首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Pesticides applied on sugarcane reach the subsoil of riparian forests and probably contaminate the river water. This work was conducted to learn about the phytoremediation of atrazine and subsoil contamination using the common riparian forest species of Cecropia hololeuca Miq. and Trema micranta (L.) Blum. These plants were grown in soil microcosms where (14)C-atrazine at 1/10 of the field-recommended dose was applied at the bottom of the microcosm simulating the movement from contaminated ground water to the upper soil layers and into plants. Residues of (14)C-atrazine were detected in all parts of the microcosm including soil, rhizosphere and the roots in different layers of the microcosm, stem and leaves. Atrazine mineralization was higher (10.2%) in the microcosms with plants than the control microcosms without plants (1.2%). The upward movement of this pesticide from deeper to more superficial soil layers occurred in all the microcosms with plants, powered by evapotranspiration process. From the atrazine applied in this study about 45% was taken up by C. hololeuca and 35% by T. micrantha. The highest amount of radioactivity (%) was found in the fine roots and the specific radioactivity (% g(-1)) showed that thick, fine roots and leaves bioaccumulate atrazine. The enhanced mineralization of atrazine as well the phytostabilization effect of the tree biomass will reduce the bioavailability of these residues and consequently decrease the hazardous effects on the environment.  相似文献   

2.
Pesticides applied on sugarcane reach the subsoil of riparian forests and probably contaminate the river water. This work was conducted to learn about the phytoremediation of atrazine and subsoil contamination using the common riparian forest species of Cecropia hololeuca Miq. and Trema micranta (L.) Blum. These plants were grown in soil microcosms where 14C-atrazine at 1/10 of the field-recommended dose was applied at the bottom of the microcosm simulating the movement from contaminated ground water to the upper soil layers and into plants. Residues of 14C-atrazine were detected in all parts of the microcosm including soil, rhizosphere and the roots in different layers of the microcosm, stem and leaves. Atrazine mineralization was higher (10.2%) in the microcosms with plants than the control microcosms without plants (1.2%). The upward movement of this pesticide from deeper to more superficial soil layers occurred in all the microcosms with plants, powered by evapotranspiration process. From the atrazine applied in this study about 45% was taken up by C. hololeuca and 35% by T. micrantha. The highest amount of radioactivity (%) was found in the fine roots and the specific radioactivity (% g?1) showed that thick, fine roots and leaves bioaccumulate atrazine. The enhanced mineralization of atrazine as well the phytostabilization effect of the tree biomass will reduce the bioavailability of these residues and consequently decrease the hazardous effects on the environment.  相似文献   

3.
Solid state fermentation (SSF) was investigated as a means to dispose of two commonly used pesticides, chlorpyrifos (O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate) and atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine). SSF experiments were carried out in bench-scale bioreactors (equipped with CO2 and volatile organic traps) containing a mixture of lignocellulosic materials and a radiolabeled pesticide. Ethyl acetate-extractable, alkali soluble, and alkali insoluble fractions were evaluated for radioactivity following a 60-d incubation period at 40 degrees C. The majority of the [2,6-pyridyl-14C]chlorpyrifos was associated with the ethyl acetate extract (about 74%), 17% was trapped as organic volatiles by polyurethane foam traps and < 0.5% of the chlorpyrifos was mineralized to CO2. Only small amounts of the radioactivity were associated with alkali soluble (0.0003%) and alkali insoluble (0.3%) fractions. In the [14C-U-ring]atrazine bioreactors, very little of the radioactivity volatilized (<0.5%) and less than 0.5% was mineralized to CO2. Approximately 57% of the applied radioactivity was associated with the ethyl acetate extract while 9% and 24% of the radioactivity was associated with the alkali soluble (humic and fulvic acids) and alkali insoluble fractions, respectively. Possible reaction mechanisms by which covalent bonds could be formed between atrazine (or metabolites) and humic substances were investigated. The issue of bound atrazine residue (alkali soluble fraction) was at least partially resolved. Oxidative coupling experiments revealed that formation of covalent bond linkages between amino substituent groups of atrazine residue and humic substances is highly unlikely.  相似文献   

4.
Atrazine sorption and fate in a Ultisol from humid tropical Brazil   总被引:1,自引:0,他引:1  
This study combined laboratory based microcosm systems as well as field experiments to evaluate the mobility of atrazine on a Ultisol under humid tropical conditions in Brazil. Results from sorption experiments fit to the Freundlich isotherm model [K(f) 0.99 mg kg(-1)/(mg l(-1))(1/n)], and indicate a low sorption capacity for atrazine in this soil and consequently large potential for movement by leaching and runoff. Microcosm systems using (14)C-atrazine to trace the fate of the applied herbicide, showed that 0.33% of the atrazine was volatilized, 0.25% mineralized and 6.89% was recorded in the leachate. After 60 d in the microcosms, 75% of the (14)C remained in the upper 5 cm soil layer indicating atrazine or its metabolites remained close to the soil surface. In field experiments, after 60 d, only 5% of the atrazine applied was recovered in the upper soil layers. In the field experiments atrazine was detected at a depth of 50 cm indicating leaching. Simulating tropical rain in field experiments resulted in 2.1% loss of atrazine in runoff of which 0.5% was adsorbed onto transported soil particles and 1.6% was in solution. Atrazine runoff was greatest two days after herbicide application and decreased 10 fold after 15 d. The use of atrazine on Ultisols, in the humid tropics, constitutes a threat to water quality, causing surface water and ground water pollution.  相似文献   

5.
The fate of (14)C atrazine was investigated using microcosms and an undisturbed Red-Yellow Latossol (Oxisol) under simulated rainfall conditions of 200 mm water month(-1). Experiments were carried out using microcosm cores, the first with an uncovered surface soil; the second set with uncovered subsurface soil; the third with subsurface soil covered with 3 cm of cow manure and the last with subsurface soil covered with 5 cm of grass straw. Average values for the amount of atrazine leached after 60 days were as follows: surface soil 1.6%; subsurface 47.3%; subsurface plus manure 17.3% and subsurface plus straw 24.8%. In the surface soil, 53% of the (14)C atrazine remained within the upper 1 cm, while in the subsurface microcosms the atrazine was more evenly distributed. The authors report that surface soil was retained atrazine and its metabolites for 60 days. The addition of a straw or manure covering to exposed subsoil helped to retard atrazine leaching.  相似文献   

6.
Corn is intensively cultivated in western Hungary in the basin of Lake Balaton, one of the most important water resources in eastern Europe. Pesticide runoff was measured in 1996 and 1997 from a typical corn field near Zalaegerszeg, Hungary, which drains into the Zala River, an important water source of Lake Balaton. Three herbicides, namely atrazine, acetochlor, and propizochlor, and the insecticide chlorpyrifos were applied to bare soil in a field with 5% slope and soil and runoff water pesticide concentrations were monitored. In 1997, a rainfall-runoff simulation experiment was conducted on a small sub-plot in order to measure pesticide runoff under reasonable worst-case conditions. Under natural rainfall almost all losses occurred in a large runoff event in 1996 one month after application in which 3% of atrazine and 1% of acetochlor was transported off the field. Propizochlor and chlorpyrifos losses in the same event were much lower: 0.2% and <0.01%, respectively, because of these chemicals' shorter persistence times in near-surface soil. The rainfall simulation produced only trace amounts of losses even though 4.1 cm was applied in 2 hours; the soil was extremely dry and only 0.2 cm runoff occurred containing less than 0.01% of all chemicals applied. The results suggest that intensive use of corn herbicides, which have been found to result in widespread contamination of water resources elsewhere, may be expected to have the same impact in the Balaton watershed depending on the amounts and intensities used in the basin.  相似文献   

7.
The fate of 14C atrazine was investigated using microcosms and an undisturbed Red-Yellow Latossol (Oxisol) under simulated rainfall conditions of 200 mm water month?1. Experiments were carried out using microcosm cores, the first with an uncovered surface soil; the second set with uncovered subsurface soil; the third with subsurface soil covered with 3 cm of cow manure and the last with subsurface soil covered with 5 cm of grass straw. Average values for the amount of atrazine leached after 60 days were as follows: surface soil 1.6%; subsurface 47.3%; subsurface plus manure 17.3% and subsurface plus straw 24.8%. In the surface soil, 53% of the 14C atrazine remained within the upper 1 cm, while in the subsurface microcosms the atrazine was more evenly distributed. The authors report that surface soil was retained atrazine and its metabolites for 60 days. The addition of a straw or manure covering to exposed subsoil helped to retard atrazine leaching.  相似文献   

8.
Sorption kinetics of atrazine and diuron was evaluated in soil samples from a typical landscape in Paraná. Samples were collected (0-20 cm) in a no-tillage area from Mamborê, PR, which has been cultivated under a crop rotation for the last six years. Six sampling points of the slope were selected to represent a wide range of soil chemical and physical properties found in this area. Radiolabeled tracers (14C-atrazine and 14C-diuron) were used and the radioactivity was detected by liquid scintillation counting (LSC). Sorption was accomplished for increasing equilibration periods (0.5, 1.5, 3, 6, 12, 24, and 48 h). Kinetics data fitted adequately well to Elovich equation, providing evidences that soil reaction occurs in two distinct stages: a fast, initial one followed by a slower one. During the fast phase, 34-42 and 71-79% of total atrazine and diuron applied were sorbed to soil samples. No important differences were found among combinations of soil and herbicide sorption during the slow phase. The unrealistic conditions under batch experiments should be overestimating sorption in the fast phase and underestimating diffusion in the slow phase. Sorption of both herbicides was positively correlated to organic carbon and clay contents of soils, but atrazine was much less sorbed than diuron, showing its higher potential to contaminate groundwater, specially in sandy, low organic carbon soils.  相似文献   

9.
Laboratory studies were conducted to evaluate effects of tillage reversal and rainfall on 14C-atrazine (2-chloro4-ethylamino-6-isopropylamino- -triazine) leaching patterns. Twelve intact soil cores (16 cm dia x 20 cm deep) were collected from 8-yr no-till (NT) fields. Half the cores were tilled (5 cm deep) prior to 14C-atrazine treatment (2.7 mg core−1) to all cores. All cores received two rains (27 mm rain in 1.5 h, one day after application followed, two days later, by a 17 mm rain in 2.5 h) and leachate was collected and analyzed for atrazine. These rains simulated the timing, amount and duration of natural rainfall events from a tillage reversal field study. During the first high inte ity rainfall event, a pulse (2.1 μg L-1) of atrazine leached through tilled cores while leaching rate was linear and decreased (1.25 to 0.9 μg L-1) through un-tilled cores. Leaching rate was linear for both the tilled and un-tilled cores during the second rain. Less atrazine was left in the surface 5 cm of tilled soil than un-tilled after the two rains. Results confirmed field observations and suggested that when tillage is reversed on well structured soils, pesticide leaching may increase relative to un-tilled soil but these effects are probably confined to the first rain events after application only.  相似文献   

10.
Degradation of trifluralin (alpha, alpha, alpha-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine) was investigated in soils taken from three different locations at Harran region of Turkey under laboratory conditions. Surface (0-10 cm) soils, which were taken from a pesticide untreated field Gürgelen, Harran-1 and Ikizce regions in the Harran Plain. were incubated in biometer flasks for 350 days at 25 degrees C. Ring-UL-14C-trifluralin was applied at the rate of 2 microg g(-1) with 78.7 kBq radioactivity per 100 g soil flask. Evolved (14)CO2 was monitored in KOH traps throughout the experiment. Periodically, soil sub-samples were removed and extracted by supercritical fluid extraction (SFE). Unextractable soil-bound 14C residues were determined by combustion. During the 350 days incubation period 6.6, 5.4, and 3.3/' of the applied radiocarbon was evolved as (14)CO2 from the Harran-1, Gürgelen, and Ikizce soil, respectively. At the end of 350 days the SFE-extractable and bound 14C-trifluralin residues were 39.0 and 29.2% of the initially applied herbicide in Gürgelen soil. The corresponding values for Harran-1 and Ikizce soils were 36.2, 28.4% and 41.6, 18.5% respectively.  相似文献   

11.
Abstract

Sorption kinetics of atrazine and diuron was evaluated in soil samples from a typical landscape in Paraná. Samples were collected (0–20 cm) in a no-tillage area from Mamborê, PR, which has been cultivated under a crop rotation for the last six years. Six sampling points of the slope were selected to represent a wide range of soil chemical and physical properties found in this area. Radiolabeled tracers (14C-atrazine and 14C-diuron) were used and the radioactivity was detected by liquid scintillation counting (LSC). Sorption was accomplished for increasing equilibration periods (0.5, 1.5, 3, 6, 12, 24, and 48 h). Kinetics data fitted adequately well to Elovich equation, providing evidences that soil reaction occurs in two distinct stages: a fast, initial one followed by a slower one. During the fast phase, 34–42 and 71–79% of total atrazine and diuron applied were sorbed to soil samples. No important differences were found among combinations of soil and herbicide sorption during the slow phase. The unrealistic conditions under batch experiments should be overestimating sorption in the fast phase and underestimating diffusion in the slow phase. Sorption of both herbicides was positively correlated to organic carbon and clay contents of soils, but atrazine was much less sorbed than diuron, showing its higher potential to contaminate groundwater, specially in sandy, low organic carbon soils.  相似文献   

12.
The mobility of atrazine [6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine] from alginate-bentonite-based controlled release (CR) formulations was investigated by using soil columns. Two CR formulations based on sodium alginate (14.0 g kg(-1), atrazine (6.0 g kg(-1), natural or acid-treated bentonite (50 g kg(-1), and water (924 g kg(-1) were compared to technical grade product and commercial liquid (CL) formulation (Gesaprim 500FW). All herbicide treatments were applied to duplicate layered bed systems simulating the typical arrangement under a plastic greenhouse, which is composed of sand (10 cm), peat (2 cm), amended soil (20 cm) and native soil (20 cm). The columns were leached with 39 cm (1500 ml) and 156 cm (6000 ml) of 0.02 M CaCl2 solution to evaluate the effect of water volume applied on herbicide movement. When 39 cm of 0.02 M CaCl2 solution was applied, there was no presence of herbicide in the leachate for the alginate-bentonite CR treatments. However, 0.11% and 0.14% of atrazine appeared in the leachate when the treatment was carried out with technical grade and CL formulations, respectively. When 156 cm of 0.02 M CaCl2 solution was applied, the use of the alginate-acid treated bentonite CR formulation retards and reduces the presence of atrazine in the leachate as compared to technical product. Analysis of the soil columns showed the highest atrazine concentration in the peat layer. Alginate-bentonite CR formulations might be an efficient system for reducing atrazine leaching in layered soil and thus, it could reduce the risks of pollution of groundwater.  相似文献   

13.
Delphin JE  Chapot JY 《Chemosphere》2006,64(11):1862-1869
A field experiment was conducted on a Calcaric Cambisol soil to study the consequences of the penetration depth and properties of pesticides on the risk of subsequent leaching. Three pesticides with different mobility characteristics and bromide were injected at 30 cm (where soil organic matter (OM) was 2%) and 80 cm (soil OM 0.5%) on irrigated plots without a crop. The migration of injected solutes was assessed for two years by sampling the soil solution using six porous cups installed at 50 and 150 cm depth and by relating solute contents to drainage water flux estimated by the STICS model (Simulateur mulTIdisciplinaire pour les Cultures Standard). Pesticides injected at 30 cm were strongly retained so that no metolachlor or diuron was detected at 50 and 150 cm. The ratio of atrazine peak concentration in the soil solution to concentration in the injected solution (C/C0) was 1 × 10−3 and 0.2 × 10−3, respectively, at 50 and 150 cm. When injected at 80 cm, (C/C0) of atrazine, metolachlor and diuron were 10 × 10−3, 1 × 10−3 and 0.3 × 10−3 at 150 cm, respectively; 1/(C/C0) was correlated with Koc values reported from databases. The ratio of drainage volume to the amount of water at field capacity in the soil layer between the injection point at 30 cm and the water sampling level (V/V0) at 50 and 150 cm was 0.6 and 0.9, respectively, for bromide and 1.6 and 1.0 for atrazine. V/V0 of the injected solutes at 80 cm was for bromide, atrazine, metolachlor and diuron 0.6, 0.9, 1.2 and 1.7, respectively; pesticide V/V0 was correlated with Koc. The retardation factor was a good indicator of migration risk, but tended to overestimate retardation of molecules with high Koc. Atrazine desorption represented an additional leaching risk as a source of prolonged low contamination. The large variability in soil solution of bromide and pesticide concentrations in the horizontal plane was attributed to flow paths and clods in the tilled soil layer. This heterogeneity was assumed to channel water fluxes into restricted areas and thereby increase the risk of groundwater contamination. The methodology used in the field proves to provide consistent results.  相似文献   

14.
Abstract

Solid state fermentation (SSF) was investigated as a means to dispose of two commonly used pesticides, chlorpyrifos (O, O‐diethyl O‐(3,5,6‐trichloro‐2‐pyridyl) phosphorothioate) and atrazine (2‐chloro‐4‐ethylamino‐6‐isopropylamino‐1,3,5‐triazine). SSF experiments were carried out in bench‐scale bioreaetors (equipped with CO2 and volatile organic traps) containing a mixture of lignocellulosic materials and a radiolabeled pesticide. Ethyl acetate‐extractable, alkali soluble, and alkali insoluble fractions were evaluated for radioactivity following a 60‐d incubation period at 40°C. The majority of the [2, 6‐pyridyl‐14C]chlorpyrifos was associated with the ethyl acetate extract (about 74%), 17% was trapped as organic volatiles by polyurethane foam traps and < 0.5% of the chlorpyrifos was mineralized to CO2. Only small amounts of the radioactivity were associated with alkali soluble (0.0003%) and alkali insoluble (0.3%) fractions. In the [14C‐U‐ring] atrazine bioreactors, very little of the radioactivity volatilized (<0.5%) and less than 0.5% was mineralized to CO2. Approximately 57% of the applied radioactivity was associated with the ethyl acetate extract while 9% and 24% of the radioactivity was associated with the alkali soluble (humic and fulvic acids) and alkali insoluble fractions, respectively. Possible reaction mechanisms by which covalent bonds could be formed between atrazine (or metabolites) and humic substances were investigated. The issue of bound atrazine residue (alkali soluble fraction) was at least partially resolved. Oxidative coupling experiments revealed that formation of covalent bond linkages between amino substituent groups of atrazine residue and humic substances is highly unlikely.  相似文献   

15.
Macro-porosity and leaching of atrazine in tilled and orchard loamy soils   总被引:1,自引:0,他引:1  
Atrazine is the most commonly detected herbicide in the groundwater. Leaching of atrazine largely depends on soil management practices. The aim of this study was to examine leaching of atrazine in tilled and orchard silty loam soils. The experimental objects included: conventionally tilled field (CT) with main tillage operations including pre-plow (10 cm) + harrowing, mouldboard ploughing (20 cm), and a 35 year-old apple orchard (OR) with a permanent sward. To determine leaching of atrazine soil columns of undisturbed structure were taken with steel cylinders of 21.5 cm diameter and 20 cm high from the depth of 0–20 cm. All columns were equilibrated at water content corresponding to field capacity (0.21 kg kg−1). Atrazine suspended in distilled water was dripped uniformly onto the surface of each column. Then water was infiltrated and breakthrough times of leachates were recorded. Atrazine concentration in the leachates was determined by means of HPLC Waters. Macro-porosity and percolation rate were higher in OR than CT soil. Cumulative recovery % of the atrazine applied was 1.267% for OR and approximately one third more from the CT soil but the rate of leaching (per unit of time) was greater from the OR soil. The lower leaching under OR than CT can be due to a greater SOM and the presence of earthworm burrows with organic burrow linings that could adsorb atrazine and contribute to preferential flow allowing solutes to bypass parts whereas the greater rate of leaching due to a greater infiltration rate.The results indicate potential of management practices for minimizing atrazine leaching.  相似文献   

16.
Erratum     
The influence of soil macro-porosity and manure on atrazine (6-chloro-N-ethyl-N′-(1-methylethyl)-1,3,5-triazine-2,4-diamine) transport was investigated under laboratory conditions using disturbed and undisturbed soil columns. The macro-porosity in the soil column was obtained with CT scanning technique. Liquid manure was applied at the surface of soil column, 19 cm long and 8 cm in diameter, at a rate of 60 m3/ha. Experimental results revealed that atrazine moves faster through the soils in the presence of manure compared to soil without application of manure. The average time for elusion and the relative peak concentration in the disturbed soil column without manure was 14.5 h and 3.1%, respectively compared to 11.0 h and 6.9% in the presence of manure, respectively. Similar behavior was observed in the case of disturbed soil columns. Soil macro-porosity has shown large impact on atrazine transport, especially in the presence of manure.  相似文献   

17.
The influence of soil macro-porosity and manure on atrazine (6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine) transport was investigated under laboratory conditions using disturbed and undisturbed soil columns. The macro-porosity in the soil column was obtained with CT scanning technique. Liquid manure was applied at the surface of soil column, 19 cm long and 8 cm in diameter, at a rate of 60 m3/ha. Experimental results revealed that atrazine moves faster through the soils in the presence of manure compared to soil without application of manure. The average time for elusion and the relative peak concentration in the disturbed soil column without manure was 14.5 h and 3.1%, respectively compared to 11.0 h and 6.9% in the presence of manure, respectively. Similar behavior was observed in the case of disturbed soil columns. Soil macro-porosity has shown large impact on atrazine transport, especially in the presence of manure.  相似文献   

18.
Influence of soil texture and tillage on herbicide transport   总被引:2,自引:0,他引:2  
Two long-term no-till corn production studies, representing different soil texture, consistently showed higher leaching of atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine] to groundwater in a silt loam soil than in a sandy loam soil. A laboratory leaching study was initiated using intact soil cores from the two sites to determine whether the soil texture could account for the observed differences. Six intact soil cores (16 cm dia by 20 cm high) were collected from a four-year old no-till corn plots at each of the two locations (ca. 25 km apart). All cores were mounted in funnels and the saturated hydraulic conductivity (Ksat) was measured. Three cores (from each soil texture) with the lowest Ksat were mixed and repacked. All cores were surface treated with 1.7 kg ai ha(-1) [ring-14C] atrazine, subjected to simulated rainfall at a constant 12 mm h(-1) intensity until nearly 3 pore volume of leachate was collected and analyzed for a total of 14C. On an average, nearly 40% more of atrazine was leached through the intact silt loam than the sandy loam soil cores. For both the intact and repacked cores, the initial atrazine leaching rates were higher in the silt loam than the sandy loam soils, indicating that macropore flow was a more prominent mechanism for atrazine leaching in the silt loam soil. A predominance of macropore flow in the silt loam soil, possibly due to greater aggregate stability, may account for the observed leaching patterns for both field and laboratory studies.  相似文献   

19.
Laabs V  Amelung W  Pinto A  Altstaedt A  Zech W 《Chemosphere》2000,41(9):1441-1449
Pesticide pollution of ground and surface water is of growing concern in tropical countries. The objective of this pilot study was to evaluate the leaching potential of eight pesticides in a Brazilian Oxisol. In a field experiment near Cuiabá, Mato Grosso, atrazine, chlorpyrifos, lambda-cyhalothrin, endosulfane alpha, metolachlor, monocrotofos, simazine, and trifluraline were applied onto a Typic Haplustox. Dissipation in the topsoil, mobility within the soil profile and leaching of pesticides were studied for a period of 28 days after application. The dissipation half-life of pesticides in the topsoil ranged from 0.9 to 14 d for trifluraline and metolachlor, respectively. Dissipation curves were described by exponential functions for polar pesticides (atrazine, metolachlor, monocrotofos, simazine) and bi-exponential ones for apolar substances (chlorpyrifos, lambda-cyhalothrin, endosulfane alpha, trifluraline). Atrazine, simazine and metolachlor were moderately leached beyond 15 cm soil depth, whereas all other compounds remained within the top 15 cm of the soil. In lysimeter percolates (at 35 cm soil depth), 0.8-2.0% of the applied amounts of atrazine, simazine, and metolachlor were measured within 28 days after application. Of the other compounds less than 0.03% of the applied amounts was detected in the soil water percolates. The relative contamination potentials of pesticides, according to the lysimeter study, were ranked as follows: metolachlor > atrazine = simazine > monocrotofos > endsulfane alpha > chlorpyrifos > trifluraline > lambda-cyhalothrin. This order of the pesticides was also achieved by ranking them according to their effective sorption coefficient Ke, which is the ratio of Koc to field-dissipation half-life.  相似文献   

20.
阿特拉津土壤污染修复菌剂载体材料的筛选与应用   总被引:1,自引:0,他引:1  
阿特拉津是长残留除草剂,其环境行为和生物修复技术已成为有机污染控制领域的研究热点。以廉价的高岭土、凹凸棒土和腐殖酸为载体材料,采用正交实验,把功能菌存活率作为目标性状,参考材料成球率,筛选出性能较好的高岭土、凹凸棒土和腐殖酸质量配比3种,分别为1∶0.5∶0.5(A3B2C1)、0.5∶0∶0.5(A2B3C1)和1∶0∶1(A3B1C2);在温度和紫外线耐受力实验中,A3B2C1材料配比更能够有效提升功能菌在高温和紫外线作用下的存活率,即载体中高岭土、凹凸棒土和腐殖酸质量比为1∶0.5∶0.5时效果最佳;利用A3B2C1载体材料配比制备菌剂,进行室内土壤修复实验,35 d时0.1%和0.5%载体菌剂添加量修复土壤中阿特拉津完全降解,而2个游离菌修复土壤中残留率均16%,0.1%载体菌剂添加量修复过程中土壤微生物Shannon多样性指数和均匀度变化幅度较其他修复方式小,有利于土壤微生物生态系统的平衡,因此0.1%载体菌剂添加量修复效果为最优。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号