首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 541 毫秒
1.
The quantitative structure-activity relationship between the BCF and fragment constant of organic chemicals was studied using a database containing 337 experimental BCF values. The database covered a large variety of chemicals ranging from the very hydrophobic to the very hydrophilic with logKow values between 0.39 and 8.60. The structural features affecting the BCFs were identified and evaluated during a preliminary modeling. A final linear multivariate regression model was derived that was able to account for as much as 98.0% of the variation in the experimental BCF values. The mean absolute error for the final model was 0.315 log-units. In addition, the predictability and robustness of the model was also evaluated.  相似文献   

2.
Linear relatinships between log bioconcentration factor (BCF) and log Kow for a variety of compounds have been reported many times in the literature. Analysis of the thermodynamics of the two partition processes has, however, shown that they are not analogous and that linear relationships can be expected to have different slopes for structurally unrelated compounds. In this study a set of literature lipid normalized BCF (BCFL) values of chlorbenzenes (CBs) for rainbow trout and polycyclic aromatic hydrocarbons (PAHs) forDaphnia was put together with literature Kow values. The slopes of the regression lines for log BCFL versus log Kow for the two groups of compounds proved to differ significantly in a statistical test using analysis of variance (ANOVA). The difference, which is of significance for estimates of BCFs in environmental modelling of these types of compounds, is explained by the differences in chemical structure of the two groups of compounds.  相似文献   

3.
Concentrations of Zn and Cd were measured in fruitbodies of ectomycorrhizal (ECM) fungi and leaves of co-occurring accumulator aspen. Samples were taken on three metal-polluted sites and one control site. Fungal bioconcentration factors (BCF = fruitbody concentration: soil concentration) were calculated on the basis of total metal concentrations in surface soil horizons (BCFtot) and NH4NO3-extractable metal concentrations in mineral soil (BCFlab). When plotted on log-log scale, values of BCF decreased linearly with increasing soil metal concentrations. BCFlab for both Zn and Cd described the data more closely than BCFtot. Fungal genera differed in ZnBCF but not in CdBCF. The information on differences between fungi with respect to their predominant occurrence in different soil horizons did not improve relations of BCF with soil metal concentrations. Aspen trees accumulated Zn and Cd to similar concentrations as the ECM fungi. Apparently, the fungi did not act as an effective barrier against aspen metal uptake by retaining the metals.  相似文献   

4.

The safety assessment process of chemicals requires information on their mutagenic potential. The experimental determination of mutagenicity of a large number of chemicals is tedious and time and cost intensive, thus compelling for alternative methods. We have established local and global QSAR models for discriminating low and high mutagenic compounds and predicting their mutagenic activity in a quantitative manner in Salmonella typhimurium (TA) bacterial strains (TA98 and TA100). The decision treeboost (DTB)-based classification QSAR models discriminated among two categories with accuracies of >96% and the regression QSAR models precisely predicted the mutagenic activity of diverse chemicals yielding high correlations (R 2) between the experimental and model-predicted values in the respective training (>0.96) and test (>0.94) sets. The test set root mean squared error (RMSE) and mean absolute error (MAE) values emphasized the usefulness of the developed models for predicting new compounds. Relevant structural features of diverse chemicals that were responsible and influence the mutagenic activity were identified. The applicability domains of the developed models were defined. The developed models can be used as tools for screening new chemicals for their mutagenicity assessment for regulatory purpose.

  相似文献   

5.
The quantitative relationship between the median effective concentration (EC50) of organic chemicals to Daphnia magna and the number of molecular fragments was investigated based on experimental EC50 values for 217 chemicals derived from the literature. A fragment constant model was developed based on a multivariate linear regression between the number of fragments and the logarithmically transformed reciprocal values of EC50. Functional correction factors were introduced into the model. The model was verified using an independent set of randomly selected data. The mean residual of the final model was 0.4 log-units. The robustness of the model was discussed based on the results of three jackknife tests.  相似文献   

6.
《Chemosphere》1996,33(5):865-877
The use of stable isotope of organic-carbon, organic-13C, as a tracer for the determination of the concentration of tetrachloroethylene (PCE), CA, in Heterosigma akashiwo and Skeletonema costatum was examined. CA determined by the 13C and GC methods showed good agreement with each other. This suggests that it is reasonable and reliable to determine the bioconcentration potentail of PCE in marine algae. Fitting values of bioconcentration potentail parameters, including uptake rate constant k1, elimination rate constant k2 and bioconcentration factor on the basis of dry weight BCFD, were done not only to the time course for PCE uptake by the algae with the bioconcentration model, but also to experimental data for “percent inhibition(%)∼exposure concentration of PCE∼time” with the combined bioconcentration and probability model. The values obtained from the bioconcentration model were consistent with those from the combined bioconcentration and probability model. With the parameters (such as k1, k2, growth rate constant kG, critical concentration of HOCs in the organism resulting in growth inhibition CA1 and spread factor S) the variability in toxicity (such as EC10, EC50, EC70) can be estimated from the combined bioconcentration and probability model, which fits well with the experimental observations.  相似文献   

7.
Tens of thousands of chemicals are currently marketed worldwide, but only a small number of these compounds has been measured in effluents or the environment to date. The need for screening methodologies to select candidates for environmental monitoring is therefore significant. To meet this need, the Swedish Chemicals Agency developed the Exposure Index (EI), a model for ranking emissions to a number of environmental matrices based on chemical quantity used and use pattern. Here we evaluate the EI. Data on measured concentrations of organic chemicals in sewage treatment plants, one of the recipients considered in the EI model, were compiled from the literature, and the correlation between predicted emission levels and observed concentrations was assessed by linear regression analysis. The adequacy of the parameters employed in the EI was further explored by calibration of the model to measured concentrations. The EI was found to be of limited use for ranking contaminant levels in STPs; the r2 values for the regressions between predicted and observed values ranged from 0.02 (= 0.243) to 0.14 (= 0.007) depending on the dataset. The calibrated version of the model produced only slightly better predictions although it was fitted to the experimental data. However, the model is a valuable first step in developing a high throughput screening tool for organic contaminants, and there is potential for improving the EI algorithm.  相似文献   

8.
The updated SAPRC-07 mechanism was evaluated against data from experiments performed in the CSIRO smog chamber. The mechanism predictions have been compared to experimental results as well as predictions by SAPRC-99.Experiments were performed using either toluene or m-xylene in the presence of NOx at sub-0.1 ppmv concentrations. For the majority of m-xylene experiments, the modelled Δ(O3–NO) concentration was within 20% of observed values for both SAPRC mechanisms. However during the oxidation of toluene the production of radicals was poorly predicted, with final Δ(O3–NO) concentration under-predicted by up to 60%. The predictions of major oxidants from isoprene oxidation were in good agreement with observed values. For the NOx-limited conditions however, the ozone concentration predicted by both mechanisms were under-predicted by approximately 20% in the five experiments tested.The performance of the SAPRC-07 mechanism was also evaluated against twelve evaporated fuel experiments. Two types of evaporative mode experiments were performed: headspace evaporated fuel and wholly evaporated fuel. The major difference was a significantly higher concentration of aromatic hydrocarbons and larger alkane products in wholly evaporated fuels. For headspace evaporated fuel experiments both SAPRC mechanisms were in good agreement with experimental results. For wholly evaporated experiments the average Δ(O3–NO) model error was ?25% with SAPRC-07 compared to less than ?5% for SAPRC-99. Updates to the photolysis data for dicarbonyls, the light source used and the experimental conditions under which these experiments were performed are possible causes for the discrepancy between SAPRC-99 and -07 predictions for wholly evaporated experiments.  相似文献   

9.
The discrimination of excess toxicity from narcotic effect plays a crucial role in the study of modes of toxic action for organic compounds. In this paper, the toxicity data of 758 chemicals to Daphnia magna and 993 chemicals to Tetrahymena pyriformis were used to investigate the excess toxicity. The result showed that mode of toxic action of chemicals is species dependent. The toxic ratio (TR) calculated from baseline model over the experimentally determined values showed that some classes (e.g. alkanes, alcohols, ethers, aldehydes, esters and benzenes) shared same modes of toxic action to both D. magna and T. pyriformis. However, some classes may share different modes of toxic action to T. pyriformis and D. magna (e.g. anilines and their derivatives). For the interspecies comparison, same reference threshold need to be used between species toxicity. The excess toxicity indicates that toxicity enhancement is driven by reactive or specific toxicity. However, not all the reactive compounds exhibit excess toxicity. In theory, the TR threshold should not be related with the experimental uncertainty. The experimental uncertainty only brings the difficulty for discriminating the toxic category of chemicals. The real threshold of excess toxicity which is used to identify baseline from reactive chemicals should be based on the critical concentration difference inside body, rather than critical concentration outside body (i.e. EC50 or IGC50). The experimental bioconcentration factors can be greatly different from predicted bioconcentration factors, resulting in different toxic ratios and leading to mis-classification of toxic category and outliers.  相似文献   

10.
Tao S  Hu H  Lu X  Dawson RW  Xu F 《Chemosphere》2000,41(10):1563-1568
A fragment constant method for prediction of fish bioconcentration factor (BCF) was established based on experimental BCF values for 80 non-polar chemicals from nine classes. The model was evaluated using coefficients of determination and mean residuals, which are 0.995 and 0.1836, respectively. Jackknife tests were applied to examine the robustness of the prediction model on a class-by-class basis.  相似文献   

11.
12.
Diffusion experiments through hardened cement pastes (HCP) using tritiated water (HTO) and 22Na+, considered to be conservative tracers, have been carried out in triplicates in a glove box under a controlled nitrogen atmosphere. Each experiment consisted of a through-diffusion test followed by an out-diffusion test.The experimental data were inversely modelled applying an automated Marquardt–Levenberg procedure. The analysis of the through-diffusion data allowed the extraction of values for the effective diffusion coefficients, De, and the rock capacity factor, α. Good agreement between measured and calculated tracer breakthrough curves was achieved using both a simple diffusion model without sorption and a diffusion/linear sorption model. The best-fit Kd-values were found to be consistent with Rd-values measured in previous batch-sorption experiments.The best-fit values from the through-diffusion tests were then used to predict the results of subsequent out-diffusion experiments. Good agreement between experimental data and predictions was achieved only for the case of linear sorption.Isotopic exchange can only partially account for both the amount of tracer taken up in the batch-sorption tests and the measured retardation in the diffusion experiments and, hence, additional mechanisms have to be invoked to explain the data.  相似文献   

13.
Abstract

The sorption and desorption of diuron by soil samples from Horizons A and B (HA and HB) and by their different clay fractions were investigated, using two soil samples, classified as Typic Argiudoll and Oxic Argiudoll. The sorption and desorption curves were adjusted to the Freundlich model and evaluated by parameters Kf, Kd and Koc. Based on the data of groundwater ubiquity score (GUS), leachability index (LIX) and hysteresis index (HI), the risk of groundwater pollution was evaluated. The Kd values obtained for soil samples were between 4.5?mL g?1 (Oxic Argiudoll – HB) and 15.9?mL g?1 (Typic Argiudoll – HA) and between 1.13 and 14.0?mL g?1 for the different mineral fractions, whereas the Koc values varied between 276 (Oxic Argiudoll – HB) and 462 (Typic Argiudoll – HA). According to the parameter GUS, only Oxic Argiudoll – HB presented leaching potential, and based on the LIX index this same soil presented the highest leaching potential. Some samples presented low LIX and GUS values, indicating no leaching potential, but none presented HI results indicative of hysteresis, suggesting weak bonds between diuron and the soil samples and, hence, the risk of groundwater pollution by diuron.  相似文献   

14.
The development of a database for making model species assignments when preparing total organic gas (TOG) emissions input for atmospheric models is described. This database currently has assignments of model species for 12 different gas-phase chemical mechanisms for over 1700 chemical compounds and covers over 3000 chemical categories used in five different anthropogenic TOG profile databases or output by two different biogenic emissions models. This involved developing a unified chemical classification system, assigning compounds to mixtures, assigning model species for the mechanisms to the compounds, and making assignments for unknown, unassigned, and nonvolatile mass. The comprehensiveness of the assignments, the contributions of various types of speciation categories to current profile and total emissions data, inconsistencies with existing undocumented model species assignments, and remaining speciation issues and areas of needed work are also discussed. The use of the system to prepare input for SMOKE, the Speciation Tool, and for biogenic models is described in the supplementary materials. The database, associated programs and files, and a users manual are available online at http://www.cert.ucr.edu/~carter/emitdb.

Implications: Assigning air quality model species to the hundreds of emitted chemicals is a necessary link between emissions data and modeling effects of emissions on air quality. This is not easy and makes it difficult to implement new and more chemically detailed mechanisms in models. If done incorrectly, it is similar to errors in emissions speciation or the chemical mechanism used. Nevertheless, making such assignments is often an afterthought in chemical mechanism development and emissions processing, and existing assignments are usually undocumented and have errors and inconsistencies. This work is designed to address some of these problems.  相似文献   

15.

Degradation of aldrin (1,2,3,4,10,10-Hexachloro-1,4,4a,5,8,8a-hexahydro-1,4:5-8-dimethanonaphthalene), heptachlor (1H-1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro-4,7-methano indene), dieldrin (1aα,2β,2aα,3β,6β,6aα,7β,7aα)-3,4,5,6,9,9-Hexachloro-1a,2,2a,3,6,6a,7,7a-octahydro-2,7:3,6-d-methanonaphtha[2,3-b]oxirene, and heptachlor epoxide (1aα, 1bβ,2α,5α,5αβ,6β,6aα-2,3,4,5,6,7,7-Heptachloro-1a,1b,5,5a,6,6a-hexahydro-2,5-methano-2H-inden[1,2-b]-oxirene) was tested using free cultures of Pseudomonas fluorescens under controlled conditions. Pesticide concentrations were monitored by gas chromatography during 120 h. Percentages of degradation and biodegradation rates (BDR) were calculated. Data showed a trend suggesting a relation between chemical structure and degradability. Degradation kinetics for each pesticide tested showed that the highest degradation rates were found in the first 24 h. Kinetics data were adjusted to an empirical equation in order to predict their behavior, and the correlation coefficients obtained were satisfactory. Gas chromatography/mass spectrometry (GC/MS) analysis of the final extracts allowed the identification of chlordene and monodechlorodieldrin, which have been reported as final metabolite produced in the biodegradation of this kind of compounds. Regarding adsorption of pesticides on activated vegetal carbon, we concluded that removal efficiencies between 95.45 and 97.18% can be reached, depending on the pesticide and the carbon dose applied. The values for K from the Freundlich equation were quite similar for the four pesticides (between 1.0001 and 1.04), whereas the n values were quite different for each pesticide in the following order of affinity: dieldrin > aldrin > heptachlor epoxide > heptachlor. Equilibrium times, very important for scaling up the process, were between 43 min and 1 h, for the heptachlor epoxide and the heptachlor, respectively.  相似文献   

16.
The fate of the acidic organic solute from the soil-water-solvent system is not well-understood. In this study, the effect of the acidic functional group of organic solute in the sorption from cosolvent system was evaluated. The sorption of naphthalene (NAP) and 1-naphthoic acid (1-NAPA) by three kaolinitic soils and two model sorbents (kaolinite and humic acid) were measured as functions of the methanol volume fractions (f c ≤ 0.4) and ionic compositions (CaCl2 and KCl). The solubility of 1-NAPA was also measured in various ionic compositions. The sorption data were interpreted using the cosolvency-induced sorption model. The K m values (= the linear sorption coefficient) of NAP with kaolinitic soil for both ionic compositions was log linearly decreased with f c. However, the K m values of 1-NAPA with both ionic compositions remained relatively constant over the f c range. For the model sorbent, the K m values of 1-NAPA with kaolinite for the KCl system and with humic acid for both ionic compositions decreased with f c, while the sorption of 1-NAPA with kaolinite for the CaCl2 system was increased with f c. From the solubility data of 1-NAPA with f c, no significant difference was observed with the different ionic compositions, indicating an insignificant change in the aqueous activity of the liquid phase. In conclusion, the enhanced 1-NAPA sorption, greater than that predicted from the cosolvency-induced model, was due to an untraceable interaction between the carboxylate and hydrophilic soil domain in the methanol-water system. Therefore, in order to accurately predict the environmental fate of acidic pesticides and organic solutes, an effort to quantitatively incorporate the enhanced hydrophilic sorption into the current cosolvency-induced sorption model is required.  相似文献   

17.
The photolysis of nitrogen dioxide and formaldehyde are two of the most influential reactions in the formation of photochemical air pollution, and their rates are computed using actinic flux determined from a radiative transfer model. In this study, we compare predicted and measured nitrogen dioxide photolysis rate coefficients (jNO2). We used the Tropospheric Ultraviolet-Visible (TUV) radiation transfer model to predict jNO2 values corresponding to measurements performed in Riverside, California as part of the 1997 Southern California Ozone Study (SCOS’97). Spectrally resolved irradiance measured at the same site allowed us to determine atmospheric optical properties, such as aerosol optical depth and total ozone column, that are needed as inputs for the radiative transfer model. Matching measurements of aerosol optical depth, ozone column, and jNO2 were obtained for 14 days during SCOS’97. By using collocated measurements of the light extinction caused by aerosols and ozone over the full height of the atmosphere as model input, it was possible to predict sudden changes in jNO2 resulting from atmospheric variability. While the diurnal profile of the rate coefficient was readily reproduced, jNO2 model predicted values were found to be consistently higher than measured values. The bias between measured and predicted values was 17–36%, depending on the assumed single scattering albedo. By statistical analysis, we restricted the most likely values of the single scattering albedo to a range that produced bias on the order of 20–25%. It is likely that measurement error is responsible for a significant part of the bias. The aerosol single scattering albedo was found to be a major source of uncertainty in radiative transfer model predictions. Our best estimate indicates its average value at UV-wavelengths for the period of interest is between 0.77 and 0.85.  相似文献   

18.
Abstract

Behaviour of the herbicide pendimethalin [N‐(l‐ethylpropyl)‐3,4‐dimethyl‐2,6‐dinitrobenzenamine] was evaluated in plain field under wet tropical conditions (Martinique, FWI) and in the Mediterranean area (Languedoc, South of France). Simultaneously, adsorption parameters were discussed with Freundlich equation, and desorption evaluated using a model with two compartments corresponding to two different energy levels. Pendimethalin showed a strong adsorption in all three soils and was very difficult to desorb. Higher clay content in tropical vertisol and ferrisol involved adsorption parameters (Kfa) higher than the one found in the Mediterranean fluvisol. Although heavy rainfalls in the tropics intervene on migration, pendimethalin propensity to leaching is levelled by its strong adsorption potential and appears very limited under the conditions chosen during this work. Half‐life of the compound (in the 0–25 cm soil layer) varied from 13 to 17 days. Pendimethalin was also classified as a “non‐leacher” compound using the “Gustafson model”.  相似文献   

19.
20.
A stable isotope15N-nitrogen test (ESIMA = Ecotoxicological Stable Isotope Metabolic Assay) was developed to assess biological effects and the potential toxicological hazard of chemicals and contaminated environmental samples on plant metabolism. The assay measures the effect of toxicants on the incorporation of a15N labelled tracer into the total nitrogen fraction (both the nonprotein and protein fraction) of plants. Segments ofPisum arvense epicotyls are used as test substrates because of their high metabolic activity. The plant material is incubated under standardised conditions for two hours; subsequently15N incorporation is analysed by determining the15N abundance (15N atom-%) in the epicotyl segments. The effects of toxicants are evaluated by comparing the15N incorporation rates of control tissue and epicotyl segments exposed to individual chemicals or complex environmental samples. The specificity and sensitivity of effects as indicated by ESIMA were compared with effects as measured by two established ecotoxicological bioassays, the pollen tube growth test using pollen ofNicotiana sylvestris and the bacterial luminescence inhibition test using pollen ofPhotobacterium phosphoreum. The results of the study clearly indicate the suitability of ESIMA for assessing toxic impacts on plant nitrogen metabolism. Prof. Dr. habil. Hans Faust dedicated to his 70th birthday.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号