首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 799 毫秒
1.
The potential of using ozone for the removal of phenanthrene from several different soils, both alone and in combination with biodegradation using a microbial inoculant (Pseudomonas alcaligenes PA-10), was examined. The greater the water content of the soil the less effective the ozone treatment, with air-dried soils showing the greatest removal of phenanthrene; while soils with higher levels of clay also reduced the effectiveness of the ozone treatments. However, at least a 50% reduction in phenanthrene levels was achieved in air-dried soil after an ozone treatment of 6 h at 20 ppm, with up to 85% removal of phenanthrene achieved in sandy soils. The biodegradation results indicate that P. alcaligenes PA-10 may be useful as an inoculant for the removal of PAHs from contaminated soils. Under the conditions used in our experiments, however, pre-ozonation did not enhance subsequent biodegradation of phenanthrene in the soils. Similar levels of phenanthrene removal occurred in both non-ozonated and ozonated Cruden Bay soil inoculated with P. alcaligenes PA-10. However, the biodegradation of phenanthrene in ozonated Boyndie soil was much slower. This may be due to the release of toxic products in this soil during ozonation.  相似文献   

2.
This study investigated the degradation of anthraquinone reactive dye C.I. Reactive Blue 19 (RB-19) with initial concentration of 100 mg L−1 in aqueous solution by ozone oxidation. The results of UV/VIS and FTIR spectra showed that the anthraquinone structures, nitrogen linkages and amino groups of RB-19 were destroyed under direct ozone reaction. The identification by LC–MS and GC–MS analyses indicated that some organic acids (e.g., phthalic acids) and 1,3-indanone could be the primary degradation products, respectively. The Microtox toxicity of the ozonated RB-19 solution initially increased but subsequently decreased when ozonation time increased. This detoxification accompanied biodegradability enhancement revealed by BOD/COD ratio increasing from 0.15 to 0.33 after 10 min of ozonation.  相似文献   

3.
GOAL, SCOPE AND BACKGROUND: The goal of this study was to understand the interaction between plants and microorganisms during petroleum-hydrocarbon bioremediation in Pacific Islands coastal soils. Total bacteria and hydrocarbon-degrading microorganisms population dyanamics were examined in the rhizospheres of tropical trees and shrubs, which were evaluated for their phytoremediation potential in a greenhouse experiment. The respective and combined effects of plant roots and diesel contaminant on the microbial populations were determined in relation to diesel fuel depletion. An increase in the grading populations size of the hydrocarbon-degrading populations of microbes, elicited by rhizodeposition, is generally regarded as conducive to an enhanced degradation of petroleum hydrocarbon pollutants in vegetated soil. METHODS: The soil was a coastal sandy loam (pH 7.8) which was artificially contaminated with 10 g of No. 2 diesel fuel/kg soil or left uncontaminated. The pots were irrigated with fertilizer and 1% NaCl. The enumerations were carried out in the contaminated and uncontaminated rhizospheres of three trees, kiawe (Prosopis pallida), milo (Thespesia populnea), and kou (Cordia subcordata) and three shrubs, beach naupaka (Scaevola sericea), false sandalwood (Myoporum sandwicense), and oleander (Nerium oleander). Unplanted control soils were included in the experiment. Total bacteria and phenanthrene-degrading bacteria were enumerated on plates. Diesel- and pristane-degrading microorganisms were enumerated by the most-probable-number technique in tissue-culture plates. RESULTS AND DISCUSSION: All four types of microorganisms responded to the rhizosphere of the 6 plants in uncontaminated soil and to the diesel contaminant in unplanted soil. In contaminated rhizospheres, no effect of the plant on the hydrocarbon-degrader numbers was visible. Total bacteria responded more to the plant roots than to the contaminant. The phenanthrene-degrading bacteria and pristane-degrading microorganisms were more influenced by the contaminant than by the plants. The diesel-degrading microorganisms were equally stimulated by the plants and the contaminant. The numbers of hydrocarbon degraders were similar in the contaminated rhizospheres of the three effective plants (kiawe, kou, and milo) and in those of the three ineffective shrubs. CONCLUSION: The results suggest the quality of the rhizodeposition is plant-dependent and governs the type of diesel-degrader populations that will be enhanced by a given plant. RECOMMENDATIONS AND OUTLOOK: In the proposed phytoremediation-benefit model plant roots maintain high levels of hydrocaron degraders in uncontaminated soil. When the root enters a contaminated zone of soil, those hydrocarbon degraders that prefer the contaminant would switch to the contaminant as a carbon source, effectively removing the hydrocarbons. If the root exudates and the contaminant are equally attractive to the hydrocarbon degraders, the contaminant degradaton would be less effective.  相似文献   

4.
Contamination of soil with hydrocarbons occurs frequently when petroleum ducts are damaged. Restoration of those contaminated soils might be achieved by applying readily available organic material. An uncontaminated clayey soil sampled in the vicinity of a duct carrying diesel which ruptured recently, was contaminated in the laboratory and amended with or without maize or biosolids while production of carbon dioxide (CO(2)), dynamics of ammonia (NH(4)(+)), nitrates (NO(3)(-)), and total petroleum hydrocarbons (TPH) were monitored. The fastest mineralization of diesel, as witnessed by production of CO(2), was found when biosolids were added, but the amount mineralized after 100 days, approximately 88%, was similar in all treatments. Approximately 5 mg of the 48 mg TPH kg(-1) found in the sterilized soil at the beginning of the experiment could not be accounted for after 100 days. The concentration of TPH in the unsterilized soil decreased rapidly in all treatments, but the rate of decrease was different between the treatments. The fastest decrease was found in the soil amended with biosolids and approximately 30 mg TPH kg(-1) or 60% could not be accounted for within 7 days. The decrease in concentration of TPH at the onset of the incubation was similar in the other treatments. After 100 days, the concentration of TPH was similar in all soils and appear to stabilize at 19 mg TPH kg(-1) soil. It was concluded that biosolids accelerated the decomposition of diesel and TPH due to its large nutrient content, but after 100 days the amount of diesel mineralized and the residual concentration of TPH was not affected by the treatment applied.  相似文献   

5.
In this study, the polycyclic aromatic hydrocarbons, benzo[a]pyrene (BaP) and pyrene, were subjected to temporal ozonation. The products from ozonation of 5 mg l(-1) BaP and 5 mg l(-1) pyrene, for varying time intervals (0, 1, 2, 3, 4, 5, 6, 8, 10, 20, and 30 min) were tested for their effects on gap junction-mediated intercellular communication (GJIC) in Clone 9 rat liver cells. Additionally, the ozonation products were also analyzed by flow injection analysis/mass spectrometry (FIA/MS) and the results were compared with the toxicity observed in the GJIC assay. Treatment of the Clone 9 cells with 5 mg l(-1) of ozonated BaP products resulted in a decrease in GJIC that was inversely proportional to the length of ozonation. The products from 1 min of ozonation resulted in a 92% decrease in the rate of GJIC, but with >5 min ozonation, the products did not suppress GJIC. In contrast, pyrene (0.5 mg l(-1)) required >10 min of ozonation to alleviate its effects on GJIC. FIA/MS, using atmospheric pressure chemical ionization (APCI), demonstrated products with higher molecular weights (MW) than their corresponding parent compounds, BaP (MW 252) and pyrene (MW 202). Ozonation of pyrene formed significantly fewer products than BaP. More importantly, pyrene ozonation products were constant from 1 to 10 min, while BaP ozonation products seemed to vary between time intervals. With the longer ozonation times (20 and 30 min), BaP and pyrene formed similar products (m/z peaks 157, 111, and 96). The suppression of GJIC by ozonated products seemed to correlate with oxidation of the aromatic ring framework. Further oxidation (longer ozonation times) to lower MW products correlated with restoration of normal GJIC.  相似文献   

6.
Ozonation of alpha endosulfan and the effects of some parameters such as pH, temperature and partial pressure on ozonation were investigated and the kinetic constants were calculated in this study. Alpha endosulfan solutions were ozonated in a lab-scale semi-batch reactor under variable experimental conditions. Increase in dissolved ozone concentration had a positive effect on oxidation rate. Alpha endosulfan could be removed up to 94% at pH 4 for an ozonation time of 60 minutes. The oxidation reaction was found to be of second order and of first order with respect to both ozone and alpha endosulfan. The temperature dependent reaction expression of alpha endosulfan was obtained as kd = (1.889 exp(- 2.21 x 10(-3)/T). It was concluded that, although the rate of reaction was lower than the rate of other pesticide oxidation reported in the literature. alpha endosulfan presented an obvious reaction to ozonation.  相似文献   

7.
Ozone treatment of soil contaminated with aniline and trifluralin   总被引:1,自引:0,他引:1  
Column studies were conducted to determine the ability of ozone to degrade aniline and trifluralin in soil. Ozone rapidly degraded aniline from soil under moist soil conditions, 5% (wt). Removal of 77-98% of [UL-14C]-aniline was observed from soil columns (15 ml, i.d. = 2.5 cm), exposed to 0.6% O(3) (wt) at 200 ml/min after 4 min. Initial ozonation products included nitrosobenzene and nitrobenzene, while further oxidation led to CO(2). Ring-labeled-[UL-14C]-trifluralin removal rates were slower, requiring 30 min to achieve removals of 70-97%. Oxidation and cleavage of the N-propyl groups of trifluralin was observed, affording 2,6-dinitro-4-(trifluoromethyl)-aniline, 2,6-dinitro-N-propyl-4-(trifluoromethyl)-benzamine, and 2,6-dinitro-N-propyl-N-acetonyl-4-(trifluoromethyl)-benzamine. Base solutions revealed that trifluralin was similarly oxidized to CO(2), where 72-83% of the activity recovered comprised 14CO(2). Use of ozone-rich water improved contaminant removal in trifluralin-amended soil columns, but did not improve removal in aniline, pentachloroaniline, hexachlorobenzene amended soil columns, suggesting that ozonated water may improve contaminant removal for reactive contaminants of low solubility.  相似文献   

8.
污泥减量过程中臭氧氧化对硝化和反硝化影响的试验研究   总被引:12,自引:3,他引:12  
采用AO工艺,考察了在污泥减量过程中臭氧(O3)氧化对生物系统硝化和反硝化能力的影响.结果表明,在每克SS中O3投量为0.05 g时,氧化后污泥中的CODcr由37.5 mg/L增至700mg/L,TN由4.86 mg/L增至36.6 mg/L,NH4 -N由0.353mg/L增至7.49 mg/L,NO3--N由2.19 mg/L增至5.15 mg/L.虽然氧化系统出水NH4 -N浓度略高于对照系统,但氧化系统NH4 -N的去除率大于98%,硝化能力基本没有受到O3氧化的影响.O3氧化污泥后增加的有机物作为附加的碳源循环至缺氧段,提高了反硝化的效果,当污泥氧化比例分别为10%、20%、30%时,进入缺氧段的CODCr/TN分别平均增至11.21、11.56、11.88,氧化系统的反硝化效果也随之分别提高5%、25%、37%.  相似文献   

9.
Bioremediation of diesel-contaminated soil with composting   总被引:22,自引:0,他引:22  
The major objective of this research was to find the appropriate mix ratio of organic amendments for enhancing diesel oil degradation during contaminated soil composting. Sewage sludge or compost was added as an amendment for supplementing organic matter for composting of contaminated soil. The ratios of contaminated soil to organic amendments were 1:0.1, 1:0.3, 1:0.5, and 1:1 as wet weight basis. Target contaminant of this research was diesel oil, which was spiked at 10,000 mg/kg sample on a dry weight basis. The degradation of diesel oil was significantly enhanced by the addition of these organic amendments relative to straight soil. Degradation rates of total petroleum hydrocarbons (TPH) and n-alkanes were the greatest at the ratio of 1:0.5 of contaminated soil to organic amendments on wet weight basis. Preferential degradation of n-alkanes over TPH was observed regardless of the kind and the amount of organic amendments. The first order degradation constant of n-alkanes was about twice TPH degradation constant. Normal alkanes could be divided in two groups (C10-C15 versus C16-C20) based on the first order kinetic constant. Volatilization loss of TPH was only about 2% of initial TPH. Normal alkanes lost by volatilization were mainly by the compounds of C10 to C16. High correlations (r=0.80-0.86) were found among TPH degradation rate, amount of CO2 evolved, and dehydrogenase activity.  相似文献   

10.
Partial ozonation of return activated sludge for waste sludge minimization and soluble COD production was examined. Two nitrifying sequencing batch reactors, one control and one ozonated, were operated under alternating anoxic/aerobic conditions. During the first steady-state period of 95-136 d of ozonation, the amount of wasted solids decreased with the ozone dose up to 25%, generating soluble COD by cell lysis. However, during a subsequent period of 190-232 d of continuous ozonation, the effect of solids destruction and COD production decreased by 50%. The investigations of extracellular polymers content and floc shape analyses showed that, after prolonged daily ozone treatment, sludge floc structure becomes stronger, denser, and more ozone-resistant. The findings suggest that, for prolonged operation of partial sludge ozonation, an increase in ozone doses may be required to continuously maintain the expected solids destruction level. This in turn will increase the operational costs of the treatment.  相似文献   

11.
This study evaluated the use of sugarcane filter cake and nitrogen, phosphorus and potassium (NPK) fertilization in the bioremediation of a soil contaminated with diesel fuel using a completely randomized design. Five treatments (uncontaminated soil, T1; soil contaminated with diesel, T2; soil contaminated with diesel and treated with 15 % (wt) filter cake, T3; soil contaminated with diesel and treated with NPK fertilizer, T4; and soil contaminated with diesel and treated with 15 % (wt) filter cake and NPK fertilizer, T5) and four evaluation periods (1, 60, 120, and 180 days after the beginning of the experiment) were used according to a 4?×?5 factorial design to analyze CO2 release. The variables total organic carbon (TOC) and total petroleum hydrocarbons (TPH) remaining in the soil were analyzed using a 5?×?2 factorial design, with the same treatments described above and two evaluation periods (1 and 180 days after the beginning of the experiment). In T3 and T5, CO2 release was significantly higher, compared with the other treatments. Significant TPH removal was observed on day 180, when percent removal values were 61.9, 70.1, 68.2, and 75.9 in treatments T2, T3, T4, and T5, respectively, compared with the initial value (T1).  相似文献   

12.
This study investigates the use of ozone for soil remediation. Batch experiments, in which ozone-containing gas was continuously recycled through a soil bed, were conducted to quantify the rate of ozone self-decomposition and the rates of ozone interaction with soil organic and inorganic matter. Column experiments were conducted to measure ozone breakthrough from a soil column. Parameters such as ozone flow rate, soil mass, and ozonation time were varied in these experiments. After ozone concentration had reached steady state, the total organic carbon concentration was measured for all soil samples. The ozonation efficiency, represented by the ratio of soil organic matter consumed to the total ozone input, was quantified for each experiment. Numerical simulations were conducted to simulate experimentally obtained column breakthrough curves. Experimentally obtained kinetic rate constants were used in these simulations, and the results were in good agreement with experimental data. In contrast to previous studies in which soil inorganic matter was completely ignored, our experiments indicate that soil inorganic matter may also promote depletion of ozone, thus reducing the overall ozonation efficiency. Three-dimensional numerical simulations were conducted to predict the efficacy of ozonation for soil remediation in the field. These simulations indicate that such ozonation can be very effective, provided that effective circulation of ozone is achieved through appropriately placed wells.  相似文献   

13.
C Taylor  T Viraraghavan 《Chemosphere》1999,39(10):1583-1593
A bench-scale investigation (soil pan testing) was conducted with the objective of studying degradation rates of diesel contaminated soil (2500 and 10,000 ppm by weight of total petroleum hydrocarbons (TPH) to dry weight of soil) under different treatment conditions over a 17 week testing period. The greatest degradation of the diesel contaminated soil was obtained with the addition of nutrients (Co = 10,000 ppm of TPH; k = 0.19 week-1). 'k' for soil not amended with nutrients was 0.07 week-1. The control cell (C0 = 2500 ppm TPH), with sodium azide (to suppress degradation) was compared with an experimental cell of 2500 ppm initial concentration of TPH without nutrient amendment. The control cell exhibited a relatively low uniform degradation (k = 0.08 week-1) of TPH over the duration of the experiment with reasonable first-order kinetic regression statistics.  相似文献   

14.
生物通风技术修复柴油污染土壤的土柱模拟实验   总被引:1,自引:0,他引:1  
生物通风技术是将土壤气相抽提和生物降解结合起来的原位强迫氧化降解方法,对于修复因地下储油罐泄漏引起的土壤污染具有广阔的应用前景。通过室内土柱模拟柴油泄漏污染土壤,分析了不同历时残余总石油烃(total pe-troleum hydrocarbon,TPH)的平衡分布规律以及土壤中不同深度柴油量、总柴油量的变化。结果表明:(1)各柱残余TPH剖面分布差异的原因受土柱的初始装填情况的影响较大;(2)残余TPH平衡分布曲线呈双峰型的土柱,柴油的去除主要以挥发作用及生物降解作用为主;(3)挥发作用主要是由通风孔隙体积数及土壤含水率来影响的;重力作用则主要是由初始油浓度、土壤含水率、C∶N∶P影响的;除通风方式外,其余4个因素都对生物降解作用有影响;(4)初始油浓度较大,土壤含水率较小的柱8和柱11,生物降解作用最明显,柴油去除效果最好。该成果可为生物通风过程的强化提供理论依据。  相似文献   

15.
Oya M  Kosaka K  Asami M  Kunikane S 《Chemosphere》2008,73(11):1724-1730
Formation of N-nitrosodimethylamine (NDMA) by ozonation of commercially available dyes and related compounds was investigated. Ozonation was conducted using a semi-batch type reactor, and ozone concentration in gas phase and the ozone gas flow were 10 mg L(-1) and 1.0 L min(-1), respectively. NDMA was formed by 15 min of ozonation of seven out of eight selected target compounds (0.05 mM) at pH 7. All the target compounds with N,N-dimethylamino functions were NDMA precursors in ozonation. The lowest and highest NDMA concentrations after ozonation of the target compounds were 13 ng L(-1) for N,N-dimethylformamide (DMF) and 1600 ng L(-1) for N,N-dimethyl-p-phenylenediamine (DMPD), respectively. NDMA concentrations after 15 min of ozonation of 0.05 mM methylene blue (MB) and DMPD increased with an increase in pH in its range of 6-8. The effects of coexisting compounds on NDMA concentrations after 15 min of ozonation of 0.05 mM MB and DMPD were examined at pH 7. NDMA concentrations after ozonation of MB and DMPD increased by the presence of 0.05 mM (0.7 mg L(-1) as N) nitrite (NO(2)(-)); 5000 ng L(-1) for MB and 4000 ng L(-1) for DMPD. NDMA concentration after MB ozonation decreased by the presence of 5mM tertiary butyl alcohol (TBA), a hydroxyl radical (HO.) scavenger, but that after DMPD ozonation was increased by the presence of TBA. NDMA concentrations after ozonation of MB and DMPD were not affected by the presence of 0.16 mM (5.3 mg L(-1)) hydrogen peroxide (H(2)O(2)). When 0.05 mM MB and DMPD were added to the Yodo and Tone river water samples, NDMA concentrations after 15 min of their ozonation at pH 7 increased compared with those in the case of addition to ultrapure water samples.  相似文献   

16.
The adsorption and desorption characteristics of BDOC produced by ozonation and the replacement of BDOC by non-BDOC on BAC was studied. The fate of BDOC produced by ozonation in the BAC column was also evaluated by comparative experiment between the BAC supplied with the mixture of BDOC and non-BDOC and the BAC supplied only with non-BDOC. Fulvic acids extracted from two river sediments and one forest soil were used. BDOC produced by ozonation showed the same or lower adsorption capacity than non-BDOC after biodegradation. The adsorption rate of BDOC on GAC was lower than that of non-BDOC. BDOC produced by ozonation had low desorbability and majority of BDOC produced were not replaced by non-BDOC. BDOC in the ozonated fulvic acid did not affect the breakthrough of the ozonated fulvic acid on GAC in the early stage of adsorption, suggesting that most of BDOC were biodegraded on the surface of GAC before adsorption. Therefore, the production of BDOC by ozonation before the GAC treatment is very effective for the extension of GAC service life and the reduction of DOC loading to GAC.  相似文献   

17.
Ozonation as an advanced oxidant in treatment of bamboo industry wastewater   总被引:1,自引:0,他引:1  
Wu D  Yang Z  Wang W  Tian G  Xu S  Sims A 《Chemosphere》2012,88(9):1108-1113
The present study employed ozonation process to treat the bamboo industry wastewater (BIWW). The impact of ozone dosage and initial organic concentration on color, COD and TOC removal rates were studied along with characterization of the major organics in raw and treated wastewater. The results suggested the ozone dosage of 3.15 g h−1 (concentration 52.5 mg L−1) was suitable for the treatment. After 25 min ozonation of 1 L raw wastewater, the color, COD and TOC removal efficiencies were 95%, 56% and 40%, respectively, with an influent COD concentration of 835 mg L−1. The ratio of kg O3 kg−1 COD at 3.15 g h−1 was 2.8 (<3), revealing that ozonation was a cost effective process for tertiary treatment of BIWW. Longer oxidization time was required to achieve similar results for raw wastewater with higher COD concentration. The chromatogram from gel permeation chromatography revealed that ozonation resulted in the breakdown of high molecular weight compounds into lower molecular weight components but could not completely mineralize the organic matter. The majority of these compounds were identified in both raw and ozonated samples via GC-MS analysis. In addition to ester derivatives as the main intermediates of ozonation, 1-chloroctadecane, methyl stearate, benzophenone and α-cyperone were identified as the by-products of ozonation.  相似文献   

18.
采用自蔓延溶胶凝胶法分别制备了铁氧化物和铁铜复合氧化物催化剂,以酸性红B为降解对象,对比了单独臭氧氧化、铁氧化物和铁铜复合氧化物催化臭氧氧化对酸性红B的降解效果,考察了磁力搅拌速度(500~1 640 r/min)、溶液pH(3~11)、臭氧投加速率(3.55~28.4 mg/min)对铁铜复合氧化物催化性能的影响。结果表明,与单独臭氧氧化比较,铁氧化物和铁铜复合氧化物均能加速酸性红B的降解,促进色度和COD的去除,结合催化剂的表征结果,推断催化剂表面羟基促进臭氧分解产生.OH是其氧化性能较好的主要原因,另外,催化剂的吸附能力对催化性能也有一定影响。随着磁力搅拌速度、溶液pH、臭氧投加速率的增大,铁铜复合氧化物催化臭氧氧化酸性红B的效果越好。  相似文献   

19.
Pre-ozonation of 14 different reactive dyestuff hydrolysates at alkaline pH was investigated to assess possible relationships between ozone transfer efficiency, first order decolourization kinetics, release of initially complexed heavy metals and relative changes in the biodegradability of the partially oxidized dye waste samples. Biocompatibility of the raw (untreated) and ozonated dye hydrolysates was comparatively tracked through specific oxygen uptake rate measurements from which the respirometric inhibition of biological activated sludge imparted by raw and ozonated reactive dye wastewater with respect to synthetic domestic wastewater was determined. It could be demonstrated that preliminary ozonation of reactive azo dyes increases their biological compatibility more significantly than formazan copper complex, copper complex azo and phythalocyanine dyes as a consequence of heavy metal release associated with the cleavage of associated chromophoric groupings right at the initial stages of pre-ozonation.  相似文献   

20.
强化生物通风修复过程中柴油衰减规律及其影响因素研究   总被引:1,自引:0,他引:1  
强化生物通风技术对于修复因地下储油罐泄漏引起的土壤污染具有很大的应用前景。通过室内土柱模拟柴油泄漏污染土壤,从土柱中总石油烃(total petroleum hydrocarbon,TPH)剖面分布随时间的变化及降解模式角度,分析了其自然衰减和强化生物通风过程。结果表明:初始柴油浓度直接影响着各柱在自然衰减和强化生物通风过程中柱内的残余TPH平衡分布曲线的形状和浓度峰值位置;在前期自然衰减过程中(约1个月),当土壤中的柴油浓度为5 000~40 000 mg油/kg土时,整个柱内TPH变化的主要原因是重力扩散迁移的结果;当土壤中的柴油浓度≤5 000 mg油/kg土时,其TPH的变化不仅是重力扩散迁移作用的结果,生物降解作用也存在;通风约2个月后,抽提作用对于保持土柱上部柴油浓度稳定变化的意义较为突出。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号