首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To evidence a possible mechanism of defense toward oxidative stress induced by herbicides in plants, an investigation was carried on the activity of glutathione peroxidase (GPX) in Italian ryegrass (Lolium multiflorum) and in Festuca (Festuca arundinacea) in response to atrazine (6-chloro-N-ethyl-N′-isopropyl-1,3,5-triazine-2,4-diamine) and fluorodifen (4-nitrophenyl α,α,α-trifluoro-2-nitro-p-tolyl ether). In general, the herbicide treatments significantly induced GPX activity in the shoots of Italian ryegrass, whereas inhibited it in Festuca. These opposite behaviors are examined, taking into account the accumulation and persistence of the two herbicides in the plants, and they are discussed in terms of GPX counteraction to oxidative stress in the first case, and of a lower detoxification rate unable to prevent a deleterious effect on the GPX activity in the second case. Further information on the properties of Italian ryegrass and Festuca GPX were achieved by purification and isolation of the enzymes, performed by protein liquid chromatography and by electrophoretic analyses. GPX of both the plants were found to be heterodimer with multiple function in showing also glutathione S-transferase (GST) activity.  相似文献   

2.
To evidence a possible mechanism of defense toward oxidative stress induced by herbicides in plants, an investigation was carried on the activity of glutathione peroxidase (GPX) in Italian ryegrass (Lolium multiflorum) and in Festuca (Festuca arundinacea) in response to atrazine (6-chloro-N-ethyl-N'-isopropyl-1,3,5-triazine-2,4-diamine) and fluorodifen (4-nitrophenyl α,α,α-trifluoro-2-nitro-p-tolyl ether). In general, the herbicide treatments significantly induced GPX activity in the shoots of Italian ryegrass, whereas inhibited it in Festuca. These opposite behaviors are examined, taking into account the accumulation and persistence of the two herbicides in the plants, and they are discussed in terms of GPX counteraction to oxidative stress in the first case, and of a lower detoxification rate unable to prevent a deleterious effect on the GPX activity in the second case. Further information on the properties of Italian ryegrass and Festuca GPX were achieved by purification and isolation of the enzymes, performed by protein liquid chromatography and by electrophoretic analyses. GPX of both the plants were found to be heterodimer with multiple function in showing also glutathione S-transferase (GST) activity.  相似文献   

3.
World wide arsenic (As) contamination of rice has raised much concern as it is the staple crop for millions. Four most commonly cultivated rice cultivars, Triguna, IR-36, PNR-519 and IET-4786, of the West Bengal region were taken for a hydroponic study to examine the effect of arsenate (AsV) and arsenite (AsIII) on growth response, expression of genes and antioxidants vis-à-vis As accumulation. The rice genotypes responded differentially under AsV and AsIII stress in terms of gene expression and antioxidant defences. Some of the transporters were up-regulated in all rice cultivars at lower doses of As species, except IET-4786. Phytochelatin synthase, GST and γ-ECS showed considerable variation in their expression pattern in all genotypes, however in IET-4786 they were generally down-regulated in higher AsIII stress. Similarly, most of antioxidants such as superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidase (GPX), catalase (CAT), monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR) increased significantly in Triguna, IR-36 and PNR-519 and decreased in IET-4786. Our study suggests that Triguna, IR-36 and PNR-519 are tolerant rice cultivars accumulating higher arsenic; however IET-4786 is susceptible to As-stress and accumulates less arsenic than other cultivars.  相似文献   

4.
This study, based on a greenhouse pot culture experiment conducted with 15-day-old rapeseed (Brassica campestris L. cv. Pusa Gold; family Brassicaceae) and moong bean (Vigna radiata L. Wilczek cv. Pusa Ratna; family Fabaceae) plants treated with cadmium (Cd) concentrations (0, 50, and 100 mg kg?1 soil), investigates their potential for Cd accumulation and tolerance, and dissects the underlying basic physiological/biochemical mechanisms. In both species, plant dry mass decreased, while Cd concentration of both root and shoot increased with increase in soil Cd. Roots harbored a higher amount of Cd (vs. shoot) in B. campestris, while the reverse applied to V. radiata. By comparison, root Cd concentration was higher in B. campestris than in V. radiata. The high Cd concentrations in B. campestris roots and V. radiata shoots led to significant elevation in oxidative indices, as measured in terms of electrolyte leakage, H2O2 content, and lipid peroxidation. Both plants displayed differential adaptation strategies to counteract the Cd burden-caused anomalies in their roots and shoots. In B. campestris, increasing Cd burden led to a significantly decreased reduced glutathione (GSH) content but a significant increase in activities of GSH reductase (GR), GSH peroxidase (GPX), and GSH sulfotransferase (GST). However, in V. radiata, increasing Cd burden caused significant increase in GSH content and GR activity, but a significant decline in activities of GPX and GST. Cross talks on Cd burden of tissues and the adapted Cd tolerance strategies against Cd burden-accrued toxicity indicated that B. campestris and V. radiata are good Cd stabilizer and Cd extractor, respectively, wherein a fine tuning among the major components (GR, GPX, GST, GSH) of the GSH redox system helped the plants to counteract differentially the Cd load-induced anomalies in tissues. On the whole, the physiological/biochemical characterization of the B. campestris and V. radiata responses to varying Cd concentrations can be of great help in elaborating the innovative plant-based remediation technologies for metal/metalloid-contaminated sites.  相似文献   

5.
Polygodial is a drimane sesquiterpene dialdehyde derived from certain terrestrial plant species that potently inhibits ascidian metamorphosis, and thus has potential for controlling fouling ascidians in bivalve aquaculture. The current study examined the effects of polygodial on a range of biochemical biomarkers of oxidative stress and detoxification effort in the gills of adult Perna canaliculus Gmelin. Despite high statistical power and the success of positive controls, the antioxidant enzymes glutathione reductase (GR), glutathione peroxidase (GPOX), catalase (CAT), and superoxide dismutase (SOD); thiol status, as measured by total glutathione (GSH-t), glutathione disulphide (GSSG), and GSH-t/GSSG ratio; end products of oxidative damage, lipid hydroperoxides (LHPO) and protein carbonyls; and detoxification pathways, represented by GSH-t and glutathione S-transferase (GST), were unaffected in the gills of adult P. canaliculus exposed to polygodial at 0.1 or 1 × the 99% effective dose in fouling ascidians (IC99). Similarly, GR levels, thiol status, and detoxification activities were unaffected in mussels exposed to polygodial at 10 × the IC99, although GPOX, CAT, and SOD activities increased. However, the increases were small relative to positive controls, no corresponding oxidative damage was detected, and this concentration greatly exceeds effective doses required to inhibit fouling ascidians in aquaculture. These findings compliment a previous study that established the insensitivity to polygodial of P. canaliculus growth, condition, and mitochondrial functioning, providing additional support for the suitability of polygodial for use as an antifouling agent in bivalve aquaculture.  相似文献   

6.
Coontail (Ceratophyllum demersum L.) plants when exposed to various concentrations of Pb (1-100microM) for 1-7days, exhibited both phytotoxic and tolerance responses. The specific responses were function of concentration and duration. Plants accumulated 1748mugPbg(-1) dw after 7d which reflected its metal accumulation ability, however most of the metal (1222microgg(-1) dw, 70%) was accumulated after 1d exposure only. The toxic effect and oxidative stress caused by Pb were evident by the reduction in biomass and photosynthetic pigments and increase in malondialddehyde (MDA) content and electrical conductivity with increase in metal concentration and exposure duration. Morphological symptoms of senescence phenomena such as chlorosis and fragmentation of leaves were observed after 7d. The metal tolerance and detoxification strategy adopted by the plant was investigated with reference to antioxidant system and synthesis of phytochelatins. Protein and antioxidant enzymes viz., superoxide dismutase (SOD, EC 1.15.1.1), guaiacol peroxidase (GPX, EC 1.11.1.7) ascorbate peroxidase (APX, EC 1.11.1.11), catalase (CAT, EC 1.11.1.6) and glutathione reductase (GR, EC 1.6.4.2) showed induction at lower concentration and duration followed by decline. All enzymes except GPX showed maximum activity after 1d. An increase in cysteine, non-protein thiols (NP-SH) and glutathione (GSH) content was observed at moderate exposure conditions followed by decline. Phytochelatins (PC(2) and PC(3)) were synthesized to significant levels at 10 and 50microM Pb with concomitant decrease in GSH levels. Thus production of PCs seems important for the detoxification of metal, however it may lead to depletion of GSH and consequently oxidative stress. Results suggest that plants responded positively to moderate Pb concentrations and accumulated high amount of metal. Due to metal accumulation coupled with detoxification potential, the plant appears to have potential for its use as phytoremediator species in aquatic environments having moderate pollution of Pb.  相似文献   

7.
Indiscriminate release of metal oxide nanoparticles (NPs) into the environment due to anthropogenic activities has become a serious threat to the ecological system including plants. The present study assesses the toxicity of nano-CuO on rice (Oryza sativa cv. Swarna) seedlings. Three different levels of stress (0.5 mM, 1.0 mM and 1.5 mM suspensions of copper II oxide, <50 nm particle size) were imposed and seedling growth performance was studied along control at 7 and 14 d of experiment. Modulation of ascorbate–glutathione cycle, membrane damage, in vivo ROS detection, foliar H2O2 and proline accumulation under nano-CuO stress were investigated in detail to get an overview of nano-stress response of rice. Seed germination percentage was significantly reduced under stress. Higher uptake of Evans blue by nano-CuO stressed roots over control indicates loss of root cells viability. Presence of dark blue and deep brown spots on leaves evident after histochemical staining with NBT and DAB respectively indicate severe oxidative burst under nano-copper stress. APX activity was found to be significantly increased in 1.0 and 1.5 mM CuO treatments. Nevertheless, elevated APX activity might be insufficient to scavenge all H2O2 produced in excess under nano-CuO stress. That may be the reason why stressed leaves accumulated significantly higher H2O2 instead of having enhanced APX activity. In addition, increased GR activity coupled with isolated increase in GSH/GSSG ratio does not seem to prevent cells from oxidative damages, as evident from higher MDA level in leaves of nano-CuO stressed seedlings over control. Enhanced proline accumulation also does not give much protection against nano-CuO stress. Decline in carotenoids level might be another determining factor of meager performance of rice seedlings in combating nano-CuO stress induced oxidative damages.  相似文献   

8.
The biochemical response to chronic heavy metal exposure was studied in tissues of bank voles Clethrionomys glareolus. Animals were collected from three sites located 4, 8 and 30km from a zinc-lead smelter, the area's main source of metal contamination. Concentrations of Cd, Pb, Zn and Fe were measured in the liver, kidneys and gonads to assess the level of metal intoxication. In response to intoxication, organisms activate detoxification mechanisms which can protect animals from metals' toxicity. Glutathione plays an important role in toxic substance detoxification. Total glutathione (tGSH) and glutathione disulfide (GSSG) were measured in the tissues. Also, the activity of glutathione reductase (GR), glutathione peroxidase (GPX), and glutathione-S-transferase (GST) was measured in the studied tissues. Results indicate that levels of all studied parameters were tissue and site-dependent. Evidence indicates that the most sensitive parameter of metal toxicity for animals living in a chronically contaminated environment is the GSH/GSSG ratio. In our study, the GSH/GSSG ratio was decreased in the liver of animals with high Cd levels. However, the relationship between Pb and the GSH/GSSG ratio was positive in the gonads. Cadmium and lead negatively influenced GPX activity in the liver; this was probably connected with inhibition of the Se-dependent fraction. The relationship between iron and GR activity in the kidney was also negative, but other correlations for iron both in liver and kidney were not significant. Positive correlations between Zn levels and GST and GR activity were found in the gonads of bank voles.  相似文献   

9.
Ahmad I  Pacheco M  Santos MA 《Chemosphere》2006,65(6):952-962
Pateira de Fermentelos (PF) is a natural freshwater wetland in the central region of Portugal. In the last decade, the introduction of agricultural chemicals, heavy metals, domestic wastes, as well as eutrophication and incorrect utility of resources resulted in an increased water pollution. The present research work was carried out to check the various oxidative stress biomarker responses in European eel (Anguilla anguilla L.) gill, kidney and liver due to this complex water pollution. Eels were caged and plunged at five different PF sites (A-E) for 48h. A reference site (R) was also selected at the river spring where no industrial contamination should be detected. Lipid peroxidation (LPO), catalase (CAT), glutathione peroxidase (GPX), glutathione S-transferase (GST) and reduced glutathione (GSH) were the oxidative stress biomarkers studied. In gill, site A exposure induced a significant GST activity increase and site B exposure induced CAT activity increase when compared to R. Site C exposure showed a significant CAT and GPX activity increase. Data concerning site D exposure were not determined due to cage disappearance. Site E exposure displayed a significant CAT and GST activity increase. In kidney, site A exposure induced a significant CAT and GPX decrease as well as a GST increase. Site B exposure showed a significant decrease in GPX activity and GSH content. However, site C exposure demonstrated a significant increase in CAT and a decrease in GPX. Site E exposure showed a significant decrease in GPX and increase in GST. In liver, site A exposure showed a significant GST activity decrease as well as GSH content increase. Site B exposure showed a significant CAT, GST and LPO decrease. Site C exposure showed only GST activity decrease, while site E exposure induced a significant increase in GPX. These investigation findings provide a rational use of oxidative stress biomarkers in freshwater ecosystem pollution biomonitoring using caged fish, and the first attempt reported in Portugal as a study of this particular watercourse under the previous conditions. The presence of pollutants in the PF water was denunciated even without a clear relation to the main pollution source distance. The organ specificity was evident for each parameter but without a clear pattern.  相似文献   

10.
Wang C  Luo X  Tian Y  Xie Y  Wang S  Li Y  Tian L  Wang X 《Chemosphere》2012,86(5):530-537
In the present study, lanthanum (La) as a representative REE was used to explore the mechanisms for alleviation of Cd-induced oxidative damage by extraneous La at appropriate concentrations, and to assess ecological risk of combination of Cd and La at higher concentrations in roots of Vicia faba L. seedlings. The seedlings were hydroponically cultured for 15 d under nutrient solution, 6 μmol L−1 CdCl2, and combination of 6 μmol L−1 CdCl2 and increasing concentrations of La, respectively. The results showed that the supplementation with low concentrations of exogenous La (<120 μmol L−1) led to reduced contents of Cd, Ca, Cu, Zn, Mn or Fe element and increased activities of superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (GPX) and ascorbate peroxidase (APX) isozymes as well as heat shock protein 70 (HSP 70) production in the roots. However, the supplementation with higher La (>120 μmol L−1) showed the adverse effects. The contents of Cd elevated above the single Cd treatment in the roots, accompanying with the decline of antioxidant isozyme’s activities and HSP 70, and increment of carbonylated proteins and endoprotease isozyme’s activities. The results also showed that the root growth was not only related to carbonylated proteins, but also to indole acetic acid oxidase activities. Therefore, the supplemented extraneous La contributed to biphasic effects: stimulated antioxidation at lower concentrations and pro-oxidation at higher concentrations against Cd-induced oxidative stress in the roots.  相似文献   

11.
Ahammed GJ  Yuan HL  Ogweno JO  Zhou YH  Xia XJ  Mao WH  Shi K  Yu JQ 《Chemosphere》2012,86(5):546-555
The present study was carried out to investigate the effects of exogenously applied 24-epibrassinolide (BR) on growth, gas exchange, chlorophyll fluorescence characteristics, lipid peroxidation and antioxidant systems of tomato seedlings grown under different levels (0, 10, 30, 100 and 300 μM) of phenanthrene (PHE) and pyrene (PYR) in hydroponics. A concentration-dependent decrease in growth, photosynthetic pigment contents, net photosynthetic rate (Pn), stomatal conductance (Gs), maximal quantum yield of PSII (Fv/Fm), effective quantum yield of PSII (ΦPSII), photochemical quenching coefficient (qP) has been observed following PHE and PYR exposure. By contrast, non-photochemical quenching coefficient (NPQ) was increased. PHE was found to induce higher stress than PYR. However, foliar or root application of BR (50 nM and 5 nM, respectively) alleviated all those depressions with a sharp improvement in the activity of photosynthetic machinery. The activities of guaicol peroxidase (GPOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) as well as content of malondialdehyde (MDA) were increased in a dose-dependent manner under PHE or PYR treatments. Compared with control the highest increments of GPOD, CAT, APX, GR and MDA by PHE/PYR alone treatments were observed following 300 μM concentration, which were 67%, 87%, 53%, 95% and 74% by PHE and 42%, 53%, 30%, 86% and 62% by PYR, respectively. In addition, both reduced glutathione (GSH) and oxidized glutathione (GSSG) were induced by PHE or PYR. Interestingly, BR application in either form further increased enzymatic and non enzymatic antioxidants in tomato roots treated with PHE or PYR. Our results suggest that BR has an anti-stress effect on tomato seedlings contaminated with PHE or PYR and this effect is mainly attributed by increased detoxification activity.  相似文献   

12.
13.
Background, aim, and scope  Tobacco, Nicotiana tabacum, is a widely used model plant for growth on heavy-metal-contaminated sites. Its high biomass and deep rooting system make it interesting for phytoextraction. In the present study, we investigated the antioxidative activities and glutathione-dependent enzymes of different tobacco clones optimized for better Cd and Zn accumulation in order to characterize their performance in the field. Main features  The improved heavy metal resistance also makes the investigated tobacco clones interesting for understanding the plant defense enzyme system in general. Freshly harvested plant material (N. tabacum leaves) was used to investigate the antioxidative cascade in plants grown on heavy metal contaminated sites with and without amendments of different ammonium nitrate and ammonium sulfate fertilizers. Materials and methods  Plants were grown on heavily polluted soils in north-east Switzerland. Leaves were harvested at the field site and directly deep frozen in liquid N2. Studies were concentrated on the antioxidative enzymes of the Halliwell–Asada cycle, and spectrophotometric measurements of catalase (CAT, EC 1.11.1.6), ascorbate peroxidase (APX, EC 1.11.1.11), superoxide dismutase (SOD, EC 1.15.1.1), glutathione peroxidase (GPX, EC 1.11.1.9), glutathione reductase (GR, EC 1.6.4.2), glutathione S-transferase (GST, EC 2.5.1.18) were performed. Results and discussion  We tried to explain the relationship between fertilizer amendments and the activity of the enzymatic defense systems. When tobacco (N. tabacum) plants originating from different mutants were grown under field conditions with varying fertilizer application, the uptake of cadmium and zinc from soil increased with increasing biomass. Depending on Cd and Zn uptake, several antioxidant enzymes showed significantly different activities. Whereas SOD and CAT were usually elevated, several other enzymes, and isoforms of GST were strongly inhibited. Conclusions  Heavy metal uptake represents severe stress to plants, and specific antioxidative enzymes are induced at the cost of more general reactions of the Halliwell–Asada cycle. In well-supplied plants, the glutathione level remains more or less unchanged. The lack of certain glutathione S-transferases upon exposure to heavy metals might be problematic in cases when organic pollutants coincide with heavy metal pollution. When planning phytoremediation of sites, mixed pollution scenarios have to be foreseen and plants should be selected according to both, their stress resistance and hyperaccumulative capacity.  相似文献   

14.
In vitro experiments were conducted to investigate the effects of abscisic acid (ABA) and Cd on antioxidative defense systems and indole-3-acetic acid (IAA) oxidase during adventitious rooting in mung bean [Vigna radiata (L.) Wilczek] seedlings. The exogenous ABA significantly enhanced the number and fresh weight of the adventitious roots. CdCl2 strongly inhibited adventitious rooting. Pretreatment with 10 μM ABA clearly alleviated the inhibitory effect of Cd on rooting. ABA significantly reduced superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase (POD), and catalase (CAT) activities, as well as the levels of glutathione (GSH) and ascorbic acid (ASA) during adventitious rooting. ABA strongly increased IAA-oxidase activity during the induction (0–12 h) and expression (after 48 h) phases and increased the phenols levels. Cd treatment significantly reduced the activities of SOD, APX, POD, and IAA oxidase, as well as GSH level. Cd strongly increased ASA levels. ABA pretreatment counteracted Cd-induced alterations of certain antioxidants and antioxidative enzymes, e.g., remarkably rescued APX and POD activities, reduced the elevated SOD and CAT activities and ASA levels, and recovered the reduced GSH levels, caused by Cd stress. Thus, the physiological effects of the combination of ABA and Cd treatments were opposite of those obtained with Cd treatment alone, suggesting that ABA involved in the regulation of antioxidative defense systems and the alleviation of wounding- and Cd-induced oxidative stress.  相似文献   

15.
This study was performed to determine sublethal responses of two invertebrate species by using field deployments in areas affected by oil spills, which are acute in the Galician Coast (NNW, Spain) and chronic in the Bay of Algeciras (SSW, Spain). The organisms employed were the crab Carcinus maenas and the clam Ruditapes philippinarum, and during 28 days the animals were exposed to contaminated sediments in cages under field conditions. Different biomarkers of exposure were determined after a 28-day period exposure: ethoxyresorufin O-deethylase (EROD), phase I detoxification enzyme, glutathione-S-transferase (GST) phase II detoxification enzyme but also implicated in oxidative stress events, glutathione peroxidase (GPX) and glutathione reductase (GR), both antioxidant enzymes. In addition, histopathological effects in target tissues of the deployed organisms were evaluated. Biomarker measurements were linked with the concentration of chemicals in the sediments in order to elucidate the type, source and bioavailability of contaminants that produce adverse effects in the bioindicator species. Results obtained in this study have shown how the application of the selected battery of biomarkers under field bioassays allows for the identification of alternative sources of stress that are not observable in laboratory experiments.  相似文献   

16.
This study measured the responses of different anti-oxidants in 2-year-old birch (Betula pendula Roth) seedlings subjected to simulated acid rain (pH 4.0) and heavy metals (Cu/Ni), applied alone or in combination for 2 months. The applied concentrations of pollutants did not significantly affect seedling biomass or total glutathione levels. Acid rain alone increased superoxide dismutase (SOD) activity both in leaves and roots, while heavy metals alone inhibited SOD activity in roots. Both acid rain and heavy metals applied singly increased ascorbate peroxidase (APX) and guaiacol peroxidase (GPX) activities in leaves but decreased activities in roots. In contrast, acid rain and heavy metal treatments increased glutathione reductase (GR) activity in roots but not in leaves. Spraying birch seedlings with a mixture of acid rain and heavy metals increased SOD, APX and GPX activities in leaves and GR activity in roots. However, the effects of mixed pollutants on enzyme activities usually were less than the summed effects of individual pollutants. Enzyme responses also depended on where pollutants were applied: spraying pollutants onto the shoots initiated higher responses in SOD, APX and GPX than did application to the soil surface, while the opposite was true for GR.  相似文献   

17.
Plants have to counteract unavoidable stress-caused anomalies such as oxidative stress to sustain their lives and serve heterotrophic organisms including humans. Among major enzymatic antioxidants, catalase (CAT; EC 1.11.1.6) and ascorbate peroxidase (APX; EC 1.11.1.11) are representative heme enzymes meant for metabolizing stress-provoked reactive oxygen species (ROS; such as H2O2) and controlling their potential impacts on cellular metabolism and functions. CAT mainly occurs in peroxisomes and catalyzes the dismutation reaction without requiring any reductant; whereas, APX has a higher affinity for H2O2 and utilizes ascorbate (AsA) as specific electron donor for the reduction of H2O2 into H2O in organelles including chloroplasts, cytosol, mitochondria, and peroxisomes. Literature is extensive on the glutathione-associated H2O2-metabolizing systems in plants. However, discussion is meager or scattered in the literature available on the biochemical and genomic characterization as well as techniques for the assays of CAT and APX and their modulation in plants under abiotic stresses. This paper aims (a) to introduce oxidative stress-causative factors and highlights their relationship with abiotic stresses in plants; (b) to overview structure, occurrence, and significance of CAT and APX in plants; (c) to summarize the principles of current technologies used to assay CAT and APX in plants; (d) to appraise available literature on the modulation of CAT and APX in plants under major abiotic stresses; and finally, (e) to consider a brief cross-talk on the CAT and APX, and this also highlights the aspects unexplored so far.  相似文献   

18.
The comparative effectiveness for hexavalent chromium removal from irrigation water, using two selected plant species (Phragmites australis and Ailanthus altissima) planted in soil contaminated with hexavalent chromium, has been studied in the present work. Total chromium removal from water was ranging from 55 % (Phragmites) to 61 % (Ailanthus). After 360 days, the contaminated soil dropped from 70 (initial) to 36 and 41 mg Cr/kg (dry soil), for Phragmites and Ailanthus, respectively. Phragmites accumulated the highest amount of chromium in the roots (1910 mg Cr/kg(dry tissue)), compared with 358 mg Cr/kg(dry tissue) for Ailanthus roots. Most of chromium was found in trivalent form in all plant tissues. Ailanthus had the lowest affinity for CrVI reduction in the root tissues. Phragmites indicated the highest chromium translocation potential, from roots to stems. Both plant species showed good potentialities to be used in phytoremediation installations for chromium removal.  相似文献   

19.
The redox cycling of heavy metals as well as their interactions with organic pollutants is a major contributor to the oxidative stress resulting from aquatic pollution. Therefore, in order to evaluate beta-naphthoflavone (BNF), Cu and BNF/Cu-induced oxidative stress with single and subsequent exposures, research was carried out in European eel (Anguilla anguilla L.). Eel gill and kidney oxidative stress biomarker responses such as lipid peroxidation (LPO), glutathione peroxidase (GPX), catalase (CAT), glutathione S-transferase (GST) and total reduced glutathione (GSH) to a single 24 h exposure to two copper concentrations (Cu-1 microM, 2.5 microM) and BNF (2.7 microM) with or without 24 h BNF (2.7 microM) pre-exposure were investigated. Cu exposure alone showed a significant gill GST increase at the lowest concentration and GSH content decrease for the highest concentration. Double BNF exposure in gill demonstrated a significant increase in LPO, CAT, GPX and GST, as well as a decrease in GSH content. However, in sequential BNF/Cu exposures, only the highest Cu concentration exhibited a significant increase in LPO and GSH as well as a decrease in GPX (vs. BNF + CW). In kidney, Cu exposure alone showed a significant CAT and GSH contents decrease for both concentrations, and at highest concentration in GPX; as well as GST increase at the lowest concentration. Double BNF exposure showed a significant increase in LPO and GST. Nevertheless, in sequential BNF/Cu exposures, both concentrations exhibited a significant increase in LPO and decrease in GSH contents. Moreover, LPO was also increased significantly in comparison to BNF+CW and the equivalent Cu exposures without BNF pre-exposure. Concerning GPX, a significant increase was observed at highest Cu concentration. In GST, a significant decrease at the lowest Cu concentration and increase at the highest Cu concentration was observed. Summarizing, a simple copper or BNF exposures have no ability to induce LPO in both gill and kidney. However, double BNF exposure induced LPO in both organs and sequential BNF/Cu exposures potentiated the risk of peroxidative damage occurrence in both organs. BNF/Cu interference on antioxidant responses differs between the studied organs. In gill, antagonistic effects were denoted with probable reflex in terms of peroxidative damage increase. In kidney, BNF pre-exposure prevented CAT and GPX inhibition by copper; though, no advantage of this effect was perceptible as defence against LPO generation. Considering BNF as a surrogate for a PAH and the detected interactions with copper, as well as the likelihood that these effects would be observed in polluted ecosystems, current results demonstrate their relevance to actual ecological exposures contributing to a better knowledge on oxidative stress mechanisms in fish.  相似文献   

20.
Bioaccumulation and toxicity of copper was evaluated on Potamogeton pusillus L. The effect of copper (5–100 μg L?1) applied for several days was assessed by measuring changes in the chlorophyll's, phaeophytin's, malondialdehyde, electrical conductivity, glutathione peroxidase (GPX), glutathione reductase (GR) and guaiacol peroxidase (POD) activities. Plants accumulated copper with a maximum of 162 μg g?1 dw after 7-days exposure at 100 μg L?1, however most of the metal was accumulated after 1-day exposure. The toxic effect caused by Cu was evident by the reduction of photosynthetic pigments, increase of malondialdehyde and electrical conductivity. P. pusillus shows Cu-induced oxidative stress by modulating antioxidant enzymes like GPX, GR and POD. Antioxidant enzymes activity increased significantly after exposure to 40 μg L?1 during 24 h, followed by a drop at longer times. Thus, P. pusillus is proposed as a good biomonitor for the assessment of metal pollution in aquatic ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号