首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
使用自制的酸改性蒙脱石絮凝剂(MTSF)对高浓度畜禽养殖废水进行处理,以传统絮凝剂聚合氯化铝(PAC)作为参考,研究了絮凝剂投加量对废水处理絮凝效果的影响,探讨絮凝过程中絮体沉降特性。结果表明,MTSF对养殖废水的絮凝效果优于PAC,在最佳投加量12 000mg/L时,浊度、SS、COD、氨氮及TP的去除率分别达到85.7%、96.8%、60.7%、16.3%和97.7%;MTSF投加量虽远大于PAC,但MTSF的絮体沉降体积只占整个体积的12.0%,不到PAC絮体沉降体积的1/5,MTSF中的可溶态物质和颗粒态物质的相互协同效应加快了絮凝过程和沉降过程;MTSF处理后上清液中Cd、Cr、Ni、Cu、Pb均未检出,而As小于《污水综合排放标准》(GB 8978—2002)中最高允许排放质量浓度(0.5mg/L)。  相似文献   

2.
猪粪沼液的磁混凝预处理工艺优化及评估   总被引:2,自引:0,他引:2  
以高悬浮物、高氮磷与高有机物的猪粪沼液为研究对象,采用磁混凝进行预处理,以浊度去除率为主要考察指标,结合单因素实验和正交实验,优化磁混凝工艺参数,并简要分析磁混凝机制及评估其作为沼液资源化利用的预处理工艺的效能。研究结果表明,优化的磁混凝条件是PAC、PAM、磁种的投加量分别为5 g·L~(-1)、120 mg·L~(-1)、3 g·L~(-1),转速为250 r·min-1。经磁混凝处理后,猪粪沼液的浊度、SS、COD、TP与PO34--P浓度降为2 235 NTU、 3.84 g·L~(-1)、10 302 mg·L~(-1)、133 mg·L~(-1)和62.58 mg·L~(-1),去除率分别为92.90%、84.42%、70.63%、91.90%和50.3%。同时,磁混凝对氨氮与K的去除率较低,分别为6.49%和16.12%,浓度分别为4 072.5 mg·L~(-1)和4 176 mg·L~(-1),利于后续的沼液资源化利用。磁种加载后在混凝过程中被絮体包裹,形成密实的磁絮体,显著提高了沉降性能,沉降时间由传统混凝的25 min降为5 min,同时污泥量显著减少。综上,磁混凝可高效削减沼液的悬浮物,且保留氮与钾等营养物质,促进沼液资源化利用。  相似文献   

3.
采用静态实验考察了投加高铁酸钾强化混凝的效果,通过控制不同的絮凝搅拌速率、絮凝时间及原水浊度来强化镍(Ⅱ)和有机物的去除。结果表明,絮凝搅拌速度和时间、原水浊度是影响镍(Ⅱ)和有机物的去除效果的重要因素。原水镍(Ⅱ)质量浓度为1 mg·L~(-1)、TOC为10 mg·L~(-1),在一级絮凝搅拌速率为200 r·min~(-1)、时间为2 min,二级絮凝搅拌速率为40 r·min~(-1)、时间为10 min,原水浊度为36.7 NTU时,出水剩余镍为0.018 mg·L~(-1),去除率达到98.2%,TOC去除率为58.8%,浊度去除率为73.8%。出水可满足《生活饮用水卫生标准》的要求。高铁酸钾强化混凝可作为给水厂应对镍污染的一种有效处理措施。  相似文献   

4.
为了比较西北地区沉淀与气浮工艺处理地表水效果的异同,并为水厂实际运行提供意见和参考,在中试条件下,以优化高锰酸钾预氧化的方式,降低前加氯的投量,增加助凝剂中高锰酸盐的投量和投加比例,通过系统实验筛选,发现对于混凝沉淀和混凝气浮工艺当PAFC投加量分别为16、9 mg·L~(-1),助凝剂为8、4.5 mg·L~(-1)时,2种工艺出水浊度均能控制在1 NTU左右。对于沉淀和气浮工艺,当PAFC投加量为16 mg·L~(-1),预氯化投氯量为0.4 mg·L~(-1),助凝剂中高锰酸钾比例为1.0%时,对水合三氯乙醛(CH)的形成控制效果最佳且相对比较经济,同时也可以更好地控制其他水质指标。  相似文献   

5.
为了回收利用粉煤灰,采用盐酸浸提法制备粉煤灰提取液(CFAL)用作絮凝剂。通过单因素实验优化CFAL的制备条件,并在高岭土模拟体系内研究CFAL的絮凝效应。研究在不同CFAL投加量下浊度的去除率,确定最佳的投加剂量及在此剂量下絮体的大小与沉降性能。对原浊度为100 NTU的高岭土悬浊液,当CFAL为0.44 mg·L~(-1)(以Al的含量计)时,浊度去除率达到90%以上。在同等剂量下,聚合氯化铝(PAC)和氯化铝(Al Cl3)的浊度去除率均低于CFAL,分别为78.7%和79.2%。CFAL的絮体大小约为400μm,沉降较快,在20 min后,去除率达到90%以上;PAC和Al Cl3的絮体分别为260和330μm,分别沉降60和40 min后,去除率稳定在80%左右。在实验剂量范围内,CFAL絮凝后对高岭土悬浊液的pH不会造成明显影响,且余铝满足《生活饮用水卫生标准》(GB 5749-2006),CFAL是一种廉价、高效、安全的混凝剂。  相似文献   

6.
通过对机械搅拌桨桨板结构优化改造,实现在絮凝池内同步进行强化混凝及生物脱氮反应,分析桨板长度梯度、板间间距及其与固定挡板间夹角对絮凝池内溶解氧浓度梯度产生影响,设计出了一种搅拌时池内可以形成厌氧-缺氧-好氧环境的新型机械搅拌桨,Fluent流场分析进一步验证了池内横向、纵向都会产生溶解氧浓度梯度。新型搅拌桨与传统搅拌桨生物脱氮对比实验表明,当采用新型搅拌桨时,絮凝池对NH_4~+-N、TN去除效果远优于传统搅拌桨。进一步进行模拟微污染水源水的强化混凝生物脱氮应用实验,出水浊度为0.47 NTU,COD、NH_4~+-N和TN的浓度分别为10.54、5.01和5.84 mg·L~(-1),表现出良好的处理效果。对污泥粒径的研究表明,PAC投加可有效改善污泥絮体结构,为微污染水源水的处理提供了新思路。  相似文献   

7.
强化混凝-吸附预处理生活污水   总被引:1,自引:0,他引:1  
采用混凝/吸附复配的方式对生活污水进行了浓缩预处理。通过对有机物去除率和混合絮体沉降性能的考察,优选出最佳混凝剂聚合氯化铝和最佳吸附剂粉末活性炭,其最优投加量分别为60 mg/L和40 mg/L。在此复配条件下,COD去除率由单独投加混凝剂时的62%提高到73%,浊度去除率由88%提高到93%。同时利用分子量分级实验进一步阐述了混凝/吸附复配过程提升污水浓缩效果的机制。在机械加速澄清池连续实验中,在原水COD 300~500 mg/L、浊度130~360 NTU的水质条件下,出水COD稳定在70~86 mg/L之间,去除率达80%以上,出水浊度稳定在10 NTU以下。  相似文献   

8.
为进一步提高微污染水中氨氮、有机物去除效果,采用响应曲面法对强化混凝工艺处理微污染水的影响因素和去除效果进行研究,实验以混凝剂投加量、助凝剂投加量和助凝剂投加点为影响因素,浊度、氨氮和COD去除效果为响应值,利用Design-Expert软件对实验数据进行处理,得到二次响应曲面模型,各因素间的交互作用对响应值的影响以及优化水平值。模型优化结果显示,强化混凝处理微污染水的最佳工艺条件为:PAFC投加量17.80 mg·L~(-1),PAM投加量0.39 mg·L~(-1),PAM于快速搅拌结束投加,此时浊度、氨氮、COD的去除率分别为68.03%、10.92%和30.2%,最终通过模型的验证证明了响应曲面法用于优化强化混凝工艺处理微污染水的可行性和有效性。  相似文献   

9.
采用絮凝法与电絮凝法对低浓度放射性含铀废水的处理进行了对比研究。结果表明:絮凝法除铀的主要影响因素是pH和絮凝剂投加量,在pH为7.0、PAC投加量为300 mg·L~(-1)、搅拌速度为45 r·min~(-1)的条件下,铀去除率达97.94%;电絮凝法除铀的主要影响因素是pH和电流密度,在pH为5.0、电流密度2.4 m A·cm~(-2)、通电时间24 min的条件下,铀去除率达99.11%;电絮凝法除铀动力学特征符合一级动力学模型,在不同pH条件下的线性相关系数均大于0.91。絮凝法和电絮凝法水处理成本分别为0.61元·t~(-1)和0.45元·t~(-1),絮体产生量分别为258 g·t~(-1)和171.5 g·t~(-1)。采用絮凝法和电絮凝法均可实现废水中铀的高效去除,但电絮凝除铀工艺较传统絮凝法具有易自动化控制、处理成本低、絮体产生量低等优点,具有较好的推广应用前景。  相似文献   

10.
采用超滤与膜接触臭氧氧化组合工艺处理印染废水二级生化出水,对超滤膜切割分子量、膜接触反应器膜长、臭氧浓度、气体流量和产水速率等工艺条件进行优化选择,并对该组合工艺的处理效果进行了研究。通过系列实验确定的优化参数为:超滤膜切割分子量100 kDa,膜接触反应器膜长2 m,臭氧浓度10 mg·L~(-1),气体流量0.6 L·min~(-1),产水速率1.4 L·h~(-1)。连续运行8 d,平均COD由131 mg·L~(-1)降到70 mg·L~(-1),平均色度由130度降到20度,平均浊度由11 NTU降到2.3 NTU,B/C值也由0.167提高到0.244。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号