,重点考察了石灰、组分A、硅酸盐水泥、粉煤灰和温度等5因素对固化效能的综合影响,研究结果表明,石灰、组分A、硅酸盐水泥、粉煤灰和养护温度等因素对3d固化体的无侧限抗压强度和含水率的线性效应显著,石灰和组分A、石灰和养护温度对无侧限抗压强度的交互影响显著,石灰和粉煤灰、组分A和养护温度、硅酸盐水泥和粉煤灰对含水率的交互影响显著;得出了5因素对固化体3d无侧限抗压强度和含水率影响的定量模型,可对污泥快速固化进行优化和预测;并利用XRD和SED对污泥固化块的化学成分和微观结构进行了分析。  相似文献   

2.
造纸污泥固化/稳定化处理技术研究   总被引:4,自引:2,他引:2  
为了能更好地无害化处理造纸污泥,对造纸污泥的固化/稳定化处理技术进行了研究。以水泥、粉煤灰和煤渣作为固化剂对造纸污泥进行固化/稳定化处理。通过抗压强度评价污泥固化块的力学性质;并对固化块浸出液的COD浓度与重金属质量浓度进行了检测。当水泥、粉煤灰和煤渣的掺量分别为0.12、0.02和0.10 kg/kg,养护时间为6 d时,固化块抗压强度达到360 kPa。结果表明,水泥和煤渣对提高造纸污泥固化块的抗压强度具有促进作用,而它们与粉煤灰对造纸污泥中的有机质和重金属均具有一定的固化作用。在以上条件下,固化块浸出液中COD浓度约为115.7 mg/L,重金属浓度符合国家标准。经养护后的固化块含水率均保持在35%~40%,符合填埋场的进场标准。  相似文献   

3.
印染污泥固化及稳定化处理研究   总被引:4,自引:1,他引:3  
采用水泥、粉煤灰和煤渣作为固化剂对印染污泥进行固化/稳定化处理,并探讨了固化/稳定化的最佳工艺条件.当水泥、粉煤灰和煤渣的掺量分别为0.15、0.02和0.08 kg/kg,养护天数为6 d时,印染污泥固化块抗压强度达到330kPa,含水率为44.6%,符合填埋场的进场标准.固化块浸出液中Cr、Cu、Ni、Pb、Zn和...  相似文献   

4.
针对页岩气井油基钻屑安全处置的难题,采用无机胶凝材料辅以界面改性剂KX对其进行了固化处理,考察了PC32.5水泥、粉煤灰和活性增强材料对固化效果的综合影响,利用X射线衍射仪、扫描电镜和压汞仪等测试技术,探索了固化材料对油基钻屑的固化机制。结果表明:水泥、粉煤灰和活性增强材料对14 d无侧限抗压强度线性效应显著,水泥和粉煤灰、水泥和活性增强材料对14 d无侧限抗压强度交互作用显著;得出了固化材料CS在14 d的最佳质量比。确定了油基钻屑固化配方为:油基钻屑+20%CS+2.2%KX,处理后油基钻屑固化体7 d无侧限抗压强度为960 k Pa,浸出液成分达到国家《污水综合排放标准》(GB 8978-1996)I级要求。同时处理后油基钻屑固化体中生成了C—S—H凝胶和少量AFt,使其结构更为致密,降低了固化体中污染物的浸出。  相似文献   

5.
在有膜标准养护和自然养护7 d和28 d的情况下,测定了固化体的含水率、有机质含量、抗剪强度、无侧限抗压强度及增容比等工程指标。研究结果表明,固化体含水率随垃圾焚烧底渣颗粒增大而增大;有机质含量则与颗粒大小没有明显相关性;粘聚力随垃圾焚烧底渣颗粒粒径增大而减小;内摩擦角随垃圾焚烧底渣颗粒粒径增大而增大;无侧限抗压强度随垃圾焚烧底渣粒径增大而增大;实验配比为100∶20∶20情况下的增容比均小于1.08。底渣中2 mm以上大颗粒对固化起到了更加积极的作用。垃圾焚烧底渣作为骨料,增强工程特性、减小固化剂用量、降低成本。研究成果拓展了污泥处理处置途径。  相似文献   

6.
开展了不同含量垃圾焚烧底渣与固化剂共同作用下,固化市政污泥工程特性研究。测定了固化体的含水率、有机质含量、重度、pH值、无侧限抗压强度、增容比及28 d渗透系数等工程指标。结果表明:固化体有机质含量及含水率随垃圾焚烧底渣含量的增多而降低;重度随底渣添加量增加而增大,在12~15 k N·m-3之间;固化体pH值、无侧限抗压强度、增容比及渗透系数均随底渣含量增加而增大。底渣添加量为40%左右时,固化体满足填埋要求。垃圾焚烧底渣作为骨料,增强了污泥固化体工程特性、减少了固化剂用量、同时实现以废治废,降低污泥和垃圾焚烧底渣处置成本。研究成果为污泥及垃圾焚烧底渣填埋处置提供了参数及指导作用。  相似文献   

7.
对污水处理厂污泥采用垃圾焚烧底灰进行固化处理,分别测试不同掺量和不同养护龄期时固化体的岩土工程性质,通过测试发现,固化体重度基本位于11~13 kN/m3之间,与垃圾焚烧底灰的重度相近;固化体含水率随着垃圾焚烧底灰掺量的增大而急剧减小;抗剪强度指标和无侧限抗压强度随垃圾焚烧底灰的掺量增加和养护龄期的增长而增大,其内摩擦角位于10°~30°之间。建立的固化强度预测模型,可对不同掺量和龄期的固化污泥强度进行预测。  相似文献   

8.
为了给河涌疏浚底泥的资源化提供技术支持,以广州市车陂涌表层受污染底泥为研究对象,用水泥、石灰、粉煤灰、膨润土等材料对底泥进行固化/稳定化处理实验。通过无侧限抗压强度、污染物在模拟自然条件下(中性)的释放特征、毒性浸出实验(酸性条件)对固化/稳定化处理效果进行综合分析。结果表明:经合适的处理后,固化体抗压强度能高于300 kPa;固化体自然条件下重金属的释放量明显减少,固化/稳定化处理能够有效减缓和减少固化体的二次污染;毒性浸出实验结果表明,河涌底泥经固化/稳定化处理后其重金属浸出能力显著降低。  相似文献   

9.
污泥结构的改变有利于污泥资源化利用,采用硅酸盐改性污泥研究颇多,然而水化硅酸盐改变污泥孔隙结构的微观分析较少。用硅酸盐基高钙石改性剂S1(富硫型),S2(贫硫型)、常规硅酸盐水泥、石灰,在不同养护环境下改性脱水污泥,考虑改性剂水化生成物对污泥含水率、污泥孔隙率和孔隙结构特征的影响。结果表明,不同改性剂在污泥环境水化产物差别大,水化早期,S1可在污泥中快速大量产生完整针棒状结构钙矾石/铁钙矾石(长3μm左右),S2主要生成六面体型铝酸钙、铁铝酸钙产物(直径3μm左右),水泥早期产物钙矾石生长受到抑制、形态残缺短小(长13μm左右),石灰主要生成片状氢氧钙石(直径10μm左右)。针棒状钙矾石有利于污泥孔隙均匀分散、结构破坏。当投加20%(占污泥总量比例)S1改性污泥,在有氧条件下养护7 d,污泥孔隙率由32.64%增加至49.14%,含水率降到30%以下。研究表明高钙石改性剂可以有效改变污泥孔隙结构,利于污泥孔水分蒸发提高自然干化效率。  相似文献   

10.
含砷污泥的粉煤灰固化研究   总被引:1,自引:2,他引:1  
硫酸废水处理系统的中和污泥属于有害废渣,其中As浸出率超标.采用固化的方法处理某冶炼厂硫酸废水中和污泥,发现以水泥∶粉煤灰∶污泥=1∶1∶2的配比固化后,固化块浸出液浓度达到国标规定(1.5 mg/L).研究表明,粉煤灰替代水泥50%可达到较好的固化效果,浸泡24 d后浸出浓度达到稳定值,pH值为7时浸出浓度最小,外加剂对固化有负影响,采用湿养护可获得更好的效果.  相似文献   

11.
Fluidized-bed-combustion (FBC) ash is a by-product from a developing technology for coal-fired power plants that will economically reduce air emissions to meet requirements of the Clean Air Act. FBC ash has physical and chemical properties similar to Portland cement, but only has moderate success as a pozzolan in concrete applications due to low compressive strengths. However, FBC ash has proven effective for use as a binder for the solidification and stabilization (S/S) of metal-bearing sludges. Physical and chemical characterization procedures were used to analyze FBC ash and a metal-bearing sludge obtained from a hazardous waste treatment facility to develop 12 different S/S mix designs. The mix designs consist of four binder designs to evaluate sludge-to-binder ratios of approximately 0, 0.5, and 1. Portland cement is used as a control binder to compare unconfined compressive strengths and Toxicity Characteristic Leaching Procedure (TCLP) analyses from different ratios of the FBC ash streams: fly ash, char, and spent bed material (SBM). Compressive strengths ranging from 84 lbs per square inch (psi) to 298 psi were obtained from various mix designs containing different sludge-to-ash ratios cured for 28 days. All the mix designs passed the TCLP. Recoveries from leaching for each metal were less than 5% for most mix designs. Results of unconfined compressive strengths, TCLP, and percent recovery calculations indicate that the mix design containing approximately a 1:1 ratio of fly ash to char-and-sludge is the best mix design for the S/S of the metal-bearing sludge.  相似文献   

12.
A comparison between sludge ash and fly ash on the improvement in soft soil   总被引:2,自引:0,他引:2  
In this study, the strength of soft cohesive subgrade soil was improved by applying sewage sludge ash as a soil stabilizer. Test results obtained were compared with earlier tests conducted on soil samples treated with fly ash. Five different proportions of sludge ash and fly ash were mixed with soft cohesive soil, and tests such as pH value, compaction, California bearing ratio, unconfined compressive strength (UCS), and triaxial compression were performed to understand soil strength improvement because of the addition of both ashes. Results indicate that pH values increase with extending curing age for soil with sludge ash added. The UCS of sludge ash/soil were 1.4-2 times better than untreated soil. However, compressive strength of sludge ash/soil was 20-30 kPa less than fly ash/soil. The bearing capacities for both fly ash/soil and sludge ash/soil were five to six times and four times, respectively, higher than the original capacity. Moreover, the cohesive parameter of shear strength rose with increased amounts of either ash added. Friction angle, however, decreased with increased amounts of either ash. Consequently, results show that sewage sludge ash can potentially replace fly ash in the improvement of the soft cohesive soil.  相似文献   

13.
Artificially contaminated (spiked) natural soils were solidified/stabilized using various combinations of commonly used additives, such as lime, cement, fly ash, activated carbon, and silica fume. The effectiveness of the solidification/stabilization (S/S) processes was evaluated based on experimental findings from compaction testing, unconfined compressive shear strength, and X-ray diffraction (XRD). Correlations of limited reliability between unconfined compressive strength and penetrometer and torvane measurements were derived. Results from XRD experiments indicated that certain organic contaminants (i.e., naphthalene and pyrene) might impact the S/S processes for a given combination of additives. The type and amount of organic contaminants also affected the pozzolanic reactions. Specifically, the absence or small peak intensity of pozzolanic product XRD patterns for a given combination of additives was a good indication that the type and the amount of organic contaminant present inhibited pozzolanic reactions. This phenomenon was tested and confirmed for actual field-contaminated samples.  相似文献   

14.
Abstract

Artificially contaminated (spiked) natural soils were solidified/stabilized using various combinations of commonly used additives, such as lime, cement, fly ash, activated carbon, and silica fume. The effectiveness of the solidification/stabilization (S/S) processes was evaluated based on experimental findings from compaction testing, unconfined compressive shear strength, and X-ray diffraction (XRD). Correlations of limited reliability between unconfined compressive strength and penetrometer and torvane measurements were derived. Results from XRD experiments indicated that certain organic contaminants (i.e., naphthalene and pyrene) might impact the S/S processes for a given combination of additives. The type and amount of organic contaminants also affected the pozzolanic reactions. Specifically, the absence or small peak intensity of pozzolanic product XRD patterns for a given combination of additives was a good indication that the type and the amount of organic contaminant present inhibited pozzolanic reactions. This phenomenon was tested and confirmed for actual field-contaminated samples.  相似文献   

15.
污泥焚烧灰固化处理技术研究   总被引:1,自引:0,他引:1  
研究了硅酸盐水泥、高铝水泥、高岭土和β-萘系减水剂在污泥焚烧灰固化技术中的应用效果。考察了污泥焚烧灰固化块(以下简称固化块)的抗压强度,测定了固化块的重金属浸出毒性,并采用X射线衍射(XRD)和扫描电镜(SEM)分析固化块组成和微观结构。结果表明,4种物质对提高固化块的抗压强度均具有较好的效果,硅酸盐水泥、高铝水泥、高岭土和β-萘系减水剂的适宜掺量分别为10、30、20、1.0g(以100g污泥焚烧灰中掺加的质量计)。XRD和SEM分析结果显示,经固化处理后制得的固化块结构密实,存在石英(SiO2)、水化硅铝酸钙(CaAl2Si2O8)和水化硅酸铝钙(Ca2Al2SiO7)等物质,其中水化硅铝酸钙等凝胶物质有利于提高固化块的抗压强度。  相似文献   

16.
During the processing of antimony ore by pyrometallurgical methods, a considerable amount of slag is formed. This antimony waste slag is listed by the European Union as absolutely hazardous waste with a European Waste Catalogue code of 10 08 08. Since the levels of antimony and arsenic in the leachate of the antimony waste slag are generally higher than the landfilling limits, it is necessary to treat the slag before landfilling. In this study, stabilization/solidification and geopolymerization technologies were both applied in order to limit the leaching potential of antimony and arsenic. Different combinations of pastes by using Portland cement, fly ash, clay, gypsum, and blast furnace slag were prepared as stabilization/solidification or geopolymer matrixes. Sodium silicate–sodium hydroxide solution and sodium hydroxide solution at 8 M were used as activators for geopolymer samples. Efficiencies of the combinations were evaluated in terms of leaching and unconfined compressive strength. None of the geopolymer samples prepared with the activators yielded arsenic and antimony leaching below the regulatory limit at the same time, although they yielded high unconfined compressive strength levels. On the other hand, the stabilization/solidification samples prepared by using water showed low leaching results meeting the landfilling criteria. Use of gypsum as an additive was found to be successful in immobilizing the arsenic and antimony.
ImplicationsDespite the wide use of antimony for industrial purposes, disposal options for an antimony waste such as slag from thermal processing of antimony ore were not reported in the existing literature. This study aimed to develop a disposal strategy for the hazardous antimony waste slag. The findings of this study would contribute to understand the immobilization mechanisms of antimony and arsenic and will also be of interest to the owners of the antimony ore processing plants and to researchers investigating the efficiency of stabilization/solidification and geopolymerization technologies.  相似文献   

17.
市政污泥深度脱水药剂优化研究   总被引:1,自引:0,他引:1  
污泥含水率高影响污泥后续处置。利用化学药剂对污泥进行深度脱水处理可使污泥减量化、稳定化。为提高深度脱水效果,对添加剂进行了种类和添加量的优化研究(石灰、工业石灰、粉煤灰、硅藻土、十二烷基磺酸钠和飞灰;5%、10%、15%、20%、25%和30%),另外,还进行了复合投加实验。研究结果表明,石灰、工业石灰、粉煤灰的深度脱水效果最好;复合添加中,25%石灰+5%粉煤灰,20%石灰+10%粉煤灰,10%石灰+20%粉煤灰的深度脱水效果最好。5%的石灰或者工业石灰的添加剂量使干化污泥pH值达到12.25,粉煤灰、硅藻土、十二烷基磺酸钠和飞灰的添加对干化污泥pH值影响相对要小。  相似文献   

18.
Three types of hydraulic cements have been developed by incorporating sludge ash from a primary sewage treatment plant and a water purification plant, as well as slag from steelworks (ferrate), as a partial replacement for clay, silica, alumina, and iron oxide in raw cement meal. The raw meal for the pre-determined recipes was prepared by heating it to 1400 degrees C for 6 hr in a clinkerization process, using a simulated incinerator and smelter. The major components of ordinary Portland cement, C3S, C2S, C3A, and C4AF, were all found in the clinkers. Of the three types of eco-cements, the eco-cement A paste was most similar to ordinary Portland cement in terms of composition and compressive strength development, while the eco-cement B paste showed early strength development. The differential thermal analysis species analyses indicated that the hydrates in the eco-cement pastes were mainly calcium hydroxide and CSH gels, like those found in ordinary Portland cement paste. Moreover, the degree of hydration, as determined by nuclear magnetic resonance, increased in all eco-cement pastes with an increasing curing age. The results indicate that it indeed is feasible to use sludge ash and ferrate to replace up to 20% of the mineral components of raw materials for cement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号