首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Cadmium usually hampers plant growth, but bacterial inoculation may improve stress tolerance in plants to Cd by involving various mechanisms. The objective was to characterize and identify bacteria that improve plant growth under Cd stress and reduce Cd uptake. Cadmium-tolerant bacteria were isolated from rhizosphere soil, which was irrigated with tannery effluent, and six strains were selected as highly tolerant to Cd, showing minimum inhibitory concentration as 500 mg L?1 or 4.45 mmol L?1. These strains were identified by 16S rRNA gene analysis and functional analysis in regard to plant growth promotion characteristics. To determine their effect on cereal growth under Cd stress, seeds were inoculated with these strains individually and grown in soil contaminated with three Cd levels (0, 40 and 80 mg kg?1). Biomass production, relative water content (RWC), electrolyte leakage (ELL) and tissue Cd concentration were measured. Biomass of both cereals was inhibited strongly when exposed to Cd; however, bacterial inoculation significantly reduced the suppressive effect of Cd on cereal growth and physiology. The bacterial isolates belonged to the genera Klebsiella, Stenotrophomonas, Bacillus and Serratia. Maize was more sensitive than wheat to Cd. Klebsiella sp. strain CIK-502 had the most pronounced effects in promoting maize and wheat growth and lowering Cd uptake under Cd stress.  相似文献   

2.
The disposal of hazardous crude oil tank bottom sludge (COTBS) represents a significant waste management burden for South Mediterranean countries. Currently, the application of biological systems (bioremediation) for the treatment of COTBS is not widely practiced in these countries. Therefore, this study aims to develop the potential for bioremediation in this region through assessment of the abilities of indigenous hydrocarbonoclastic microorganisms from Libyan Hamada COTBS for the biotreatment of Libyan COTBS-contaminated environments. Bacteria were isolated from COTBS, COTBS-contaminated soil, treated COTBS-contaminated soil, and uncontaminated soil using Bushnell Hass medium amended with Hamada crude oil (1 %) as the main carbon source. Overall, 49 bacterial phenotypes were detected, and their individual abilities to degrade Hamada crude and selected COBTS fractions (naphthalene, phenanthrene, eicosane, octadecane and hexane) were evaluated using MT2 Biolog plates. Analyses using average well colour development showed that ~90 % of bacterial isolates were capable of utilizing representative aromatic fractions compared to 51 % utilization of representative aliphatics. Interestingly, more hydrocarbonoclastic isolates were obtained from treated contaminated soils (42.9 %) than from COTBS (26.5 %) or COTBS-contaminated (30.6 %) and control (0 %) soils. Hierarchical cluster analysis (HCA) separated the isolates into two clusters with microorganisms in cluster 2 being 1.7- to 5-fold better at hydrocarbon degradation than those in cluster 1. Cluster 2 isolates belonged to the putative hydrocarbon-degrading genera; Pseudomonas, Bacillus, Arthrobacter and Brevundimonas with 57 % of these isolates being obtained from treated COTBS-contaminated soil. Overall, this study demonstrates that the potential for PAH degradation exists for the bioremediation of Hamada COTBS-contaminated environments in Libya. This represents the first report on the isolation of hydrocarbonoclastic bacteria from Libyan COTBS and COTBS-contaminated soil.  相似文献   

3.
The expansion of invasive Japanese knotweed s.l. is of particular concern because of its aptitudes to rapidly colonize diverse environments, especially anthropized habitats generally characterized by their pollution with heavy metals. Whether the presence of heavy metals impacts the performance traits of this plant is a central question to better understand its invasive properties, though no controlled approach to assess these effects was yet reported. In this aim, we undertook greenhouse experiments where rhizome fragments of Japanese knotweed s.l. (Fallopia japonica and Fallopia × bohemica) were grown during 1 and 3 months, in a soil pot artificially polluted or not with heavy metals added in mixture (Cd, Cr, Pb, Zn). Our results showed that (i) the presence of heavy metals delayed rhizome regeneration and induced lowered plant part weights but did not affect plant height after 3 months; (ii) the effect of metals on the metabolic profiles of belowground part extracts was only detectable after 1 month and not after 3 months of growth, though it was possible to highlight the effect of metals independently of time and genotype for root extracts, and torosachrysone seemed to be the most induced compound; and (iii) the hybrid genotype tested was able to accumulate relatively high concentrations of metals, over or close to the highest reported ones for this plant for Cr, Cd and Zn, whereas Pb was not accumulated. These findings evidence that the presence of heavy metals in soil has a low impact on Fallopia sp. overall performance traits during rhizome regeneration, and has a rather stimulating effect on plant growth depending on pollution level.  相似文献   

4.
Sediment management from stormwater infiltration basins represents a real environmental and economic issue for stakeholders due to the pollution load and important tonnages of these by-products. To reduce the sediment volumes to treat, organic and metal micropollutant-bearing phases should be identified. A combination of density fractionation procedure and microanalysis techniques was used to evaluate the distribution of polycyclic aromatic hydrocarbons (PAHs) and trace metals (Cd, Cr, Cu, Ni, Pb, and Zn) within variable density fractions for three urban stormwater basin sediments. The results confirm that PAHs are found in the lightest fractions (d?d??3) whereas trace metals are equally distributed within the light, intermediary, and highest fractions (d?d?d?d?>?2.8 g cm?3) and are mostly in the 2.3?d??3 fraction. The characterization of the five fractions by global analyses and microanalysis techniques (XRD and MEB-EDX) allowed us to identify pollutant-bearing phases. PAHs are bound to the organic matter (OM) and trace metals to OM, clays, carbonates and dense particles. Moreover, the microanalysis study underlines that OM is the main constituent responsible for the aggregation, particularly for microaggregation. In terms of sediment management, it was shown that density fractionation is not suitable for trace metals but could be adapted to separate PAH-enriched phases.  相似文献   

5.
Decabromodiphenyl ether (BDE-209) is a brominated flame retardant and a priority contaminant. Currently, little information is available about its significance in the environment, specifically about its susceptibility to aerobic biotransformation at low temperature. In this work, five phylogenetically diverse BDE-209-degrading bacterial strains were isolated from river sediments of northern China. These strains were distributed among four different genera—Acinetobacter, Pseudomonas, Bacillus and Staphylococcus. All five isolates were capable of growing on BDE-209, among which two isolates show better growth. By detailed morphological, physiological, and biochemical characteristics and 16S rDNA sequence analysis, the two strains were identified and named as Staphylococcus haemolyticus LY1 and Bacillus pumilus LY2. The two bacteria can grow in mineral salt medium containing BDE-209 substrate across the temperatures ranging from 2.5 to 35 °C, with an optimum temperature of 25 °C which could be considered as psychrotrophs accordingly. The degradation experiment showed that more than 70.6 and 85.5 % of 0.5 mg/L BDE-209 were degraded and the highest mineralization efficiencies of 29.8 and 39.2 % were achieved for 0.5 mg/L BDE-209 by S. haemolyticus LY1 and B. pumilus LY2, respectively. To the best of our knowledge, this is the first demonstration for the biodegradation of BDE-209 by two psychrotrophic bacteria isolated from environment.  相似文献   

6.
Brassica species are very effective in remediation of heavy metal contaminated sites. Lead (Pb) as a toxic pollutant causes number of morphological and biochemical variations in the plants. Synthetic chelator such as ethylenediaminetetraacetic acid (EDTA) improves the capability of plants to uptake heavy metals from polluted soil. In this regard, the role of EDTA in phytoextraction of lead, the seedlings of Brassica napus L. were grown hydroponically. Lead levels (50 and 100 μM) were supplied alone or together with 2.5 mM EDTA in the nutrient culture. After 7 weeks of stress, plants indicated that toxicity of Pb caused negative effects on plants and significantly reduced growth, biomass, chlorophyll content, gas exchange characteristics, and antioxidant enzymes activities such as superoxide dismutase (SOD), guaiacol peroxidase (POD), ascorbate peroxidase (APX), and catalase (CAT). Exposure to Pb induced the malondialdehyde (MDA), and hydrogen peroxide (H2O2) generation in both shoots and roots. The addition of EDTA alone or in combination with Pb significantly improved the plant growth, biomass, gas exchange characteristics, chlorophyll content, and antioxidant enzymes activities. EDTA also caused substantial improvement in Pb accumulation in Brassica plants. It can be deduced that application of EDTA significantly lessened the adverse effects of lead toxicity. Additionally, B. napus L. exhibited greater degree of tolerance against Pb toxicity and it also accumulated significant concentration of Pb from media.  相似文献   

7.
The main purpose of this study was to determine typical concentrations of heavy metals (HM) in wood from willows and poplars, in order to test the feasibility of phytoscreening and phytoextraction of HM. Samples were taken from one strongly, one moderately, and one slightly polluted site and from three reference sites. Wood from both tree species had similar background concentrations at 0.5 mg kg?1 for cadmium (Cd), 1.6 mg kg?1 for copper (Cu), 0.3 mg kg?1 for nickel (Ni), and 25 mg kg?1 for zinc (Zn). Concentrations of chromium (Cr) and lead (Pb) were below or close to detection limit. Concentrations in wood from the highly polluted site were significantly elevated, compared to references, in particular for willow. The conclusion from these results is that tree coring could be used successfully to identify strongly heavy metal-polluted soil for Cd, Cu, Ni, Zn, and that willow trees were superior to poplars, except when screening for Ni. Phytoextraction of HMs was quantified from measured concentration in wood at the most polluted site. Extraction efficiencies were best for willows and Cd, but below 0.5 % over 10 years, and below 1?‰ in 10 years for all other HMs.  相似文献   

8.
Microbial community composition and metabolic potential have been explored in petroleum-hydrocarbon-contaminated sludge of an oil storage facility. Culture-independent clone library-based 16S rRNA gene analyses revealed that the bacterial community within the sludge was dominated by the members of β-Proteobacteria (35 %), followed by Firmicutes (13 %), δ-Proteobacteria (11 %), Bacteroidetes (10 %), Acidobacteria (6 %), α-Proteobacteria (3 %), Lentisphaerae (2 %), Spirochaetes (2 %), and unclassified bacteria (5 %), whereas the archaeal community was composed of Thermoprotei (54 %), Methanocellales (33 %), Methanosarcinales/Methanosaeta (8 %) and Methanoculleus (1 %) members. Methyl coenzyme M reductase A (mcrA) gene (a functional biomarker) analyses also revealed predominance of hydrogenotrophic, methanogenic Archaea (Methanocellales, Methanobacteriales and Methanoculleus members) over acetoclastic methanogens (Methanosarcinales members). In order to explore the cultivable bacterial population, a total of 28 resident strains were identified and characterized in terms of their physiological and metabolic capabilities. Most of these could be taxonomically affiliated to the members of the genera Bacillus, Paenibacillus, Micrococcus, Brachybacterium, Aerococcus, and Zimmermannella, while two strains were identified as Pseudomonas and Pseudoxanthomonas. Metabolic profiling exhibited that majority of these isolates were capable of growing in presence of a variety of petroleum hydrocarbons as sole source of carbon, tolerating different heavy metals at higher concentrations (≥1 mM) and producing biosurfactant during growth. Many strains could grow under a wide range of pH, temperature, or salinity as well as under anaerobic conditions in the presence of different electron acceptors and donors in the growth medium. Correlation between the isolates and their metabolic properties was estimated by the unweighted pair group method with arithmetic mean (UPGMA) analysis. Overall observation indicated the presence of diverse groups of microorganisms including hydrocarbonoclastic, nitrate reducing, sulphate reducing, fermentative, syntrophic, methanogenic and methane-oxidizing bacteria and Archaea within the sludge community, which can be exploited for in situ bioremediation of the oily sludge.  相似文献   

9.
With the analysis of eight heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) and sixteen polycyclic aromatic hydrocarbons (PAHs) in sediments from the Shenzhen River, South China, the ecological risks associated were evaluated using Hakanson’s method (for the metals) and the Effect Range Low/Effect Range Median (ERL/ERM) method (for the PAHs). The result shows concentrations of heavy metal in the order Zn?>?Cu?>?Cr?>?Ni?>?Pb?>?As?>?Cd?>?Hg, and among which the Zn, Cu, Ni, and Pb are exceeding the maximum contaminant level for sediments while those of PAHs are far below. The potential ecological risk index value for the heavy metals in the sediment samples was 261.90, which is in the moderate risk category. Total PAH concentrations in the sediments ranged from 1,028 to 1,120 ng/g, which are all far lower than the sediment guideline concentration of 4,022 ng/g, indicating that the risks of biological impacts caused by PAHs in Shenzhen River sediments are, therefore, relatively low. Besides, the fluorene concentration was above the ERL, and would potentially cause negative biological effects in the Shenzhen River. Heavy metals risks are suggested among the most important concerns that the environmental recover measures pay attention to.  相似文献   

10.
Concentrations of heavy metals (Cu, Ni, Zn, Cd and Pb) were measured in sediments, water and liver and kidney tissues of three Indian major carps (Labeo rohita, Catla catla and Cirrhinus cirrhosus), belonging to two different weight groups (250 and 500 g), collected from ponds at two different sites (Nalban bheri and Diamond Harbour). The tissues were analysed for the levels of different antioxidant defence systems such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GRd), glutathione S-transferase (GST), glutathione (GSH) and malondialdehyde (MDA). Concentrations of all the metals were significantly higher (P < 0.05) in sediment, water and the tissues from Nalban bheri compared to those in Diamond Harbour. Metal concentrations were the lowest in C. cirrhosus, which increased with an increase in fish weight, and the liver accumulated higher amount of metals than the kidney. Activities of all enzymatic and non-enzymatic antioxidant parameters except GPx and GRd were significantly higher (P < 0.05) in the tissues from Nalban bheri than those in Diamond Harbour. Significant multicollinearity was found in the values of SOD, CAT, GST, GRd, GPx and MDA with Pb, Cu and Ni in all three fish species at Nalban and with Cd in L. rohita and C. catla. Principal component analysis results revealed that stress response in a polluted site was directly regulated by an amalgamation of GSH profile and the levels of MDA in a synchronized manner. The study indicated a tissue-specific and species-specific difference for heavy metal-induced oxidative stress response in fish and a correlation between different heavy metals and individual oxidative stress markers.  相似文献   

11.
Tanning sludge enriched with high concentrations of Cr and other metals has adverse effects on the environment. Plants growing in the metalliferous soils may have the ability to cope with high metal concentrations. This study focuses on potentials of using native plants for bioindication and/or phytoremediation of Cr-contaminated sites. In the study, we characterized plants and soils from six tanning sludge storage sites. Soil in these sites exhibited toxic levels of Cr (averaged 16,492 mg kg?1) and other metals (e.g., 48.3 mg Cu kg?1, 2370 mg Zn kg?1, 44.9 mg Pb kg?1, and 0.59 mg Cd kg?1). Different metal tolerance and accumulation patterns were observed among the sampled plant species. Phragmites australis, Zephyranthes candida, Cynodon dactylon, and Alternanthera philoxeroides accumulated moderate-high concentrations of Cr and other metals, which could make them good bioindicators of heavy metal pollution. High Cr and other metal concentrations (e.g., Cd and Pb) were found in Chenopodium rubrum (372 mg Cr kg?1), Aster subulatus (310 mg Cr kg?1), and Brassica chinensis (300 mg Cr kg?1), being considered as metal accumulators. In addition, Nerium indicum and Z. candida were able to tolerate high concentrations of Cr and other metals, and they may be used as preferable pioneer species to grow or use for restoration in Cr-contaminated sites. This study can be useful for establishing guidelines to select the most suitable plant species to revegetate and remediate metals in tanning sludge-contaminated fields.  相似文献   

12.
13.
Mushrooms are considered as potential bio-remediation agents in soil polluted with heavy metals, while many species which efficiently accumulate them in flesh are edible. Question is if there is any possible culinary use of edible mushrooms with high heavy metal contents? This study aimed to investigate and discuss a fate of cadmium (Cd) in common household-treated fruitbodies of common chanterelle Cantharellus cibarius. The samples of Cantharellus cibarius Fr. were collected from five spatially distanced sites in Poland in 2011–2012. We examined from 267 to 358 fruiting bodies per collection, and in total 1565 fruiting bodies were used. Cadmium in fungal materials from all treatments and processes (mushrooms dried, deep frozen, blanched and pickled) was determined using validated methods by inductively coupled plasma mass spectrometry with dynamic reaction cell. Blanching of fresh chanterelles caused decrease of Cd by around 11 ± 7 to 36 ± 7%, while blanching of deep-frozen mushrooms by around 40 ± 6%. A rate of Cd decrease in chanterelles was similar when the fruiting bodies were blanched for 5 or 15 min and when used was potable or deionized water. Pickling of blanched chanterelles with a diluted vinegar marinade had a pronounced effect on further removal of Cd. Blanched chanterelles when pickled lost an extra 37–71% of Cd. Total leaching rate of Cd from fresh or deep-frozen fruitbodies of chanterelle when blanched and further pickled was between 77 ± 7 and 91 ± 4%. Blanching and pickling highly decreased content of Cd in C. cibarius.  相似文献   

14.
The effect of citric acid (CA), acetic acid (Ac), and ethylene diamine tetraacetic acid (EDTA) on the photosynthetic and antioxidant properties and the accumulation of some heavy metals (HMs) of Melilotus officinalis seedling growing in Cu mine tailings for 25 days were studied. Results showed that the formation of photosynthesizing cells of M. officinalis was inhibited by EDTA at 2 mmol/kg. Photosynthetic pigment contents under EDTA of 2 mmol/kg were reduced by 26, 40, and 19 %, respectively, compared to the control. The proline contents in aboveground and underground parts increased as the level of EDTA was enhanced. CA and Ac enhanced the activities of superoxide dismutase (SOD) and peroxidase (POD) in the aboveground parts and EDTA inhibited the activity of POD in the underground parts. The addition of CA promoted significantly the growth of M. officinalis, while the biomass decreased significantly under 2 mmol/kg EDTA. Cu contents in the aboveground parts treated with 0.5 and 2.0 mmol/kg EDTA reached 175.50 and 265.17 μg/g dry weight, respectively. Ac and EDTA treatments promoted Cd to translocate from root to aboveground parts. The result indicated that M. officinalis was a tolerant species of Cu tailing and can be used to remediate Cu contaminated environment, and rationally utilization of organic acids, especially EDTA, in the phytoremediation can improve the growth and metals accumulation of M. officinalis.  相似文献   

15.
Marine microalga Tetraselmis indica (T. indica) was cultivated in secondary treated domestic sewage (STDS) in batch mode. Optimization studies showed that after 14 days of cultivation period, highest biomass yield reached was 0.88 ± 0.04 g/L at the optimum temperature of 27 ± 1 °C and light intensity of 135 μmol m?2 s?1. T. indica removed about 60.93% phosphate, 78.46% nitrate, 72.94% chemical oxygen demand (COD), 73.17% biological oxygen demand (BOD), 98.90% total dissolved solids (TDS) and heavy metals (83.11% Cd, 55.67% Ca, 45.12% Cu, 13.67% Mn, 50.88% Pb, and 98.92% Al) from STDS. The level of electrical conductivity was reduced to 0.0974 ± 0.045 dS/m. The fatty acid methyl ester (FAME) profile showed the presence of palmitic acid (12.91%), oleic acid (35.94%), linoleic acid (14.89%) and eicosanoic acid (12.34%). This study indicates the potential of T. indica for removal of pollutants from STDS and also its capability of biodiesel production.  相似文献   

16.
This study describes the potential application of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from the soil samples collected from industrial dumping site. High concentrations of heavy metals (like iron, lead, nickel, cadmium, copper, cobalt and zinc) and petroleum hydrocarbons were present in the contaminated soil samples. Lipopeptide biosurfactant, consisting of surfactin and fengycin was obtained from Bacillus subtilis A21. Soil washing with biosurfactant solution removed significant amount of petroleum hydrocarbon (64.5 %) and metals namely cadmium (44.2 %), cobalt (35.4 %), lead (40.3 %), nickel (32.2 %), copper (26.2 %) and zinc (32.07 %). Parameters like surfactant concentration, temperature, agitation condition and pH of the washing solution influenced the pollutant removing ability of biosurfactant mixture. Biosurfactant exhibited substantial hydrocarbon solubility above its critical micelle concentration. During washing, 50 % of biosurfactant was sorbed to the soil particles decreasing effective concentration during washing process. Biosurfactant washed soil exhibited 100 % mustard seed germination contradictory to water washed soil where no germination was observed. The results indicate that the soil washing with mixture of lipopeptide biosurfactants at concentrations above its critical micelle concentration can be an efficient and environment friendly approach for removing pollutants (petroleum hydrocarbon and heavy metals) from contaminated soil.  相似文献   

17.
Within the framework of the MYTIOR project in 2009, heavy metals and organic compounds contaminations were assessed in transplanted mussels in 16 different stations along the coasts of Libya. These stations were located at miles offshore industrial/urban sources but in open sea providing original results related to the background contamination rather than linked to a specific coastal source of pollutants. Results indicated mercury (Hg, 0.045–0.066 mg/kg dry weight (dw)), lead (Pb, 0.44–0, 71 mg/kg dw) and copper (Cu, 3.56–4.21 mg/kg dw) were in the same range or at lower value than control for all stations. Chromium (Cr) in Meleta (3.08 mg/kg dw) and Bomba (3.80 mg/kg dw) and Cadmium values in all stations (1.21–2.41 mg/kg dw) were above control. Meleta, stations from the gulf of Syrt and the three eastern stations were the most affected stations by nickel (max at 5.83 mg/kg dw in Syrt) when zinc was in the same range (141–197 mg/kg dw) and above the control (92 mg/kg dw) at all stations. Polycyclic aromatic hydrocarbon (PAH) levels were found in the range of 16.8–42.8 mg/kg (dry weight) indicating low levels along the Libyan coast with acenaphthene and benzo (a, b, k) pyrenes detected mainly in western Libya. The study of PAH ratios indicated a mixed petrogenic/pyrolytic origin. The only polychlorinated biphenyls (PCBs) found in Libya were PCB 101 in one location and PCB 153 in Tripoli, Garrapoli, Syrt, Ras Lanuf and Benghazi (1.2–1.9 μg/kg dw). Insecticides were lower than control in all stations except DDT, only detected in Misratah (3.5 μg/kg dw). Overall, the results indicated a low background contamination and a low pollution extent according to the environmental pressure occurring offshore the Libyan coast.  相似文献   

18.
Wetland plants are biological filters that play an important role in maintaining aquatic ecosystem and can take up toxic metals from sediments and water. The present study investigated the seasonal variation in the accumulation potential of heavy metals by Cyperus articulatus in contaminated watercourses. Forty quadrats, distributed equally in 8 sites (six contaminated sites along Ismailia canal and two uncontaminated sites along the River Nile), were selected seasonally for sediment, water, and plant investigations. Autumn was the flourishing season of C. articulatus with the highest shoot density, length, and diameter as well as aboveground biomass, while summer showed the least growth performance. The photosynthetic pigments were markedly reduced under contamination stress. C. articulatus plants accumulated concentrations of most heavy metals, except Pb, in their roots higher than the shoots. The plant tissues accumulated the highest concentrations of Fe, Cd, Ni, and Zn during autumn, while Cu and Mn during spring, and Cr and Co during winter. It was found that Cd, Cu, Ni, Zn, Pb, and Co had seasonal bioaccumulation factor (BF) > 1 with the highest BF for Cd, Ni, and Zn during autumn, Co, Cu, and Pb in winter, spring, and summer, respectively. The translocation factor of most heavy metals, except Pb in spring, was <1 indicating potential phytostabilization of these metals. In conclusion, autumn is an ideal season for harvesting C. articulatus in order to monitor pollution in contaminated wetlands.  相似文献   

19.
Interspecific comparison in metals and PAHs profile in three lichen species, Flavoparmelia caperata, Phaeophyscia hispidula and Pyxine sorediata, were studied in different altitudinal gradients of the Western Himalayas. The species collected from 14 sites, enroute from Dehradun to Morinda (243 Km) including the trekking route 42 Km from Taluka to Morinda having an altitudinal gradient between 850–3,750 m, were analysed for their metals and PAHs. The species showed similar metal as well as PAHs profile under similar altitudinal gradients in the sequence of F. caperata > P. hispidula > P. sorediata. The difference in pollutant concentrations within each lichen species may be related to intrinsic attributes of the species, such as thallus morphology and the presence of lichen substances which are responsible for the sensitivity and accumulation potential of a particular species. Novelty of the present study lies on the fact that all the species show a similar efficiency of reflecting the environmental condition of the area, albeit the coefficient values of individual species for individual pollutant obtained by three-factor ANOVA revealed that the bioaccumulation affinity of F. caperata is significantly higher than P. hispidula and P. sorediata. For individual metals, F. caperata has a higher affinity for Al, Cr, Fe, Pb and Zn while P. hispidula has a significant positive affinity for Fe and Pb. PCA analysis of sites with respect to pollutant revealed the segregation of sites based on source and distance. Combining the bioaccumulation potential parameters along with geostatistical (GIS) techniques establishes that F. caperata species is a better accumulator of metals and PAHs in comparison to P. hispidula and P. sorediata in the temperate regions of the Himalaya.  相似文献   

20.
A native bacterial strain with high capability for Cr (VI) removal was isolated from tannery sediments located in Elena (Córdoba Province, Argentina). The strain was characterized by amplification of 16S rRNA gene and identified as Serratia sp. C8. It was able to efficiently remove different Cr (VI) concentrations in a wide range of pHs and temperatures. The addition of different carbon sources as well as initial inoculum concentration were analyzed, demonstrating that Serratia sp. C8 could reduce 80 % of 20 mg/L Cr (VI) in a medium containing glucose 1 g/L, at pH 6–7 and 28 °C as optimal conditions, using 5 % inoculum concentration. The mechanisms involved in Cr (VI) removal were also evaluated. The strain was capable of biosorpting around 7.5–8.5 % of 20 mg/L Cr on its cell surface and to reduce Cr (VI). In addition, approximately a 54 and 46 % of total Cr was detected in the biomass and in the culture medium, respectively, and in the culture medium, Cr (III) was the predominant species. In conclusion, Serratia sp. C8 removed Cr (VI) and the mechanisms involved in decreasing order of contribution were as follows: reduction catalyzed by intracellular enzymes, accumulation into the cells, and biosorption to the microbial biomass. This strain could be a suitable microorganism for Cr (VI) bioremediation of tannery sediments and effluents or even for other environments contaminated with Cr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号